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Abstract— We consider the synchronization problem of net-
worked Euler-Lagrange systems with unknown parameters.
The information flow in the network is represented by a
directed communication graph and is subject to unknown and
possibly discontinuous time-varying communication delays with
unknown upper bounds. We propose a control scheme that
achieves position synchronization, i.e., all the positions of the
systems converge to a common final position, provided that the
directed communication graph contains a spanning tree. The
convergence analysis of the proposed scheme is based on the
multi-dimensional small-gain framework. Simulation results are
presented that confirm the validity of the obtained results.

I. INTRODUCTION

Recently, the synchronization problem of mechanical sys-
tems modeled by Euler-Lagrange dynamics has received a
great attention in the research community, see for instance
[1]-[4]. The main objective consists in designing a coop-
erative control scheme (using local information exchange)
such that the individual systems reach an agreement on their
states or on a common objective. In practical situations, the
information exchange is generally restricted and is subject
to communication delays.

Exploiting the passivity property of the systems, the au-
thors in [5] proposed an output synchronization scheme with
the assumption that the information exchange is represented
by a balanced and strongly connected directed graph. Using a
similar formulation, the cooperative trajectory tracking prob-
lem for multiple Euler-Lagrange systems has been addressed
in [6]-[7]. More recently, the synchronization of nonlinear
systems with relative degree two has been considered in
[8]. The latter result can be applied to the class of Euler-
Lagrange systems, however, the communication topology
is assumed to be undirected. With the same assumption
on the communication graph, a synchronization scheme
that accounts for input saturations for networked Euler-
Lagrange systems is proposed in [9]. In the case of general
directed networks, the authors in [10] have shown that
synchronization can be achieved with and without reference
signals. In the aforementioned papers, it has been shown that
synchronization is achieved despite the presence of delays
inherent in communication systems, however, only the case
of constant communication delays has been considered.
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In practical situations involving networked systems, com-
munication delays (that are unknown, time-varying and pos-
sibly discontinuous) must be seriously taken into consid-
eration. The effects of time-varying communication delays
are generally studied using Lyapunov-Krasovskii functionals
to derive sufficient conditions on the communication delays
so that synchronization is achieved. This can be seen in
the wide literature related to teleoperation systems, see
[11] for a survey. Also, some interesting results involving
multiple nonlinear systems have been proposed in [12]-[13],
for spacecraft formations, and in [14] for unmanned aerial
vehicles. However, these results can be applied in the case
of undirected networks, and require some assumptions on
the communication delays, including their differentiability
and/or known upper bounds.

The contribution of this paper consists in providing a
solution to the synchronization problem of networked Euler-
Lagrange systems in the presence of time-varying (possibly
discontinuous) communication delays. The systems in the
network are subject to parameter uncertainties and are in-
terconnected according to a directed communication graph.
The stability and convergence analysis presented in this work
are based on the multi-dimensional small gain approach for
systems with communication constraints; similar although
not identical framework was previously developed in [15]. It
is shown that the synchronization in the presence of unknown
irregular communication delays is achieved under conditions
that can be easily satisfied by an appropriate choice of the
control gains. In particular, the approach doesn’t impose
any constraint on the upper bound of the communication
delays. It should be pointed out that this work extends
our earlier results in [16] to the case of systems with
uncertain parameters and provides less restrictive conditions
for synchronization. Simulation results on a network of ten
robot manipulators are given to illustrate the performance of
the proposed approach.

II. PROBLEM STATEMENT

Consider a network of n not necessarily identical systems
governed by the Euler-Lagrange equations of the form

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +Gi(qi) = ui, (1)

for i ∈ N , {1, ..., n}, with qi ∈ Rm is the vector
of generalized configuration coordinates, Mi(qi) ∈ Rm×m

is the positive-definite inertia matrix, Ci(qi, q̇i)q̇i is the
vector of Coriolis/Centrifugal forces, Gi(qi) is the vector of
gravitational force, and ui is the vector of torques associated
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with the ith system. We consider the following common
properties of Euler-Lagrange systems:
P.1 Each system in (1) admits a linear parametriza-

tion of the form Mi(qi)q̈ri + Ci(qi, q̇i)q̇ri +
Gi(qi) = Yi(qi, q̇i, q̇ri , q̈ri)θi, with qri ∈ Rm and
Yi(qi, q̇i, q̇ri , q̈ri) ∈ Rm×k is a known regressor
matrix and θi ∈ Rk is the vector of the system’s
parameters.

P.2 The Coriolis matrix Ci(qi, q̇i) ∈ Rm×m is defined such
that Ṁi(qi) = Ci(qi, q̇i) +C⊤

i (qi, q̇i). Note that this
property implies that the matrix Ṁi(qi)− 2Ci(qi, q̇i)
is skew symmetric.

P.3 For all qi, x, y ∈ Rm, there exists kci ∈ R+ such that
∥Ci(qi,x)y∥ ≤ kci∥x∥∥y∥. In addition, Mi(qi) and
Gi(qi) are bounded independently from qi.

To achieve synchronization, the Euler-Lagrange systems
exchange information over a network described by the di-
rected interconnection graph G = (N , E ,A). The set N is
the set of nodes or vertices, describing the set of systems
in the network, E ∈ N × N is the set of ordered pairs of
nodes, called edges, and A = [kij ] ∈ Rn×n is the weighted
adjacency matrix. An edge (i, j) indicates that system j can
receive information from system i, but not necessarily vice
versa. The weighted adjacency matrix is defined such that
kii , 0, kij > 0 if (j, i) ∈ E , and kij = 0 if (j, i) /∈ E . A
directed path is a sequence of edges in a directed graph of the
form (i1, i2), (i2, i3), ..., where il ∈ N . A directed graph is
said to contain a directed spanning tree if there exists at least
one node having a directed path to all of the other nodes.
The Laplacian matrix L := [lij ] ∈ Rn×n of the directed
graph G is defined such that: lii =

∑n
j=1 kij , and lij = −kij

for i ̸= j. In view of its definition, the Laplacian matrix
satisfies: L1n = 0, with 1n ∈ Rn is the column vector of all
ones. Moreover, if the directed graph has a directed spanning
tree then L has a single zero-eigenvalue and the rest of the
spectrum of L has positive real parts [17].

We assume that the model parameters of the systems in
the network are not exactly known, each system can sense its
state vector with no delay, and for any pair of nodes (j, i) ∈
E , the information of j-th system is received by the i-th
system with the communication delay τij(t). The following
assumption is imposed on the communication delays τij(t).

Assumption 1: For each (j, i) ∈ E , the communication
delay τij : R+ → R+ can be decomposed into the sum of
two terms,

τij(t) = τsij(t) + τ rij(t), (2)

where the components τsij(·) and τ rij(·) have the following
properties:

i) There exists a function τ∗ : R+ → R+ such that
τ∗(t2) − τ∗(t1) ≤ t2 − t1 for all t1, t2 ∈ R+, and∣∣τ sij∣∣ ≤ τ∗(t) holds for all t ≥ 0.

ii) The function τsij(t) satisfies: t− τ sij(t) → +∞ as t →
+∞.

iii) There exists Υij ≥ 0 such that the inequality:∣∣τ sij(t2)− τsij(t1)
∣∣ ≤ Υij · |t2 − t1| holds for almost all

t2, t1 ∈ R+, with t2 ≥ t1.

iv) There exists ∆τ
ij ≥ 0 such that:

∣∣τ rij(t)∣∣ ≤ ∆τ
ij holds

for almost all t ≥ 0.
The subscripts s and r indicate that τsij(·) and τ rij(·) are

the “smooth” and the “irregular” components of the com-
munication delay, respectively. In particular, part i) implies
the existence of an upper bound of the smooth part of the
communication delays, given by τ∗, which is possibly a time-
varying unbounded function that does not grow faster than
the time itself. Also, part iii) implies that the time derivative
dτ sij(t)/dt is well-defined for almost all t ≥ 0 and satisfies∣∣dτ sij(t)/dt∣∣ ≤ Υij , where defined.

Our objective is to design a control scheme that achieves
synchronization such that all systems synchronize their po-
sitions, i.e., (qi − qj) → 0, for i, j ∈ N , with q̇i → 0, for
i ∈ N as t→ +∞.

III. PRELIMINARY RESULTS

In this section, we present some definitions and technical
results that will be used in the subsequent analysis. Consider
an affine nonlinear system of the form

ẋ = f(x) + g1(x)u1 + . . .+ gp(x)up,
y1 = h1(x),

...
...

...
yq = hq(x),

(3)

where x ∈ RN , ui ∈ Rm̃i for i ∈ Np := {1, . . . , p}, yj ∈
Rm̄j for j ∈ Nq := {1, . . . , q}, and f(·), gi(·), for i ∈ Np,
and hj(·), for j ∈ Nq, are locally Lipschitz functions of the
corresponding dimensions, f(0) = 0, h(0) = 0. We assume
that for any initial condition x(t0) and any inputs u1(t), . . . ,
up(t) that are uniformly essentially bounded on [t0, t1), the
corresponding solution x(t) is well defined for all t ∈ [t0, t1].

Definition 1: A system of the form (3) is said to be weakly
input-to-output stable (WIOS) if there exist 1 βi ∈ K∞ and
γij ∈ K, with i ∈ Nq and j ∈ Np, such that the following
inequalities hold along the trajectories of the system for any
uniformly bounded inputs and for all i ∈ Nq:

i) uniform boundedness:

|yi(t)| ≤βi (|x(t0)|) + γi1

(
sup

s∈[t0,t)

|u1(s)|

)
+ . . .

+ γip

(
sup

s∈[t0,t)

|up(s)|

)
, ∀ t0, t ∈ R, t ≥ t0,

ii) asymptotic gain:

lim sup
t→+∞

|yi(t)| ≤γi1
(
lim sup
t→+∞

|u1(t)|
)
+ . . .

+ γip

(
lim sup
t→+∞

|up(t)|
)
.

In the definition above, the function γij ∈ K, where i ∈
Nq, j ∈ Np, is called the IOS (input-to-output stability) gain
from the input uj to the output yi. In the sequel analysis, we
will mostly deal with the case where the IOS gains are linear

1 A continuous function γ : R+ → R+ is said to belong to class K
(γ ∈ K) if it is strictly increasing and satisfies γ (0) = 0. A function
γ ∈ K belongs to class K∞ if γ (s) → ∞ as s → ∞ [18].
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functions of the form γij(s) := γ0ij · s for each s ≥ 0, where
γ0ij ≥ 0. In this case, we will simply say that the system has
a linear IOS gain γ0ij ≥ 0. It can be checked directly that
for system (3), the input-to-state stability (ISS) [19] implies
the WIOS property defined above. Also, the input-to-output
stability (IOS) property [19] implies WIOS, but the converse
does not hold as demonstrated in [19, p. 194].

The following small-gain theorem is the key technical tool
used in our work.

Theorem 1: Consider a system of the form (3). Suppose
the system is WIOS, and the corresponding linear IOS gains
γ0ij ≥ 0. Suppose also that each input uj(·), j ∈ Np, is a
Lebesgue measurable function satisfying

uj(t) ≡ 0 for t < 0, (4)

|uj(t)| ≤
∑
i∈Nq

µji ·

(
sup

s∈[t−τji(t),t]

|yi(s)|

)
, (5)

for almost all t ≥ 0 where µji ≥ 0, and τji(t) satisfy
Assumption 1. Let Γ := Γ0 ·M ∈ Rq×q, where Γ0 :=

{
γ0ij
}

,
M := {µji}, i ∈ Nq, j ∈ Np. If

ρ (Γ) < 1, (6)

where ρ (Γ) is the spectral radius of the matrix Γ, then the
trajectories of the system (3) with input-output constraints
(4), (5) are well defined for all t ≥ 0 and such that all the
outputs yi(t), i ∈ Nq, and all the inputs uj(·), j ∈ Np, are
uniformly bounded and satisfy |yi(t)| → 0, |uj(t)| → 0 as
t→ +∞.

Proof: The proof is omitted due to space limitations.

IV. MAIN RESULT

We propose the following control algorithm for each
system in (1)

ui = Yi(qi, q̇i,ηi, η̇i)θ̂i − ksi (q̇i − ηi),
˙̂
θi = −ΠiYi(qi, q̇i,ηi, η̇i)

⊤(q̇i − ηi),
(7)

where Yi(qi, q̇i,ηi, η̇i)θ̂i = M̂i(qi)η̇i + Ĉi(qi, q̇i)ηi +
Ĝi(qi), with M̂i, Ĉi and Ĝi being, respectively, known
estimates of Mi, Ci and Gi. The vector θ̂i ∈ Rk is the
estimate of θi defined in property P.1, with θ̂i(0) can be
selected arbitrarily. The matrix Πi is symmetric positive
definite and ksi > 0 is a scalar gain. The vector ηi is the
solution of the following dynamic system

η̇i = −kηi ηi − λi

(
κiqi − ψ

{1}
i

)
, (8)

where ηi(0) can be selected arbitrarily, κi := (
∑n

j=1 kij),
kij is the (i, j)-th element of the adjacency matrix A of
the directed communication graph G, kηi , and λi, are strictly
positive scalar gains, and ψ{1}

i is the output of the following
second-order filter:

ψ̇
{1}
i = ψ

{2}
i

ψ̇
{2}
i = −α1ψ

{2}
i − α0ψ

{1}
i

+α0

∑n
j=1 kijqj(t− τij(t))

, (9)

where ψ{1}
i (0), ψ{2}

i (0) can be selected arbitrarily, α1, and
α0 are strictly positive scalar gains.

Now, denote

ν := −max {Re(ν1),Re(ν2)} ,
µi := −max (Re(µi,1),Re(µi,2)) ,

(10)

where ν1, ν2 are the roots of p2 + α1p+ α0 = 0, and µi,1,
µi,2 are the roots of p2 + kηi p+ λiκi = 0.

Our main result is the following theorem.
Theorem 2: Consider the network of n-systems described

by (1), where the interconnection between the systems is
described by the directed communication graph G. Let the
controller be defined by (7)-(9) and suppose Assumption 1
holds. If the control gains of each i-th system with κi ̸= 0
satisfy2

µi · ν >
n∑

j=1

kij
(
1 + Υij + α0 ·∆τ

ij

)
, (11)

then the trajectories of the closed-loop system (1), (7)-(9) are
uniformly bounded and q̇i → 0, q̃i → 0, and

∑n
j=1 kij(qi−

qj(t−τij(t))) → 0, as t→ +∞, for all i ∈ N . Furthermore,
if the directed communication graph G contains a directed
spanning tree, and τ∗(t) in Assumption 1, point i), satisfies
lim supt→+∞ τ∗(t) < ∞, then all systems synchronize their
positions to the same final position, i.e., qi → qc, for i ∈ N
and some vector qc ∈ Rn.

Remark 1: Note that the small-gain condition (11) does
not impose additional constraints on the communication
delays, and can be easily satisfied with an appropriate choice
of the control gains if Assumption 1 holds.

V. PROOF OF THEOREM 2

Let define the error variable si := (q̇i − ηi), which is
governed in view of (1) and (7) as

Miṡi +Cisi + ksi si = Yiθ̃i,
˙̃
θi = −ΠiY

⊤
i si,

(12)

where the arguments of Mi, Ci and Yi have been omitted
for simplicity, θ̃i = (θ̂i−θi), and we have used Property P.1.
Also, for our purposes, it is convenient to introduce the
following variables,

q̃i := κiqi − ψ
{1}
i ,

q̂i(t) :=
∑n

j=1 kijqj(t− τij(t)),

q̂s
i (t) :=

∑n
j=1 kijqj

(
t− τsij(t)

)
,

∆q̂i(t) := q̂i(t)− q̂s
i (t),

ψ̃i := ψ
{1}
i − q̂s

i ,

(13)

with τsij(t) given in Assumption 1. First, we consider all
agents i ∈ N with κi =

∑n
j=1 kij ̸= 0. Using (12) and (8)-

(9) along with the definition of si and (13), the closed loop

2Note that κi = 0 indicates that the i-th system does not receive
information from any other system in the network. Therefore, condition
(11) is imposed only on systems that receive information from at least one
other neighbor in the team.
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dynamics of the i-th system with κi ̸= 0 is obtained as

ṡi = M−1
i

(
Yiθ̃i −Cisi − ksdsi

)
(14)

˙̃
θi = −ΠiY

⊤
i si (15)

˙̃qi = κiηi + κisi − ψ
{2}
i (16)

η̇i = − kηi ηi − λiq̃i (17)
˙̃
ψi = ψ

{2}
i − ˙̂qs

i (18)

ψ̇
{2}
i = − α0ψ̃i − α1ψ

{2}
i + α0∆q̂i (19)

where the vectors si, ψ̃i, ψ
{2}
i , ηi and q̃i are the states, ˙̂qs

i

and ∆q̂i are the inputs, and the output is given by

q̇i = si + ηi. (20)

Proposition 1: The system (14)-(19) with inputs ˙̂qs
i , ∆q̂i

and output (20) is weakly IOS. Moreover, the IOS gains with
respect to inputs ˙̂qs

i , ∆q̂i are 1
µi·ν and α0

µi·ν , respectively.
Proof: Applying Lemma 1, given in Appendix A, to the

trajectories of the system (18)-(19), we see that the following
estimate∣∣∣∣∣ ψ̃i(t)

ψ
{2}
i (t)

∣∣∣∣∣ ≤e−ν(t−t0)

∣∣∣∣∣ ψ̃i(t0)

ψ
{2}
i (t0)

∣∣∣∣∣+ 1

ν
sup

σ∈[t0,t]

∣∣∣ ˙̂qs
i (σ)

∣∣∣
+
α0

ν
sup

σ∈[t0,t]

|∆q̂i(σ)| , (21)

holds for any t ≥ t0, where ν > 0 is defined by (10).
Inequality (21) indicates, in particular that the system (18)-
(19) is ISS with respect to inputs ˙̂qs

i , ∆q̂i, with ISS gains 1
ν

and α0

ν , respectively. Similarly, Applying Lemma 1 to (16)-
(17) yields us to write∣∣∣∣ q̃i(t)

ηi(t)

∣∣∣∣ ≤e−µi(t−t0)

∣∣∣∣ q̃i(t0)
ηi(t0)

∣∣∣∣+ κi
µi

sup
σ∈[t0,t]

|si(σ)|

+
1

µi
sup

σ∈[t0,t]

∣∣∣ψ{2}
i (σ)

∣∣∣ , (22)

which implies that the system (16)-(17) is ISS with respect to
inputs si, ψ

{2}
i . In particular, 1/µi is the ISS gain of system

(16)-(17) with respect to the input ψ{2}
i . Taking into account

that ψ{2}
i is a part of the state of (18)-(19), and the fact that a

cascade connection of two ISS subsystems is ISS [19], one
concludes that the system (16)-(19) is ISS with respect to
inputs ˙̂qs

i , ∆q̂i, si. On the other hand, the uniform bound-
edness of si, θ̃i (with the upper bound independent on other
variables) can be shown using the following Lyapunov func-
tion candidate V = 1

2

∑n
i=1

(
sTi Mi(qi)si + θ̃

⊤
i Π

−1
i θ̃i

)
,

whose time-derivative along the trajectories of (14)-(15) is
V̇ = −

∑n
i=1 k

d
i s

T
i si. Combination of these two facts proves

the uniform boundedness property given in Definition 1.
To prove the asymptotic gain property, note that the input-

to-state stability of (16)-(19) implies that ηi and η̇i are
uniformly bounded for any uniformly bounded inputs ˙̂qs

i ,
∆q̂i, since si was shown to be uniformly bounded. Con-
sequently, we can see, using properties P1 and P3, that the
right-hand side of (14) is uniformly bounded, and hence ṡi is
uniformly bounded. This implies that V̈ = −2·

∑n
i=1 k

d
i ṡ

T
i si

is uniformly bounded, and therefore the uniform continuity
of V̇ (t). Now, applying Barbălat lemma [18, Lemma 8.2], we
conclude that V̇ (t) → 0 as t→ +∞, and therefore si → 0 as
t→ +∞. This, with the ISS property of (16)-(19), lead us to
conclude that the system (14)-(19), (20) is weakly IOS. The
estimates of IOS gains can be verified directly by combining
(21), (22), and (20). The proof of the proposition is complete.

Now, let us consider the i-th agents with κi = 0. In this
case, q̃i = −ψ{1}

i = −ψ̃i and the corresponding closed loop
dynamics becomes

ṡi = M−1
i

(
Yiθ̃i −Cisi − ksdsi

)
, (23)

˙̃
θi = −ΠiY

⊤
i si, (24)

η̇i = −kηi ηi + λiψ̃i (25)
˙̃
ψi = ψ

{2}
i , (26)

ψ̇
{2}
i = −α0ψ̃i − α1ψ

{2}
i , (27)

with output q̇i = si+ηi. Using the same Lyapunov function
in the proof of Proposition 1, and by noting that system (25)-
(27) is exponentially stable, we can conclude that (23)-(27)
has uniformly bounded state trajectories, and q̇i → 0 as
t→ +∞. Therefore, one can formally consider (23)-(27) to
be similar to (14)-(19) with inputs ˙̂qs

i and ∆q̂i, with respect
to which the system is WIOS with zero IOS gains.

From the above analysis, the networked systems (1) with
input (7)-(9) can be considered as a system that consists of
n subsystems of the form (14)-(19), where i ∈ N . Each i-th
subsystem (14)-(19) has two inputs, ˙̂qs

i , ∆q̂i, and one output
q̇i. Therefore, the overall system has 2n inputs and n outputs.
For our purposes, it is convenient to order them as follows:
yk := q̇k for k ∈ N , and u2k−1 := ˙̂qs

k, u2k := ∆q̂k for
k ∈ N . Proposition 1 indicates that thus defined system is
weakly IOS. Moreover, based on the above described order
of the inputs and outputs, the elements of the IOS gain matrix
Γ0 :=

{
γ0ij
}

are as follows

γ0il =


1

µi·ν if l = 2i− 1, i ∈ N , κi ̸= 0,
α0

µi·ν if l = 2i, i ∈ N , κi ̸= 0,

0 otherwise.

On the other hand, using Assumption 1, the following
estimates of the inputs |∆q̂i| and

∣∣∣ ˙̂qs
i

∣∣∣ can be derived

|∆q̂i(t)| =

∣∣∣∣∣∣
n∑

j=1

kij
[
qj(t− τij(t))− qj

(
t− τ sij(t)

)]∣∣∣∣∣∣
≤

n∑
j=1

kij
∣∣qj(t− τij(t))− qj

(
t− τ sij(t)

)∣∣
≤

n∑
j=1

kij ·∆τ
ij ·

(
sup

σ∈[t1,t2]

|q̇j (σ)|

)
, (28)
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∣∣∣ ˙̂qs

i (t)
∣∣∣ =

∣∣∣∣∣∣
n∑

j=1

kijq̇j

(
t− τsij(t)

) [
1−

dτ sij(t)

dt

]∣∣∣∣∣∣
≤

n∑
j=1

kij (1 + Υij)
∣∣q̇j

(
t− τ sij(t)

)∣∣ , (29)

where, in the latter inequality, we use notation t1 := (t −
max{τij(t), τ sij(t)}) and t2 := (t − min{τij(t), τ sij(t)}).
Therefore, the elements of the interconnection matrix M :=
{µji} are as follows:

µli =

{
kij (1 + Υij) if l = 2j − 1, j ∈ N , i ∈ N
kij ·∆τ

ij if l = 2j, j ∈ N , i ∈ N .

From the above expressions, we conclude that the elements
of the closed-loop gain matrix Γ := Γ0 · M = {γij}i,j∈N
are as follows

γij =

{
kij

µi·ν
(
1 + Υij + α0 ·∆τ

ij

)
, if κi ̸= 0,

0 otherwise.
(30)

Moreover, notice that kii = 0 for all i ∈ N , which implies
γii = 0 for all i ∈ N , i.e., the diagonal elements of Γ are
all zeros. Taking into account that the elements of Γ are
nonnegative, one can apply the Geršgorin disc theorem [20]
to conclude that ρ (Γ) < 1 if

Γi :=
1

µi · ν

n∑
j=1

kij
(
1 + Υij + α0 ·∆τ

ij

)
< 1,

which is satisfied by (11). Now, applying the small gain
theorem (Theorem 1), we conclude that all q̇i(t), ˙̂q

s

i (t) and
∆q̂i(t), for i ∈ N , are uniformly bounded and |q̇i(t)| → 0,
| ˙̂q

s

i (t)| → 0, |∆q̂i(t)| → 0 as t → +∞. This, with
Proposition 1, lead to the conclusion that q̃i, ηi, ψ̃i, ψ

{2}
i are

uniformly bounded and q̃i → 0, ηi → 0, ψ̃i → 0, ψ{2}
i → 0

as t → +∞. Then, using (13) with |∆q̂i(t)| → 0, we have
(ψ

{1}
i − q̂s

i ) → (ψ
{1}
i − q̂i) → 0, which implies from (13)

that
∑n

j=1 kij (qi − qj(t− τij(t))) → 0 as t → +∞, for
i ∈ N .

To prove the last point in the theorem, note that we
can verify from parts i) and iv) of Assumption 1, with
lim sup
t→+∞

τ∗(t) < ∞ and q̇i → 0 as t → +∞, that (qj −

qj(t− τij(t))) :=
∫ t

t−τij(t)
q̇j(s)ds→ 0 as t→ +∞ for all

i, j ∈ N . Then, exploiting the above results with the relation
(qi − qj(t− τij(t))) =

(
qi − qj +

∫ t

t−τij(t)
q̇j(s)ds

)
, we

conclude that
∑n

j=1 kij(qi − qj) → 0, for i ∈ N , which
is equivalent to (L ⊗ Im)Q → 0 where L is the Laplacian
matrix of the communication graph G, Q ∈ Rnm is the
vector containing all qi for i ∈ N , and ⊗ is the Kronecker
product. With the condition that the communication graph
contains a spanning tree, we conclude following similar
arguments as in [17] that the only solution to (L⊗Im)Q → 0
is Q → (1n ⊗ qc), for some qc ∈ Rm. As a result, we
conclude that qi → qc for i ∈ N .

VI. SIMULATION RESULTS

In this section, we provide simulation results of a network
of ten planar two degrees of freedom rigid manipulator arms
(with revolute joints). For any generalized coordinates qi =
(qi1 , qi2)

⊤ ∈ R2, the inertia matrices, Coriolis and centrifu-
gal matrices, and gravity vectors are given, respectively, by:
Mi(qi) = [mijk ]2×2, Ci(qi, q̇i) = [cijk ]2×2, and Gi(qi) =
[Gi1 , Gi2 ]

T with mi11 = θ1 + 2θ2 cos(qi2)), mi12 = mi21 =
θ3 + θ2 cos(qi2), mi22 = θ3, ci11 = −θ2 sin(qi2)q̇i2 , ci12 =
−θ2 sin(qi2)(q̇i1+q̇i2), ci21 = θ2 sin(qi2)q̇i1 , ci22 = 0, Gi1 =
gθ5 cos(qi1)+gθ4 cos(qi1+qi2), and Gi2 = gθ4 cos(qi1+qi2).
In these expressions, g = 9.81 m/sec2, the variables θk, k =
1, . . . , 5, are given as: θ1 = (m1l

2
c1+m2(l

2
1+ l

2
c2)+I1+I2),

θ2 = m2l1lc2, θ3 = (m2l
2
c2 + I2), θ4 = m2lc2 , and θ5 =

(m1lc1 +m2l1), with m1 = m2 = 1 kg, l1 = l2 = 0.5 m,
lc1 = lc2 = 0.25 m, and I1 = I2 = 0.1 kg/m2. The
following parametrization is considered for the control law
(7): Yi(qi, q̇i, ηi, η̇i) = [Yijk ] ∈ R2×5, with Yi11 = η̇i1 ,
Yi12 = cos(qi2)(2η̇i1 + η̇i2)− sinqi2 (ηi1 q̇i2 + ηi2(q̇i1 + q̇i2)),
Yi13 = η̇i2 , Yi14 = Yi24 = g cos(qi1 +qi2), Yi15 = g cos(qi1),
Yi21 = Yi25 = 0, Yi22 = η̇i1 cos(qi2) + ηi1 q̇i1 sin(qi2),
Yi23 = η̇i1 + η̇i2 , and ηi := (ηi1 , η12)

⊤ = −Λiq̃i. The vector
of estimated parameters is θ̂ = (θ̂1, θ̂2, θ̂3, θ̂4, θ̂5)

⊤.
We implement the control scheme in Theorem 2, with

θ̂(0) = (1, 1, 1, 1, 1)⊤, ηi(0) = ψ
{1}
i (0) = ψ

{2}
i (0) = 0,

for i ∈ N , and the communication topology between
the systems is represented by the directed graph
G = (N , E ,K), with N = {1, . . . , 10}, E =
{(1, 2), (1, 10), (2, 3), (4, 1), (4, 5), (5, 6), (6, 7), (7, 8), (8, 7),
(8, 9), (9, 1), (9, 3), (9, 10), (10, 8)}, and the adjacency
matrix, and the adjacency matrix A = [kij ], with
kij = 0.2, for (j, i) ∈ E , and zero otherwise. It
can be easily verified that G contains a spanning
tree. We consider the following communication delays
for each (j, i) ∈ E : τij(t) = τ̄ijϕ(t) sec, with
ϕ(t) = (1 − cos(0.25t + 1) + 0.25r(t)) sec, r(t) ∈ [0, 1]
is a uniform random function, and the constants τ̄1i = 0.6,
τ̄2i = 0.6, τ̄3i = 0.6, τ̄4i = 0.6, τ̄5i = 0.5, τ̄6i = 0.5,
τ̄7i = 0.6, τ̄8i = 0.5, τ̄9i = 0.6, τ̄10i = 0.6, for i ∈ N .
It should be noted that the delay functions used here are
bounded and satisfy Assumption 1 with Υij = ∆τ

ij = 0.15,
for all i, j ∈ N .

Also, the control gains are selected as: α0 = 1, α1 = 2,
ksi = 15, Πi = 0.3I5, λi = 10, and kηi = 2, for i ∈ N . Note
that this choice of the gains guarantees that the small-gain
conditions (11) are satisfied for every system in the team.
Fig. 1-2 show the obtained results, where it can be seen that
all systems synchronize their positions despite the presence
of irregular communication delays.

VII. CONCLUSIONS

We addressed the synchronization problem of uncertain
Euler-Lagrange systems in the presence of time-varying com-
munication delays. Using the multi-dimensional IOS small
gain approach, we proposed an adaptive control scheme that
achieves synchronization under a directed communication
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Fig. 1. Joint angles derivatives of the ten systems, with qi = (qi1 , qi2 )
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graph containing a spanning tree. Essentially, we have ex-
tended the results of [16] to the adaptive case and the suf-
ficient conditions for synchronization obtained in this paper
can be easily satisfied by an appropriate choice of the control
gains. To the best of our knowledge, the synchronization
problem of Euler-Lagrange systems has been addressed in
the literature only in the case of constant communication
delays, which is a particular case of this work. In fact,
our approach handles time-varying, possibly discontinuous,
communication delays and does not impose constraints on
the upper bound of the communication delays. Possible
directions for future research include the extension of these
results to the case of directed and switching communication
topologies and significant information losses, as well as
synchronization with prescribed nonzero velocities.

APPENDIX
A. Lemma

The following useful lemma can be found for example in
[18] and [22]

Lemma 1: Consider an LTI system
ẋ = Ax+Bu, (31)

where x ∈ Rn is the state vector, u ∈ Rm is the input vector,
and A is a Hurwitz matrix such that A + A∗ + 2µI ≤

0 for some µ > 0. Then for any initial condition x(t0),
the solution of (31) satisfies: |x(t)| ≤ e−µ(t−t0)|x(t0)| +
∥B∥
µ sup

σ∈[t0,t]

|u(σ)|.
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