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Abstract—This paper deals with the backstepping approach for the design of adaptive discontinuous
time-invariantcontrollersfor the point-stabilizationof mobile robots with matched uncertainties. First
of all, we derive a control law in the disturbance-freecase guaranteeingexponential convergence for a
unicycle-like mobile robot. Furthermore, an adaptive version of the previous control law is proposed
when the mobile robot is subjected to input disturbances. Finally, simulation results are presented.
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1. INTRODUCTION AND PROBLEM FORMULATION

Feedback stabilization of non-holonomic systems to a speci� ed con� guration has
recently enjoyed great attention in the automatic control community. The challenge
of this problem is due to the fact that it is not possible to � nd any smooth
time-invariant stabilizing feedback for this class of systems [1]. To overcome
this dif� culty, several directions of research have evolved. Among the proposed
solutions are smooth time-varying controllers, which involve periodic functions
depending explicitly on an exogenous time variable, leading to low rates of
convergence, and to non-smooth and oscillating trajectories (see, e.g. [2, 3]). An
alternative to time-dependant smooth controllers is the discontinuous or piecewise-
continuous time-invariant controllers, often leading to exponential convergence and
generating non-oscillating trajectories (see [4–10]). To our knowledge, there are
few works in the literature dealing with uncertain non-holonomic systems. Among
these works one can distinguish [7, 11] and [12]. In fact, in [7], the authors have
proposed a quasi-continuous adaptive controller for a third-order non-holonomic
system by means of the invariant manifold approach, assuming that only one of the
two inputs is subjected to disturbances. In papers [11] and [12], the authors have
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proposed a backstepping-based time-varying adaptive scheme for a special class of
uncertain non-holonomic chained systems.

In [13] we have proposed a discontinuous time-invariant state feedback for the
stabilization of n-dimensional non-holonomic chained systems, in the disturbance-
free case, by means of the backstepping approach [14]. In this paper, using the same
approach, we propose a time-invariant adaptive controller guaranteeing exponential
convergence for a unicycle-like mobile robot subjected to input disturbances. Our
controller is smooth and well-de� ned everywhere except on the manifold described
by a null initial orientation (i.e. µ.0/ D 0/ of the vehicle. In this case we have just
to drive away the mobile robot from this con� guration using an arbitrary open-loop
control for a small period of time and then switch to the feedback controller. In other
words, our time-invariant feedback controller is smooth and well-de� ned provided
that (µ.0/ 6D 0/.

The unicycle-like mobile robot, in the disturbance-free case, is described by the
following kinematics model:

Px D v cos µ;

Py D v sin µ; (1)
Pµ D !;

which can be transformed into the following third-order chained form:

Px1 D u1;

Px2 D u2; (2)

Px3 D x2u1;

using the following input and coordinate transformations:

x1 D µ;

x2 D x cos µ C y sin µ;

x3 D x sin µ ¡ y cos µ;

and

u1 D !;

u2 D v ¡ x3!:

When the mobile robot is subjected to input disturbances, system (1) becomes:

Px D .v C »1/ cos µ;

Py D .v C »1/ sin µ; (3)
Pµ D ! C »2 ;

where v and ! are the control variables and »1 and »2 are constant inputs distur-
bances.
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Applying the same transformations used for system (1) leads to:

Px1 D u1 C »2;

Px2 D u2 C »1 ¡ x3»2; (4)

Px3 D x2u1 C x2»2:

From (4), it is clear that if »1 D »2 D 0, we obtain the chained form (2).
The paper is organized as follows: In Section 2, we present a procedure for

the design of a discontinuous time-invariant stabilizing controller for a unicycle-
like vehicle (1). In Section 3, a discontinuous time-invariant adaptive controller
is derived for the stabilization of the unicycle-like vehicle subjected to matched
uncertainties (3). In Section 4, simulation results are given to demonstrate the
effectiveness of our study. Finally, some concluding remarks end the paper.

2. CONTROL SYNTHESIS IN THE DISTURBANCE-FREE CASE

A general procedure for the design of discontinuous time-invariant stabilizing
controllers for n-dimensional non-holonomic chained systems has been proposed
in [13]. In this section, we will apply this procedure for the third-order chained
system (2). Although the synthesis approaches are different, our resulting controller
is of the same class as those proposed in [4]. It is worth noticing that the main result
in this paper is still in the disturbance-case presented in Section 3.

Firstly, let us consider system (2) under the change of coordinates yi D x3¡iC1 for
1 6 i 6 3 and the linear state feedback u1 D ¡k3y3 , k3 > 0:

Py1 D ¡k3y2y3;

Py2 D u2; (5)

Py3 D ¡k3y3:

Step 1. Let us take the following Lyapunov candidate function for the � rst
equation of (5):

V1.y1/ D 1

2
y2

1 : (6)

Considering y2 as a virtual control law de� ned over Ä D f.y1; y2; y3/ 2 I R3=

y3.t/ 6D 0; t > 0g as follows:

91.y1; y3/ D
k1

k3

y1

y3
; (7)
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the time derivative of (6) becomes:

PV1.y1/ D ¡k1y2
1 ; (8)

where k1 is a positive parameter.

Step 2. Now, let us introduce the new variable z2 D y2 ¡ 91.y1; y3/ which
represents the deviation between y2 and the virtual control 91, and consider the � rst
two equations of (5) where y2 is substituted by z2 C 91.y1; y3/:

Py1 D ¡k3y3.z2 C 91/;

Pz2 D u2 C k1.z2 C 91/ ¡ k1
y1

y3
: (9)

Using the following Lyapunov candidate function:

V2.y1; z2/ D V1.y1/ C
1

2
z2

2; (10)

and the following control law de� ned over Ä:

u2 D 92.y1; y2; y3/ D k3y1y3 ¡ k1.z2 C 91/ ¡ k2z2 C k1
y1

y3
; (11)

leads to:

PV2.y1; z2/ D ¡k1y2
1 ¡ k2z

2
2; (12)

where k2 is a positive parameter.
Now, one can easily conclude that y1 and z2 are bounded and tend to zero when t

tends to in� nity. Therefore, y2 tends to .k1=k3/.y1=y3/.
To guarantee the boundedness and the convergence to zero of y2, one must ensure

the boundedness and the convergence to zero of y1=y3. So, from (6) and (8), one can
conclude that y1 decays to zero as exp.¡k1t/ when t ! 1. Therefore, if we take
k1 > k3, the boundedness and the convergence to zero of y1=y3 becomes obvious
whenever y3.0/ 6D 0, since y3 decays to zero as exp.¡k3t/.

The previous results can be summarized in the following proposition

PROPOSITION 1. Consider the following control law de�ned over Ä D f.y1;

y2; y3/ 2 <3=y3 6D 0g:

u1 D ¡k3y3;

u2 D k3y1y3 ¡ .k2 C k1/y2 C k1

³
1 C

k2

k3

´
y1

y3
; (13)

with yi D x3¡iC1 , 1 6 i 6 3, k3 > 0, k2 > 0 and k1 > k3 , and assume that
y3.0/ 6D 0. Then, the following hold :

(i) The whole state of the closed loop system .2/– .13/ remains in the domain Ä,
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(ii) The whole state of the closed-loop system .2/–.13/ is bounded and tends to
zero when t tends to in� nity

(iii) The control law .13/ is bounded and well-de� ned for all t > 0.

3. ADAPTIVE CONTROL DESIGN

In this section, we will derive a discontinuous time-invariant adaptive controller for
the stabilization of system (4), using the backstepping approach. To this end, let us
introduce the change of coordinates yi D x3¡iC1 for 1 6 i 6 3 leading to:

Py1 D y2u1 C y2»2;

Py2 D u2 C »1 ¡ y1»2; (14)

Py3 D u1 C »2:

Let us � rst determine an adaptive control law u1 for the stabilization of the last
equation of (14):

Py3 D u1 C »2: (15)

Consider the following Lyapunov candidate function:

V .y3; Q»2/ D
1

2
y2

3 C
1

203

Q» 2
2 ; (16)

where 03 is a positive parameter and Q»2 D »2 ¡ O»2 , with »2 the unknown constant
parameter and O»2 its estimated value.

In view of (15), differentiating (16) with respect to time leads to:

PV D y3

¡
u1 C O»2

¢
C Q»2

³
y3 C

1
03

PQ» 2

´
: (17)

Vanishing the second term of the right-hand side of (17) and choosing the following
control law:

u1 D ¡k3y3 ¡ O»2; (18)

leads to the following negative semi-de� nite function:

PV .y3/ D ¡k3y2
3 ; (19)

and gives the following expression for the estimation error:

PQ»2 D ¡03y3: (20)

Since »2 is assumed to be constant, one has the following adaptive controller for the
stabilization of y3:
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u1 D ¡k3y3 ¡ O»2;

PO» 2 D 03y3; (21)

where k3 is a positive parameter.
From (19), one can easily conclude that y3 tends to zero when t tends to in� nity.

Using the La Salle invariance theorem, the convergence of Q»2 to zero immediately
follows from (15) and (18).

Under the dynamic control law (21), system (14) becomes:

Py1 D ¡k3y2y3 C y2 Q»2;

Py2 D u2 C » 1 ¡ y1.O»2 C Q»2/; (22)

Py3 D ¡k3y3 C Q»2;

PO» 2 D 03y3:

Since Q»2 tends to zero when t tends to in� nity, system (22) becomes:

Py1 D ¡k3y2y3;

Py2 D u2 C » 1 ¡ y1 O»2; (23)

Py3 D ¡k3y3;

PO» 2 D 03y3:

Now, let us apply the backstepping procedure to design a discontinuous feedback
u2 for system (23). The procedure is in two steps. The � rst step consists in � nding
an adequate control Lyapunov function, for the � rst equation of (23), which leads to
a virtual control law y2 D 91.y1; y3/ that stabilizes y1. The second step consists in
� nding the control law u2 which stabilizes both y1 and .y2 ¡ 91.y1; y3//. Finally,
to guarantee the boundedness and the convergence to zero of the whole state, one
must ensure the boundedness and the convergence to zero of 91.y1; y3/.

Step 1. Let us consider the � rst equation of (23):

Py1 D ¡k3y2y3; (24)

with the following Lyapunov candidate function:

V1.y1/ D
1

2
y2

1 : (25)

Differentiating (25) with respect to time and considering y2 as a virtual control law
de� ned over Ä3 D f.y1; y2; y3/ 2 <3=y3 6D 0g as follows:

91.y1; y3/ D
k1

k3

y1

y3
; (26)



Adaptive controller for non-holonomic mobile robots 111

where k1 is a positive parameter, leads to:

PV1 D ¡k1y2
1 : (27)

Step 2. Now, let us introduce a new variable z2 ´ y2 ¡ 91.y1; y3/ D y2 ¡
.k1=k3/.y1=y3/ and consider the following subsystem obtained by substituting y2

by z2 C .k1=k3/.y1=y3/ in the � rst two equations of (23):

Py1 D .¡k3y3/
±
z2 C

k1

k3

y1

y3

²
;

Pz2 D u2 C »1 ¡ y1 O»2 C k1

±
z2 C

k1

k3

y1

y3

²
¡ k1

y1

y3
: (28)

Taking the following Lyapunov candidate function:

V2.y1; z2; Q»1/ D V1.y1/ C 1

2
z2

2 C 1

201

Q» 2
1 ; (29)

where 01 is a positive parameter and Q»1 D »1 ¡ O»1 , with »1 the unknown constant
parameter and O»1 its estimated value.

Differentiating (29) with respect to time yields:

PV2 D y1

³
z2 C

k1

k3

y1

y3

´
.¡k3y3/

Cz2

³
u2 C O»1 C Q»1 ¡ y1 O»2 C k1

³
z2 C

k1

k3

y1

y3

´
¡ k1

y1

y3

´

C
1
01

Q»1
PQ» 1: (30)

Taking the control law u2 as:

u2 D k3y1y3 ¡ .k1 C k2/y2 C
³

k1 C
k1k2

k3

´
y1

y3
¡ O»1 C y1 O»2; (31)

where k2 is a positive parameter, and vanishing the terms with Q»1 we get:

1
01

Q»1
PQ» 1 C z2 Q»1 D 0; (32)

which gives the adaptation law for the constant parameter »1 as:

PO» 1 D 01z2: (33)

Equation (30) then becomes:

PV2 D ¡k1y2
1 ¡ k2z2

2: (34)

Now, it is clear that y1 and z2 will be bounded and tend to zero when t tends to
in� nity. Since z2 D y2 ¡ .k1=k3/.y1=y3/ ! 0 when t ! 1, we have just to
ensure the boundedness and the convergence to zero of the ratio y1=y3. This allows
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us to ensure the boundedness of the control law and the convergence to zero of the
variable y2. Hence, one must � nd some conditions under which the following hold:

(i) y3.t/ never crosses y3 D 0 for all t > 0, as long as y3.0/ 6D 0.

(ii) y1=y3 bounded and y1=y3 ! 0 when t ! 1.

From the last two equations of (22) it is clear that y3.t/ is given by the solution of
the following differential equation:

Ry3 C k3 Py3 C 03y3 D 0: (35)

If the parameters k3 and 03 are such that k2
3 ¡ 403 > 0, the solution y3.t/ is given

by:

y3.t/ D C1 exp.¸1t/ C C2 exp.¸2t/; (36)

with:

¸1 D
¡k3 ¡

q
k2

3 ¡ 403

2
; ¸2 D

¡k3 C
q

k2
3 ¡ 403

2
;

C1 D
Q»2.0/ C ¸1y3.0/

¸1 ¡ ¸2
and C2 D

Q»2.0/ C ¸2y3.0/

¸2 ¡ ¸1
:

To satisfy condition (i), the following inequality must be ful� lled:

Q»2.0/ C ¸1y3.0/

Q»2.0/ C ¸2y3.0/
< 1: (37)

This means that the time for which y3.t/ D 0 is negative.
Now, we focus our attention on condition (ii). From (25) and (27), it is clear that

y1 decays to zero as exp.¡k1t/ when t tends to in� nity. From the third equation
of (23), it is clear that y3 decays to zero as exp.¡k3t / when t tends to in� nity.
Therefore, y1=y3 decays to zero as exp.¡.k1 ¡ k3/t/ when t tends to in� nity, as
long as k1 > k3.

Finally, one can summarize the previous results in the following theorem

THEOREM 1.Consider system .4/ under the following adaptive controller de-
� ned over Ä D f.y1; y2; y3/ 2 <3=y3 6D 0g:

u1 D ¡k3y3 ¡ O»2;

u2 D k3y1y3 ¡ .k1 C k2/y2 C
³

k1 C
k1k2

k3

´
y1

y3
¡ O»1 C y1 O»2; (38)

PO»1 D 01

³
y2 ¡

k1

k3

y1

y3

´
;

PO»2 D 03y3;

where yi D x3¡iC1 , 1 6 i 6 3, k2 > 0, 01 > 0, 03 > 0, k3 > 2
p

03, k1 > k3 and
.Q»2.0/ C ¸1y3.0//=. Q»2.0/ C ¸2y3.0// < 1. Assume that y3.0/ 6D 0. Then, the whole
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state of the closed-loop system .4/–.38/ remains in Ä for all t > 0, and tends to
zero when t tends to in� nity.

If the control variable ! is not subjected to any uncertainty (i.e. »2 D 0), one can
easily deduce the following theorem from the previous development.

THEOREM 2.Consider system .4/, with »2 D 0, under the following adaptive
controller de�ned over Ä D f.y1; y2; y3/ 2 <3=y3 6D 0g:

u1 D ¡k3y3;

u2 D k3y1y3 ¡ .k1 C k2/y2 C
³

k1 C
k1k2

k3

´
y1

y3
¡ O»1; (39)

PO» 1 D 01

³
y2 ¡

k1

k3

y1

y3

´
;

where yi D x3¡iC1, 1 6 i 6 3 and k2 > 0, k3 > 0, k1 > k3 and 01 > 0.

Assume that y3.0/ 6D 0. Then:

(i) The whole state of the closed-loop system (4)–(39) remains in Ä for all t > 0.

(ii) The whole state of the closed-loop system (4)–(39) is bounded and tends to
zero when t tends to in� nity.

(iii) The control law is well de� ned and bounded for all t > 0.

Remark 1. The discontinuity introduced in the control law is not very restrictive
since we have just to avoid a null orientation of the mobile robot at t D 0. If
necessary, one can apply an open-loop control u2 for an arbitrary small period of
time to make the orientation µ 6D 0 and then switch to the feedback (38) or (39).

Remark 2. It is worth noticing that the condition . Q»2.0/ C ¸1y3.0//=. Q»2.0/ C
¸2y3.0// < 1 in Theorem 1 depends on the initial condition Q»2.0/ D »2.0/ ¡ O»2.0/;

where »2.0/ is unknown. However, if we assume that the unknown parameter »2 is
bounded and the bounds are known (i.e. j»2j 6 »2 max), one can choose the initial
value of O»2 in accordance with the bounds of »2 to make the condition independent
from »2.0/. In fact, one can make the conditions of Theorem 1 Q»2.0/-independent
according to the following proposition.

PROPOSITION 2. Assuming that j»2j 6 »2 max; where »2 max is a known positive
parameter, the condition . Q»2.0/ C ¸1y3.0//=. Q»2.0/ C ¸2y3.0// < 1 is ful� lled if we
take O»2.0/ as one of the following expressions :
(a) O»2.0/ D ¡k sign.y3.0//»2 max C ¸1y3.0/, with k > 1.
(b) O»2.0/ D ¡k sign.y3.0//»2 max, with k > 1.

Proof.
(a) Consider the Q»2.0/-dependent condition involved in Theorem 1:

Q»2.0/ C ¸1y3.0/

Q»2.0/ C ¸2y3.0/
< 1: (40)
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Condition (40) is ful� lled in the following two cases:

(i)

( Q»2.0/ C ¸1y3.0/ > 0;
for y3.0/ > 0;

Q»2.0/ C ¸2y3.0/ > 0;

(ii)

( Q»2.0/ C ¸1y3.0/ < 0;
for y3.0/ < 0:

Q»2.0/ C ¸2y3.0/ < 0;

From (i), one has:
8
>>><

>>>:

¸1 > ¡
Q»2.0/

y3.0/
;

¸2 > ¡
Q»2.0/

y3.0/
:

Since ¸1 < ¸2 < 0, it suf� ces to consider only the condition ¸1 > ¡Q»2.0/=y3.0/.
This leads to:

¸1 C
Q»2.0/

y3.0/
> 0 ) ¸1 C

»2.0/

y3.0/
¡

O»2.0/

y3.0/
> 0; since Q»2 D »2 ¡ O»2:

Taking:

O»2.0/ D ¡k»2 max C ¸1y3.0/; (41)

with k > 1 we obtain:

¸1 C
»2.0/

y3.0/
¡

O»2.0/

y3.0/
D

»2.0/

y3.0/
C

k»2 max

y3.0/
> 0; (42)

which is always satis� ed since j»2j 6 »2 max.
In the same way, it is easy to show that (ii) is ful� lled by taking:

O»2.0/ D k »2 max C ¸1y3.0/; (43)

with k > 1.
Consequently, to satisfy both of the conditions (i) and (ii), one can take:

O»2.0/ D ¡k sign.y3.0//»2 max C ¸1y3.0/; with k > 1: (44)

(b) In this case the proof is omitted since we use the same development as in the
case (a), considering the following conditions:

» Q»2.0/ C ¸1y3.0/ < 0;
Q»2.0/ C ¸2y3.0/ > 0;

(45)

instead of (i) and (ii) to satisfy the condition (40).
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4. SIMULATION RESULTS

In this section, we present some simulation results for the stabilization of a unicycle-
like mobile robot. Firstly, we consider the kinematics model with no disturbances.
Secondly, we consider a mobile robot subjected to constant disturbances.

4.1. Non-adaptive controller: disturbance-free case

In this case, we aim to steer the vehicle to the origin starting from the initial
con� guration .x0 D 2; y0 D 2; µ0 D ¼=2/. The control parameters we have used
are: k1 D 2, k2 D 1, k3 D 1. Figure 1 shows the time evolution of the state variables
and the plot of the generated trajectory in the Cartesian plane y.x/. The vehicle
motion, in the parking maneuver, is illustrated in Fig. 2.

4.2. Adaptive controller

In this case, our objective is to steer the vehicle, subjected to unknown disturbances,
to the origin starting from the initial con� guration .x0 D 2; y0 D 2; µ0 D ¼=2/.
The unknown parameters we have introduced — for simulation purposes — are
»1 D »2 D 2 and the control parameters are: k1 D 15:8, k2 D 1, k3 D 7:9,
01 D 03 D 10 and O»1.0/ D 0, O»2.0/ D ¡k sign.y3.0//»2 max C¸1y3.0/, with k D 1:1
and »2 max D 2.

Figure 3 shows the time evolution of the state variables as well as the estimated
values O»1 and O»2. In Fig. 4, one can see the convergence of the mobile robot to the
origin under the adaptive control law.

Figure 1. Disturbance-freecase: state variables (x; y; µ ) and the generated trajectory y.x/.
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Figure 2. Disturbance-freecase: parking maneuver.

Figure 3. Adaptive case: state variables .x; y; µ/ and the estimations O»1; O»2.

5. CONCLUSION

In this paper, we have presented a backstepping-based procedure for the design of
a discontinuous time-invariant controller for the stabilization of a non-holonomic
mobile robot. This approach is then applied for a mobile robot subjected to
slowly varying or constant input disturbances, leading to an adaptive time-invariant
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Figure 4. Adaptive case: parking maneuver.

stabilizing controller. The discontinuity introduced at y3.0/ ´ µ.0/ D 0 allows us to
avoid the periodic functions usually involved in the smooth time-varying controllers,
which generally lead to low rates of convergence and oscillating trajectories. It is
worth noticing that this discontinuity is not very restrictive since we have just to
avoid it at the initial time by driving away the mobile robot from this con� guration
using an arbitrary open-loop control for a small period of time.
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