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a b s t r a c t

This paper considers the consensus problem of double integrator multi-agent systems where: (i) each
agent is subject to input saturations, and (ii) the velocity (second state) of each agent is not available
for feedback. We present new consensus algorithms that handle simultaneously the above mentioned
situations. Sufficient conditions are derived such that consensus algorithms developed for first- and
second-order multi-agent systems in ideal situations can be used to account for input saturations
and remove the requirement of velocity measurements. To illustrate the effectiveness of the proposed
approach, we propose solutions to two different second-order consensus problems in the case where the
input is saturated and the velocity states are not available for feedback and simulation results are provided
in each case.

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The past years have witnessed an increased interest in the
distributed coordination problem of dynamic multi-agent systems
with its various applications in consensus, flocking/rendezvous,
and formation control. The ultimate problem is how to design
a consensus algorithm such that a team of agents reach an
agreement on their states, or on a common objective, using local
information exchange, which is generally restricted to be directed,
dynamically changing and may be subject to communication
delays. The consensus problem of multi-agent systems with
first-order dynamics has been widely investigated and several
interesting results have been proposed (Fax & Murray, 2004;
Jadbabaie, Lin, & Morse, 2003; Münz, Papachristodoulou, &
Allgöwer, 2011; Olfati-saber &Murray, 2004; Ren, Beard, & Atkins,
2007). Basic concepts from these results have been exploited
to develop consensus algorithms for multi-agent systems with
second-order dynamics leading to a myriad of papers in
this field (see for instance Ren and Atkins (2007) and Yu,
Chen, and Cao (2010) and references therein). This interest
in double-integrator dynamics is mainly motivated by the fact
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that the obtained consensus algorithms can be extended to
design cooperative control strategies for complex physical systems
with such applications as flocking (Olfati-Saber, 2006), rigid
body attitude synchronization (Abdessameud & Tayebi, 2009a;
Abdessameud, Tayebi, & Polushin, 2012; Ren, 2010), formation
control of unmanned vehicles (Abdessameud & Tayebi, 2009b,
2011; Lawton, Beard, & Young, 2003), and synchronization of
Euler–Lagrange systems (Ren, 2009; Spong & Chopra, 2007).

In the literature related to the second-order consensus problem
of linear multi-agent systems, tools from algebraic graph theory
have been successfully applied to establish conditions underwhich
consensus is reached. In directed networks, it has been shown
that second-order consensus will be reached if and only if the
communication graph has a spanning tree and the control gains
are carefully selected (Ren & Atkins, 2007; Yu et al., 2010).
Within a similar framework, several related problems to consensus
have been considered such as the consensus problem with group
reference velocity, Ren (2008). Also, the case of dynamically
changing topologies has been discussed in Ren and Atkins (2007)
and Xie and Wang (2007). The effects of communication delays
that are inherently present in communication systems have been
also considered in Münz, Papachristodoulou, and Allgöwer (2008),
Qin, Gao, and Zhengb (2011) and Tian and Liu (2009). However, the
above consensus algorithms are based on the assumption that the
full state vector is available for feedback.

In practical situations, it is sometimes desirable to design
consensus algorithms that do not require full state information.
If we consider, for example, a group of point mass agents,
an important problem is to design consensus algorithms when
the velocity information (the second state) is not precisely
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measured or the agents are not equipped with velocity sensors.
These velocity-free algorithms can also be used as redundant
control laws in the full state information case to improve the
reliability of the system to velocity-sensors failure. Another
important problem arises when the input of each agent is
subject to saturations, in which case the extension of traditional
consensus algorithms generally fails. The complexity and the
challenges of the consensus design become prominent as one
attempts to handle these two problems (partial state feedback
with input saturations) simultaneously, especially under general
communication topologies that can be directed, dynamically
changing and/or subject to communication delays. This is the
main reason why there are only a few papers in the literature
dealing with this problem, where only the simple case of fixed
and undirected communication topology with no communication
delays has been considered.

The author in Ren (2008) proposed consensus algorithms
that account for input saturations, where nonlinear saturation
functions have been used to define the interaction between agents.
In the same reference, a consensus algorithm that removes the
requirement of velocity measurements without input saturation
constraints has been presented. To our best knowledge, velocity-
free consensus algorithms that account for input saturations can
only be found in Abdessameud and Tayebi (2010).

In the present paper, we propose an approach that extends the
work of Abdessameud and Tayebi (2010) by introducing dynamic
auxiliary systems that define appropriate intermediate reference
trajectories for the agents in order to satisfy the constraints
imposed on the input vectors without velocity feedback. As
a result, the velocity-free consensus algorithm design problem
with input saturations is simplified to the design of consensus
algorithms in the ‘‘ideal situation’’ (i.e., without input saturations
and in the full state feedback case). Essentially, the proposed
approach provides sufficient conditions under which consensus
algorithms, developed for first- and second-order multi-agent
systems in ideal situations, can be used to derive solutions to
the second-order consensus problem in the presence of input
saturations without velocity feedback. Interestingly, the proposed
consensus algorithms inherit the properties of the ‘‘ideal consensus
algorithms’’ in terms of convergence conditions and assumptions
on the graph topology for instance. It is shown that the underlying
conditions of our approach are not restrictive and can be verified
with an appropriate design of these ideal consensus algorithms.
The application and effectiveness of the proposed consensus
algorithm design approach are illustrated by two examples, where
we provide solutions to the free second-order consensus problem
and consensus with a group reference velocity under directed
interconnection topology in the presence of the two constraints
considered in this work.

2. Preliminaries and problem description

Consider a group of n-identical autonomous agents modeled by
the following second-order dynamics2

p̈i = ui, for i ∈ N , (1)

where N , {1, . . . , n}, pi ∈ Rm and ṗi denote respectively the
position and velocity states of the ith agent, and the vector ui ∈ Rm

is the control input.
The communication topology between agents is represented by

a weighted graph Gn = (N , E,K), where N is the set of nodes or

2 For the sake of clarity of presentation, we omit throughout the paper the
arguments of time dependent signals, and the limit of a signal at infinity is replaced
by an arrow (e.g. y → c ⇔ limt→∞ y(t) = c , for a constant c).
vertices, describing the set of vehicles in the team, E ⊆ N × N
is the set of pairs of nodes, called edges, and K = [kij] is a
weighted adjacency matrix. An edge (i, j) ∈ E indicates that agent
i can receive information from agent j, which is designated as its
neighbor. The weighted adjacency matrix of a weighted graph is
defined such that kij > 0 if and only if (i, j) ∈ E and kij = 0 if and
only if (i, j) ∉ E . If the communication topology is bidirectional,
then Gn is undirected, the pairs of nodes in E are unordered;
(i, j) ∈ E ⇔ (j, i) ∈ E , and K is symmetric. In the case of a
unidirectional communication topology, Gn is a directed graph, E
contains ordered pairs, and K is not necessarily symmetric. In the
case where the communication topology is dynamically changing,
due to restrictions imposed by the environment for example,
the weights kij are time-varying. Also, the information exchange
between agents in the team can be subject to communication
delays.

We assume that all agents are subject to input saturations,
such that ∥ui∥∞ ≤ umax, for i ∈ N , and the velocity vectors
of the agents are not available for feedback. In the presence of
these two constraints, the objective of our work is to present a
consensus algorithm design method for the multi-agent system
(1), under a certain communication topology described byGn, such
that second-order consensus is achieved, i.e.,

(pi − pj) → 0, (ṗi − ṗj) → 0, (2)

for i, j ∈ N , for any initial conditions. Although this problem
is generally referred to as the free-consensus problem, several
related problems to second-order consensus can be discussed in
a similar framework.

Before we proceed, we give some definitions and preliminary
results that will be used to prove our results. We define for any
vector x = (x1, . . . , xm)⊤ ∈ Rm the saturation function

χ(x) = col[σ(xk)] ∈ Rm, for k ∈ {1, . . . ,m}, (3)

where σ : R → R is a strictly increasing continuously differen-
tiable function satisfying the following properties:

P1. σ(0) = 0 and xσ(x) > 0 for x ≠ 0,
P2. |σ(x)| ≤ σb, for σb > 0.
P3. The diagonal matrix h(x) = diag[ dσ(xk)dxk

] satisfies ∥h(x)∥∞ ≤

σh, σh > 0.

Note that property P3 can be verified from P1 and P2. An
example of the function σ(x) is tanh(x), with dσ(x)

dx = 1− tanh2(x),
and σb = σh = 1.

Lemma 1. Consider the second-order system: ζ̈ = −Lpχ(ζ) −

Ldχ(ζ̇) + ε, where ζ ∈ Rm, the function χ is defined in (3), and Lp
and Ld are strictly positive scalars. If ε is bounded for all time and
ε → 0, then ζ and ζ̇ are bounded and ζ → ζ̇ → 0.

Proof. See Abdessameud and Tayebi (2010) for a similar proof
with σ(x) = tanh(x). �

Lemma 2. Consider the first-order system: δ̇ = −Lpχ(δi)+ ε̄, where
δ ∈ Rm, the function χ is defined in (3), and Lp is a strictly positive
scalar. If ε̄ is bounded for all time and ε̄ → 0, then δ is bounded and
δ → δ̇ → 0.

Proof. See Appendix A. �

3. Consensus algorithm design—method I

In this section, we present a first method for the design of
second-order consensus algorithms for multi-agent system (1)
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without velocitymeasurements andwith input saturations. To this
end, we associate to each agent the following auxiliary systems

ζ̈i = ui − ¨̄ri + kpi (ri − r̄i)+ kdi (ri − r̄i − ψi), (4)

ψ̇i = kψi (ri − r̄i − ψi), (5)

for i ∈ N , where kpi , k
d
i , and kψi are strictly positive scalar gains,

ζi ∈ Rm and ζ̇i are, respectively, the position-like and velocity-like
states of the second-order system (4) and can take arbitrary initial
values,ψi(0) can be selected arbitrarily, ri := (pi−ζi), and r̄i ∈ Rm

is the solution of the dynamic system

¨̄ri = Ψ i,Gn(r̄, ˙̄r), for i ∈ N , (6)

with r̄ = (r̄⊤1 , . . . , r̄
⊤
n )

⊤
∈ Rnm, r̄i(0) and ˙̄ri(0) can take arbitrary

values, and Ψ i,Gn(r̄, ˙̄r) is a protocol designed using the states r̄ and
˙̄r, as well as information on a desired global objective if assigned to
the team, and satisfies the following conditions:

Design condition 1. The multi-agent system (6) achieves consensus
in the sense of (2), i.e., (r̄i − r̄j) → 0, (˙̄ri − ˙̄rj) → 0, for i, j ∈ N ,
under a certain communication topology that can be restricted to be
directed, time-varying, and/or subject to communication delays, and
is represented by the weighted graph Gn.

Design condition 2. The protocol Ψ i,Gn(r̄, ˙̄r) can be written as:
Ψ i,Gn(r̄, ˙̄r) := fd + Ψ̄ i,Gn(r̄, ˙̄r), where fd ∈ Rm satisfies ∥fd∥∞ ≤

fmax, and the solutions of (6) guarantee that Ψ̄ i,Gn(r̄, ˙̄r) is globally
bounded and converges asymptotically to zero when the multi-agent
system (6) achieves consensus.

Note that the dynamic system (6) is considered as amulti-agent
system since all agents transmit the states of their corresponding
auxiliary systems (6), according to the protocol Ψ i,Gn . In fact, (6) is
an independent multi-agent systemwith available states and with
no input saturation constraints. Therefore, Design condition 1 can
always be satisfied if one is able to design a consensus algorithm for
the multi-agent system (1) in ideal situations, i.e., in the full state
information case and with no input saturation constraints.

Design condition 2 is mainly required in the subsequent
analysis and can be satisfied for most consensus algorithms
developed in ideal situations. In fact, any consensus algorithm can
be decomposed into two terms. The term Ψ̄ i,Gn(r̄, ˙̄r) will contain
relative error vectors and tracking errors, if a reference trajectory
is assigned to the team. Therefore, the condition that these error
terms are globally bounded and converge to zero is a natural
requirement of any protocol that satisfies Design condition 1. Also,
fd will contain only the non-vanishing terms (if any) of the protocol
Ψ i,Gn(r̄, ˙̄r), and is related to a reference trajectory if assigned to
the team, such as a desired acceleration. This term can, in general,
be set by the designer to be a priori bounded to account for input
saturations.

With the above definitions, our main result in this section is
stated in the following theorem and is proved in Appendix B.

Theorem 1. Consider the multi-agent system (1)with a communica-
tion topology described by Gn. Suppose that the protocol Ψ i,Gn(r̄, ˙̄r)
in (6) satisfies Design conditions 1 and 2 with fmax < umax. Let the
control input in (1) and (4) be given by

ui = fd − Lpi χ(ζi)− Ldi χ(ζ̇i), (7)

where Lpi , Ldi are strictly positive scalar gains, the function χ(·)
is defined in (3), and ζi and ζ̇i are the states of the auxiliary
system (4) with (5)–(6). If the control gains are selected such that

σb(L
p
i + Ldi ) ≤ umax − fmax, (8)
with σb is defined in P2, then the control input is guaranteed to
be bounded as: ∥ui∥∞ ≤ umax, for i ∈ N , and the multi-agent
system (1) with (7) and (4)–(6) achieves second-order consensus in
the sense of (2).

The main idea in the above result is to associate to each
agent in the team the two second-order systems given in (4) and
(6). The dynamic system (6) is implemented to generate a first
intermediary reference trajectory defined by r̄i to each agent in the
team. The input of this system is designed without consideration
of the input saturation constraints such that Design condition 1 is
satisfied, i.e., all agents reach an agreement on their first reference
trajectories. This requires that communicating agents transmit the
states of their individual dynamic systems (6), i.e., r̄i and ˙̄ri, rather
than transmitting their position states.

Meanwhile, the dynamic system (4) is used to generate the
vector ζi, which is a trajectory tracking error between each agent
position and the time-varying vector ri := (pi − ζi). This vector, ri,
is defined here for analysis purposes and can be seen as a second
intermediary reference trajectory defined for the ith agent through
the dynamics (4), and is governed, in view of (1) and (4), by:
r̈i = Γ i, with Γ i :=


¨̄ri − kpi (ri − r̄i)− kdi (ri − r̄i − ψi)


. Note

that the input Γ i is designed such that the error between the
two intermediate reference trajectories converges exponentially
to zero. Also, the first-order filter (5) is used to achieve this last
result without velocity measurements since ṙi is not available for
feedback.

Finally, the control input ui is designed as in (7) to account for
input saturations and guarantee that each agent tracks the second
intermediary reference signal, i.e., (pi −ri) → 0 and (ṗi − ṙi) → 0,
guiding hence all agents to reach consensus. From the proof of
Theorem 1 and Lemma 1, we can see that this is achieved if Design
condition 2 is satisfied.

It should be noted that the control gains of the proposed
consensus algorithm in Theorem 1 can be easily selected despite
the presence of input saturation constraints. In fact, the control
input law for each agent (7) is guaranteed to be a priori bounded as

∥ui∥∞ ≤ fmax + σb(L
p
i + Ldi ), (9)

which is independent from the number of neighbors of each agent.
Consequently, with an appropriate choice of the control gains Lpi
and Ldi , the designer can set the upper bound of the input of each
agent without a priori knowledge on the communication topology
between agents. This introduces more flexibility in the tuning of
the controller gains especially in the case where umax is small and
the number of neighbors of each agent may be large. Also, the
gains kpi , k

d
i , and kψi can be tuned independently from the input

constraints such that the exponential convergence to zero of (ri −
r̄i) and (ṙi − ˙̄ri) is achieved. On the other hand, the parameters of
Ψ i,Gn(r̄, ˙̄r) in (6) can be selected, againwithout consideration of the
input constraints, such that Design condition 1 is satisfied.

Also, the initial conditions of the auxiliary systems (4)–(6) can
be selected arbitrarily. In some cases, it is possible to determine
the consensus value of the multi-agent system (6) using only the
initial states of (6), i.e., r̄i(0) and ˙̄ri(0). In these cases, the initial
conditions of the auxiliary system (6) will specify the consensus
value of the multi-agent system (1), since we have shown that
(pi − ri) → 0 and (ri − r̄i) → 0, and consequently, (pi − r̄i) →

0, for i ∈ N . Therefore, the consensus algorithm in Theorem 1
provides a means to determine the consensus value of the multi-
agent system (1) without knowing the initial states of the agents,
which is advantageous in our case as the agents’ states are only
partly measured.

From the above discussion, we can see that Theorem 1
suggests a simple design procedure for consensus algorithms
without velocitymeasurements in the presence of input saturation
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constraints. The first step is to design the input of the auxiliary
multi-agent system (6), i.e., the protocol Ψ i,Gn(r̄, ˙̄r), using the
available states r̄ and ˙̄r and without input constraints such that
Design conditions 1 and 2 are satisfied. Next, one implements the
control input given in (7), with (4)–(6), by an appropriate choice of
the control gains as discussed above.

As mentioned earlier, the first step above is equivalent to
the design of a protocol for the multi-agent system (1) in
ideal situations. If such a protocol exists, and satisfies Design
conditions 1 and 2, then it is more convenient to use it as input
of the multi-agent system (6), using the internally synthesized
states of (6). In fact, Theorem 1 provides sufficient conditions for
existing second-order consensus algorithms, developed in ideal
situations, to be extended in a straightforward manner to account
for input saturation constraints and handle the missing velocity
vectors. Also, note that Design condition 1 can be satisfied under
some assumptions on the communication topology and/or the
parameters of the protocol Ψ i,Gn(r̄, ˙̄r). In this case, the derived
consensus algorithms using the result of Theorem 1 will be valid
under the same assumptions.

3.1. Example 1: the free consensus problem

In this subsection, we present a solution to the free consensus
problem for second-order multi-agent systems. The control
objective is to design a consensus algorithm that accounts for input
saturations, without velocity measurements, such that consensus
in the sense of (2) is achieved under a directed communication
topology represented by the directed graph Gn. Based on the result
of Theorem 1, we first design the input of the auxiliary system (6)
such that Design conditions 1 and 2 are satisfied. Inspired by the
work of Ren and Atkins (2007) and Yu et al. (2010), we consider
the input in (6) such that

¨̄ri = −

n
j=1

kij

α(r̄i − r̄j)+ β(˙̄ri − ˙̄rj)


, (10)

for i ∈ N , where α, β are positive scalar gains and kij is the
(i, j)th entry of the adjacency matrix of the directed graph Gn.
Following the same arguments as in Yu et al. (2010), we can show
that themulti-agent system (10) achieves second-order consensus,
i.e., (˙̄ri − ˙̄rj) → 0 and (r̄i − r̄j) → 0 for i, j ∈ N , if the directed
communication graph contains a directed spanning tree and the
control gains satisfy:

β2

α
> max

2≤i≤n

ℑ
2(µi)

ℜ(µi)[ℜ2(µi)+ ℑ2(µi)]
. (11)

In the above condition, ℜ(µi) and ℑ(µi) denote, respectively, the
real and imaginary parts of µi, where µi, for i = 2, . . . , n, are the
nonzero eigenvalues of the Laplacian matrix L = [lij] ∈ Rn×n,
with lij = −kij, for i ≠ j, and lii = −

n
j=1,j≠i lij. In addition,

the solutions of (10) guarantee that the right hand side of (10)
is globally bounded and ∥˙̄ri(t) −

n
j=1 qj ˙̄rj(0)∥ → 0, ∥r̄i(t) −n

j=1 qjr̄j(0) −
n

j=1 qj ˙̄rj(0)t∥ → 0, where q = (q1, . . . , qn)⊤
is the unique nonnegative left eigenvector of L associated with
eigenvalue zero satisfyingq⊤1n = 1,with 1n ∈ Rn being the vector
of all ones elements (see Theorem 1 in Yu et al. (2010) for more
details).

Therefore, the consensus protocol in (10) satisfies Design
conditions 1 and 2 with fd = 0. Consequently, we conclude by
Theorem 1 that the multi-agent system (1) with the input given
by

ui = −Lpi χ(ζi)− Ldi χ(ζ̇i), (12)

ζ̈i = ui − ¨̄ri + kpi (ri − r̄i)+ kdi (ri − r̄i − ψi), (13)

ψ̇i = kψi (ri − r̄i − ψi), (14)
where ri = (pi − ζi), the control parameters are defined in
Theorem 1, and r̄i is obtained from (10), achieves second-order
consensus in the sense of (2) if the directed communication
graph contains a spanning tree and (11) is satisfied. Note that
these are the same conditions obtained in Yu et al. (2010) in the
case of no input saturation constraints and the full state vectors
are available for feedback. In addition, the final consensus value
satisfies: ∥ṗi(t)−

n
j=1 qj ˙̄rj(0)∥ → 0 and ∥pi(t)−

n
j=1 qjr̄j(0)−n

j=1 qj ˙̄rj(0)t∥ → 0, for i ∈ N . Also, if the control gains are
selected according to (8), with fmax = 0, then ∥ui∥∞ ≤ umax.

4. Consensus algorithm design—method II

In this section, we consider a class of second-order consensus
problemswhere it is required to drive all agents’ velocities to some
known desired velocity, i.e.,

(pi − pj) → 0, ṗi → ṗd, (15)

for i, j ∈ N , with ṗd being a desired velocity available to all
members of the team, which can be time-varying, constant or null,
and satisfies ∥p̈d∥∞ ≤ amax < umax. It is clear that this class of
problems constitutes a special case of the second-order consensus
problems defined in (2).

Similar to the previous section, we associate with each agent
the following auxiliary systems

˙̄ri = ṗd − Lpi χ(ζi), (16)

ζ̇i = −Lpi χ(ζi)+ Ldi χ(δi), (17)

δ̇i = −Ldi χ(δi)− Φ̄i,Gn(r), (18)

where Lpi , L
d
i are strictly positive scalar gains, the function χ is

defined in (3), r̄i(0), ζi(0), and δi(0) can be selected arbitrarily, the
vector r = (r⊤1 , . . . , r

⊤
n )

⊤
∈ Rnm, with ri = (r̄i − ζi − δi), and

Φ̄i,Gn(r) is a protocol designed based on the states r, and satisfies
the following conditions:

Design condition 3. The multi-agent system

ṙi = ṗd + Φ̄i,Gn(r), for i ∈ N , (19)

achieves consensus in the sense of (15), i.e., (ri − rj) → 0,
ṙi → ṗd, for i, j ∈ N , under a certain communication topology
that can be restricted to be directed, time-varying, and/or subject to
communication delays and is represented by the weighted graph Gn.

Design condition 4. The solutions of (19) guarantee that Φ̄i,Gn(r)
is globally bounded and converges to zero when the multi-agent
system (19) achieves consensus.

Note that Design condition 3 can always be satisfied if one is
able to design a consensus protocol for a single-integrator multi-
agent system in ideal situations. In fact, no constraints are imposed
on the input of (19), and the vector r is available for feedback. Also,
Design condition 4 implies that the error terms in the input of the
multi-agent system (19) are globally bounded and converge to zero
when (19) achieves first-order consensus.

Our result in this section is stated in the following theorem and
is proved in Appendix C.

Theorem 2. Consider the multi-agent system (1)with a communica-
tion topology described by Gn. Suppose that Design conditions 3 and
4 are satisfied. Let the control input in (1) be given by

ui = p̈d − Lpi h(ζi)ζ̇i − kpi χ(ei)− kdi χ(ei − ψi), (20)

ψ̇i = kψi (ei − ψi), (21)
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with (16)–(18), where ei := (pi − r̄i), k
p
i , k

d
i , and kψi are strictly

positive scalar gains, the function χ is defined in (3), and the diagonal
matrix h(·) is defined in property P3. If the control gains are selected
such that

σb

kpi + kdi + σhL

p
i (L

p
i + Ldi )


≤ umax − amax, (22)

then the control input is guaranteed to be bounded as: ∥ui∥∞ ≤ umax,
and themulti-agent system (1)with (20)–(21) and (16)–(18) achieves
second-order consensus in the sense of (15).

The above result is based on the introduction of the first-order
auxiliary system (16) that generates an intermediate reference
trajectory, defined by r̄i, for each agent. The input of this multi-
agent system is designed such that all agents reach consensus
on their intermediate reference trajectories, i.e., (r̄i − r̄j) → 0,
˙̄ri → ṗd, for i, j ∈ N . The bounded control input for each agent
is then designed, without velocity measurements, such that each
agent tracks its corresponding reference trajectory leading hence
all agents to achieve consensus. The main difficulty here is to
design an a priori bounded intermediate reference acceleration,
¨̄ri. It is important to mention that the design of such an a priori
bounded intermediate reference acceleration is yet a difficult task
using the conventional design methods, especially in the case of
general communication topologies. In our case, this is solved by
the introduction of the two first-order auxiliary systems (17) and
(18) to generate the auxiliary error vectors ζi and δi. These error
vectors are driven to zero once themulti-agent system (19), which
is defined for analysis purposes, achieves consensus. Consequently,
to apply the above results, neighboring agents should transmit
their variables ri := (r̄i − ζi − δi).

Similar to the first design method, the initial states of the
auxiliary systems (16)–(18) can take arbitrary values, and the
control parameters of the protocol Φ̄i,Gn(r) can be selected
independently from the input constraints such that Design
condition 3 is satisfied. Also, the control input law for each agent
(20) is guaranteed to be a priori bounded as

∥ui∥∞ ≤ amax + σb

kpi + kdi + σhL

p
i (L

p
i + Ldi )


, (23)

which can be easily set with an appropriate choice of the control
gains.

Furthermore, the result of Theorem 2 suggests a second
procedure to the design of consensus algorithms for the class of
consensus problems considered in this section. The main step in
this procedure is to design a consensus algorithm for the first-
order multi-agent system (19) in the full state information case
and with no input constraints such that Design conditions 3
and 4 are satisfied. Note that any existent protocol satisfying
Design conditions 3 and 4 can be readily used as input of
the multi-agent system (19). Consequently, Theorem 2 gives
sufficient conditions such that consensus algorithms developed
for first-order multi-agent systems in ideal situations can be
extended to solve the second-order consensus problem in the
presence of the two above constraints. Note that this extension
is not trivial and presents several advantages since the design of
consensus protocols for first-order multi-agent systems, although
challenging, is simpler than the design of second-order consensus
protocols, and consensus can be achieved in general under less
restrictive conditions. This can be seen in the following example.

4.1. Example 2: consensus with group reference velocity

To illustrate the application of the proposed design method in
this section, we develop a solution to the consensus problem with
group reference velocity, without velocitymeasurements andwith
input saturation constraints. The control objective is to design a
consensus algorithm such that multi-agent system (1) achieves
consensus and each agent tracks a common desired velocity, given
by ṗd(t), which satisfies: ∥p̈d(t)∥∞ ≤ amax < umax, and the
communication graph Gn is assumed to be directed. To this end,
we first design the first-order multi-agent system (19) as

ṙi = ṗd −

n
j=1

kij(ri − rj), for i ∈ N , (24)

with kij being the (i, j)th entry of the adjacency matrix of the
directed graph Gn. Let r̃i := (ri −

 t
0 ṗd(s)ds), and hence ˙̃ri =

(ṙi − ṗd) = −
n

j=1 kij(r̃i − r̃j), for i ∈ N .
Then, following similar steps as in Ren, Beard, and McLain

(2005), we can show that ˙̃ri and (ri − rj) are globally bounded
and (ri − rj) → 0, ˙̃ri → 0, for i ∈ N , if the directed
communication graph contains a spanning tree. This implies
that Design conditions 3 and 4 are satisfied with Φ̄i,Gn(r) =

−
n

j=1 kij(ri − rj).
Therefore, we can conclude from Theorem 2 that the multi-

agent system (1) with the control input

ui = p̈d − Lpi h(ζi)ζ̇i − kpi χ(ei)− kdi χ(ei − ψi),

ψ̇i = kψi (ei − ψi),

˙̄ri = ṗd − Lpi χ(ζi),

ζ̇i = −Lpi χ(ζi)+ Ldi χ(δi),

δ̇i = −Ldi χ(δi)+

n
j=1

kij(ri − rj),

(25)

with ei = (pi − r̄i), ri = (r̄i − ζi − δi), and the control gains
being defined in Theorem 2, achieves consensus, i.e., (pi−pj) → 0,
ṗi → ṗd, for i, j ∈ N , under the only condition that the directed
communication graph contains a spanning tree. Also, the control
input of each agent is guaranteed to be a priori bounded as in (23).

Remark 1. A solution to the consensus problem with group refer-
ence velocity for second-order multi-agents has been proposed in
Ren (2008, Theorem 5.1) in the full state information case andwith
no input constraints. It has been shown that consensus is achieved
under the condition that the directed communication graph con-
tains a spanning tree and the control gains satisfy some topology-
dependent conditions. Note that the consensus protocol proposed
in Ren (2008) can be extended using the result of Theorem 1 to ac-
count for input saturations without velocity feedback, which will
lead to the same conditions obtained in Ren (2008). However, the
proposed consensus algorithm in Example 2 guarantees our con-
trol objective and improves the obtained results in ideal situations
by removing the topology-dependent conditions. This, with the
fact that the control upper bound can be set independently from
the interconnection graph, allow the effective implementation of
the proposed consensus algorithmwithout any centralized knowl-
edge of the directed communication topology.

5. Simulation results

We provide in this section simulation results to demonstrate
the effectiveness of the proposed consensus algorithms in the two
examples given above. For this purpose,we consider a groupof four
agents modeled as in (1), with m = 1, and with initial conditions:
P(0) = (1, 1.5, 2, 3)⊤ and Ṗ(0) = (0.1, 0.02,−0.08, 0.05)⊤,
where P(t) and Ṗ(t) are the vectors containing, respectively, pi(t)
and ṗi(t) for i ∈ N := {1, 2, 3, 4}. We assume that all agents
are constrained such that umax = 2, and consider the function χ
defined in (3) with σ = tanh. Also, the communication topology
between agents is represented by the directed graph G4, given in
Fig. 1, which contains a spanning tree.
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Fig. 1. Interaction graph G4 .

Fig. 2. Simulation results for Example 1.

First, we consider the example in Section 3.1, and implement
the consensus algorithm given by (12)–(14) and (10), with the
initial conditions: ζi(0) = ζ̇i(0) = ˙̄ri(0) = ψi(0) = 0 and
r̄i(0) = pi(0), for i ∈ N . The control gains are selected as:
kij = 5, for (i, j) ∈ E , (α, β) = (1, 1), and (kpi , k

d
i , k

ψ

i , L
p
i , L

d
i ) =

(1, 15, 5, 0.5, 1.5), for i ∈ N . It is clear that this choice of the gains
satisfies condition (8). Note that the eigenvalues of the Laplacian
matrix of the graph G4 in view of the weights kij are: 0, 5, 7.5 ±

4.3301ς , with ς2
= −1, and therefore, condition (11) is satisfied.

It should be noted that tuning the gains of this consensus algorithm
is not difficult following the discussion in Section 3.

Fig. 2 shows the obtained results in this case, where we can see
that consensus is achieved without velocity measurements, and
the control input for each agent satisfies |ui| ≤ umax. Note also
that the final position of all agents is constant and equal to 1.5. This
corresponds to the expected consensus value in this case in view of
the initial conditions of the auxiliary systems (6), and knowing that
the left eigenvector of the Laplacianmatrix of the directed graphG4
associated to eigenvalue zero is obtained as: q =

1
3 (1, 1, 1, 0)

⊤.
Next, we implement the consensus algorithm presented in

Section 4.1 as a solution to the consensus problem with group
reference velocity, with ṗd(t) = 0.5 sin(2t/π). The initial states
of the auxiliary systems are selected such that ri(0) = pi(0)
and ṙi(0) = 0, with ri = (r̄i − ζi − δi). The control gains are
selected as: kij = 5, for (i, j) ∈ E , and (kpi , k

d
i , k

ψ

i , L
p
i , L

d
i ) =

(0.2, 0.7, 2, 0.5, 1), for i ∈ N , which satisfy condition (22) to
guarantee the required upper bound of the control input. The
obtained results are illustrated in Fig. 3, where it is clear that |ui| ≤
Fig. 3. Simulation results for Example 2.

umax, and consensus is achieved without velocity measurements
under the directed communication graph G4.

6. Conclusion

New consensus algorithms have been developed for second-
order linear multi-agent systems in the case where the inputs
are saturated and the velocity states are not available for
feedback. Our approach is based on the introduction of dynamic
auxiliary systems to alter the trajectories of agents before reaching
consensus. We presented in Theorem 1 a first method that only
requires the design of a consensus protocol for a second-order
multi-agent system in ideal situations. While this result can be
applied for the general class of second-order consensus problems,
we presented in Theorem 2 a second design method that can
also be applied for the class of consensus problems that set the
final velocities of agents. The latter result simplifies further the
consensus algorithm design since it requires only the design of a
consensus protocol for amulti-agent systemwith single-integrator
dynamics in ideal situations. Each of the above design methods
relies on some conditions that can be satisfied with an appropriate
design of the introduced auxiliary systems.

Using the proposed methods, we developed solutions to two
different second-order consensus problems and simulation results
have been provided to validate our theoretical results. From these
examples, it can be seen that our approach can provide solutions to
several second-order consensus problems in the case of saturated
inputs andwithout velocitymeasurements. As a futurework, itwill
be interesting to extend the presented results to higher order linear
multi-agent systems.
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Appendix A. Proof of Lemma 2

Consider the Lyapunov function candidate:W =
1
2δ

⊤δ, with its
time derivative obtained as
Ẇ = δ⊤δ̇ = −δ⊤


Lpχ(δ)− ε̄


≤ −

m
k=1

|δk|

Lpσ(|δk|)− |ε̄k|


, (A.1)
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where δ = col[δk] and ε̄ = col[ε̄k], for k ∈ {1, . . . ,m}, and we
have used the property; xσ(x) = |x|σ(|x|), for any x ∈ R, to obtain
the last inequality. Note that Ẇ ≤ ∥δ∥∥ε̄∥, and using the fact that
∥δ∥2

≤ 2W , we can write Ẇ ≤ ϵ
√
W , with

√
2∥ε̄∥ ≤ ϵ, which

can be rewritten as dW
√
W

≤ ϵdt . Integrating this last inequality over

the interval [t0, t] yields: 2
√

W (t)−
√
W (t0)


≤ ϵ(t−t0), which

shows that δ cannot go to infinity in finite time.
Now, since the function σ(·) is bounded, it is easy to verify that

the right hand side of inequality (A.1) is positive when |ε̄k| > σbLp.
However, since ε̄ is bounded and converges asymptotically to zero,
it is clear that there exists a finite time t1 such that |ε̄k(t)| ≤ σbLp
for all t ≥ t1. Note that δ remains bounded on the interval [0, t1] as
there is no finite-escape time. Consequently, for all t ≥ t1, one can
conclude that the right hand side of (A.1) is negative outside the set
S =


δ | σ(|δk|) ≤

|ε̄k|
Lp , for k = 1, . . . ,m


. Also, we can conclude

that δ is bounded outside the set S. Since σ(| · |) is a class K
function, δ is ultimately bound to reach the set S andwill be driven
to zero as ε̄ → 0. Consequently, we conclude that δ̇ → δ → 0.

Appendix B. Proof of Theorem 1

First, using the properties of the function χ in (3) we can verify
that the input law in (7) can be upper bounded independently from
the states as: ∥ui∥∞ ≤ fmax +σb(L

p
i + Ldi ). Therefore, if fmax < umax

and the control gains are selected according to (8), the upper bound
of the control input given in the theorem is obtained.

Define the vector ēi := (ri−r̄i) and let ξi = (ē⊤

i ,
˙̄e
⊤

i , ē
⊤

i −ψ⊤

i )
⊤,

which, in view of (1) and (4)–(5), is governed by:

ξ̇i = (Ai ⊗ Im) ξi, for i ∈ N , (B.1)

where ⊗ is the Kronecker product, Im ∈ Rm×m is the identity
matrix, and

Ai =

 0 1 0
−kpi 0 −kdi
0 1 −kψi

 .
After simple computations, we can verify that the matrix Ai is

Hurwitz for any strictly positive gains kpi , k
d
i and kψi . Therefore, we

conclude that ξi → 0 as t → ∞ exponentially. Also, Design
condition 1 guarantees that (r̄i − r̄j) → 0, (˙̄ri − ˙̄rj) → 0, for
i, j ∈ N . In addition, the dynamics of the auxiliary system (4) with
(7) can be written as: ζ̈i = −Lpi χ(ζi) − Ldi χ(ζ̇i) + εi, with εi =
−Ψ̄ i,Gn(r̄, ˙̄r)+ kpi ēi + kdi (ēi − ψi)


. The exponential convergence

of ξi and Design condition 2 guarantee that εi is globally bounded
and εi → 0, for i ∈ N . Invoking Lemma 1 leads us to conclude
that ζi, ζ̇i are globally bounded and ζi → 0, ζ̇i → 0 for i ∈ N .
Finally, from the definition of ξi with ri = (pi − ζi), we conclude
that the multi-agent system (1) achieves second-order consensus
in the sense of (2).

Appendix C. Proof of Theorem 2

First, note that the control input (20) can be bounded
independently from the states as: ∥ui∥∞ ≤ fmax + σb(k

p
i + kdi +

σhL
p
i (L

p
i + Ldi )), where we have used (17) with properties P2 and

P3. Therefore, if the control gains satisfy (22), then ∥ui∥∞ ≤ umax.
Now, we can see from (16) and property P3 that ¨̄ri = (p̈d −

Lpi h(ζi)ζ̇i). Hence, the dynamics of the error vector ei := (pi − r̄i)
can be obtained from (1) and (20) as:

ëi = −kpi χ(ei)− kdi χ(ei − ψi), (C.1)

with ψ̇i given in (21). Consider the following Lyapunov function
candidate
V =

n
i=1


1
2
ėTi ėi + kpi

m
k=1

 ei,k

0
σ(s)ds



+

n
i=1

kdi
m

k=1

 (ei,k−ψi,k)

0
σ(s)ds, (C.2)

with ei = col[ei,k] and ψi = col[ψi,k], for k ∈ {1, . . . ,m}, and σ is
the scalar functiondefined in (3). Note thatV in (C.2) canbe verified
to be radially unbounded from the definition of σ . The time-
derivative of V evaluated along the dynamics (C.1) is obtained as:

V̇ = −

n
i=1

kdi k
ψ

i (ei − ψi)
Tχ(ei − ψi), (C.3)

which is negative semi-definite, andwe conclude that ėi, ei, ψ̇i and
ψi are globally bounded. This, with property P3, leads us to con-
clude that V̈ is bounded. Invoking Barbălat Lemma, we conclude
that ψ̇i = kψi (ei − ψi) → 0. Furthermore, since (ëi − ψ̈i) is
bounded, we conclude by Barbălat Lemma that (ėi − ψ̇i) → 0,
and hence ėi → 0. In addition, using property P3 and the above
results, we can verify that

...
e i is bounded. Invoking Barbălat Lemma

again, we conclude that ëi → 0, and hence ei → 0, for i ∈ N .
On the other hand, we can see that Design condition 3

guarantees that the first-order multi-agent system (19) achieves
consensus, i.e., (ri − rj) → 0, ṙi → ṗd, for all i, j ∈ N . In
addition, the dynamics of the vector δi in (18) can be written as:
δ̇i = −Ldi χ(δi) + ε̄i, with ε̄i := −Φ̄i,Gn(r). Note that Design
condition 4 ensures that ε̄i is globally bounded and ε̄i → 0, for
i ∈ N . Therefore, the result of Lemma 2 leads us to conclude
that δi → 0, δ̇i → 0, for i ∈ N . As a result, the dynamics of
the vector ζi in (17) can be written as: ζ̇i = −Lpi χ(ζi) + ε̃i, with
ε̃i := Ldi χ(δi) → 0. Using Lemma 2 again, we conclude that ζ̇i → 0
and ζi → 0 for i ∈ N .

Finally, exploiting the fact that ei → 0, ėi → 0, ṙi → ṗd,
and (ri − rj) → 0, for all i, j ∈ N , with ei := (pi − r̄i) and
ri = (r̄i − ζi − δi), we conclude that (pi − pj) → 0, ṗi → ṗd,
for all i, j ∈ N .
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