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a b s t r a c t

We propose a new position regulation strategy for VTOL-UAVs using IMU and GPS measurements.
Since there is no sensor that measures the attitude, our approach does not rely on the knowledge (or
reconstruction) of the system orientation as usually done in the existing literature. Instead, IMU and GPS
measurements are directly incorporated in the control law. An important feature of the proposed strategy,
is that the accelerometer is used to measure the apparent acceleration of the vehicle, as opposed to only
measuring the gravity vector, which would otherwise lead to unexpected performance when the vehicle
is accelerating (i.e. not in a hover configuration).

© 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The design of position controllers for Vertical take-off and
landing (VTOL) unmanned airborne vehicles (UAVs) has been the
focus of several research groups, which has resulted in significant
breakthroughs in this field; for example see Abdessameud and
Tayebi (2010), Aguiar and Hespanha (2007), Frazzoli, Dahleh, and
Feron (2000), Hauser, Sastry, and Meyer (1992), Hua, Hamel,
Morin, and Samson (2009), Pflimlin, Soueres, and Hamel (2007)
and Roberts and Tayebi (2011a). Existing position controllers,
usually require that the system states are accurately known or
measured, namely the position, linear velocity, angular velocity
and the orientation. For outdoor applications a global positioning
system (GPS) mounted to the system can be used to provide the
position and velocity measurements, while the angular velocity
is obtained using a gyroscope which is included in the inertial
measurement unit (IMU) in addition to an accelerometer and a
magnetometer. However, there does not exist any sensor that
provides directly the orientation of a rigid body. Motivated by
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this problem, the study of rigid-body attitude estimation has seen
substantial breakthroughs due to the efforts of the research
community (see, for instance, Mahony, Hamel, & Pflimlin, 2008).
However, we are not aware of anywork in the literature, providing
rigorous results for the combination of an attitude observer and a
position regulation controller for VTOL-UAVs.

To address this shortcoming, there has been some effort to
design position control algorithms which do not directly require
the measurement of the system attitude. For example, in Roberts
and Tayebi (2011b) the authors propose a position control law
which utilizes a number of vector measurements as a means
to eliminate the requirement for the attitude measurement. By
vector measurements we are referring to the body-referenced
measurements of vectors whose coordinates are known in the
inertial frame. Since the vectormeasurements contain information
about the system orientation, it has been shown that they can
be applied directly to the position controller thereby eliminating
the need of the observer completely. Consequently, the resulting
vector-measurement-based position control laws do not require
the directmeasurement of the system attitude, nor do they require
an attitude observer which provides practitioners with a simpler,
reduced order closed loop system, with accompanying proofs for
stability.

Unfortunately, the vector-measurements based position con-
trol strategy can be susceptible to a problem associated with the
lack of sensors which can provide suitable vector measurements.
This shortcoming stems from the fact that the two sensors most
commonly used to provide vector measurements are the mag-
netometer and accelerometer, used to provide body-referenced
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measurements of the Earths magnetic field and gravity vector, re-
spectively. However, in order to satisfy the requirement that the
accelerometer provides a measurement of the gravity vector only,
one must assume that the body-fixed frame is non-accelerating. It
is clear that this condition is not guaranteed to be satisfied in some
applications involving VTOL UAVs.

Of course, this practical limitation is relevant to both vector-
measurement-based position controllers and attitude observers
which use accelerometers. Fortunately, this limitation has led
to the development of a new class of attitude observers which
uses the accelerometer (and magnetometer) to provide vector-
measurements. This type of observer acknowledges the fact that
the accelerometer measures a combination of the gravity vector
and the acceleration of the rigid-body in the body-fixed frame. This
combination of the gravity vector and linear acceleration in the
inertial reference frame is commonly referred to as the apparent
acceleration. This inertial vector violates the requirement of many
of the vector-measurement-based attitude observers, since the
system acceleration is not known in the inertial frame of reference.
In order to deal with the fact that the inertial vector is unknown,
this type of attitude observer uses the velocity of the rigid-body
(assumed to bemeasurable using, for instance, a GPS) in addition to
the signals obtained from an IMU. These attitude observers, which
are often referred to as velocity-aided attitude observers, can be
found in Bonnabel, Martin, and Rouchon (2008), Martin and Salaün
(2008) and Martin and Salaün (2010) with local stability proofs,
and in Hua (2010) with almost semiglobal stability results.

In this paperwepropose a newposition control approachwhich
obviates the requirement of the system attitude measurement
by using the vector measurements directly in the control law.
We specifically use a magnetometer and an accelerometer to
provide the two vector measurements. The accelerometer is used
to measure the system apparent acceleration, rather than the
gravity vector only. Using our proposed approach, we show that,
upon a suitable choice of the control gains, all system states
remain bounded, and the system position converges to a constant
reference position. Our proposed control strategy (1) does not
require direct measurement of the system attitude; (2) does not
require the use of an attitude observer; (3) uses an accelerometer
to provide a vector measurement without limiting the motion of
the system to a near-hover state.

2. Background

In this section we present some of the necessary mathematical
details we use throughout the paper. In Section 2.1 we describe
two commonly used attitude representations (rotation matrices
and unit-quaternion). In Section 2.2 we define functions which are
necessary in developing the proposed control laws.

2.1. Attitude representation

To represent the orientation of the aircraft (rigid-body), we
define two reference frames: an inertial frame I, which is rigidly
attached to the Earth (assumed flat), and a body frame B which
is rigidly attached to the aircraft center of gravity (COG). The
orthonormal basis of B is taken such that the x axis is directed
towards the front of the aircraft (or rigid body), the y axis is
taken towards the starboard (right) side, and the z axis is directed
downwards (opposite to the direction of the system thrust).

Throughout the paper we often refer to the orientation of the
rigid-body, by which we mean the relative angular position of
B with respect to I. The goal of the attitude representation is
to mathematically describe the orientation of the rigid-body. The
unit-quaternion, which is a unit vector on R4, is given by Q =

(η, q) ∈ Q, where η ∈ R is the quaternion-scalar and q ∈ R3 is
the quaternion-vector, and Q is the set of unit-quaternion defined
by

Q ≡

Q ∈ R × R3, ∥Q∥ = 1


. (1)

Let Q1 = (η1, q1) ∈ Q, Q2 = (η2, q2) ∈ Q denote two unit-quater-
nion; then the quaternion product of Q1 and Q2, denoted by Q3 =

(η3, q3) ∈ Q is defined by the following operation

Q3 = Q1 ⊙ Q2 =

η1η2 − qT1q2, η1q2 + η2q1 + S(q1)q2


. (2)

The set of unit-quaternion Q forms a groupwith the quaternion
multiplication operation ⊙, with the quaternion inverse Q−1

=

(η,−q), and identity element (1, 0) = Q−1
⊙ Q = Q ⊙ Q−1. The

unit-quaternion is an over-parameterization of the special group
of orthogonal matrices of dimension three SO(3), defined as

SO(3) ≡

R ∈ R3×3, |R| = 1, RTR = RRT

= I

, (3)

that is, the transformation from the quaternion space Q to SO(3),
given by the following Rodrigues formula:

R(Q ) = I + 2S(q)2 − 2ηS(q) (4)

where S(·) is a skew-symmetric matrix given in the next section,
is a two-to-one map, i.e., R(Q ) = R(−Q ).

2.2. Skew symmetric matrices and bounded functions

Let x, y ∈ R3. We define the skew-symmetric matrix S(x) such
that S(x)y = x × y, where × denotes the vector cross product.
Several useful properties of this skew-symmetric matrix are given
below:

S(x)2 = xxT − xTxI3×3, (5)

S(Rx) = RS(x)RT, R ∈ SO(3), (6)
S(x)y = −S(y)x = x × y, (7)

λ

S(x)2


=

0,−∥x∥2,−∥x∥2 , (8)

where λ(M) denotes the eigenvalues of the matrixM ∈ R3×3.
Consider the bounded, differentiable function, denoted as h(·) :

R3
→ R3, which satisfies the following properties:

uTh(u) > 0 ∀u ∈ R3, ∥u∥ ∈ (0,∞),

0 ≤ ∥h(u)∥ < 1
0 < ∥φ(u)∥ ≤ 1


∀u ∈ R3, ∥u∥ ∈ [0,∞),

(9)

where φ(u) :=
∂
∂uh(u). Throughout the paper we make use of

oneparticular example givenbyh(u) =

1 + uTu

−1/2 u. Using this
definition for h(·) one can derive the expression φ(u) = (1 +

uTu)−3/2(I3×3 − S(u)2).

3. Position regulation using GPS and IMUmeasurements

Using the above mathematical background, we will now pro-
ceed to formulate the problemanddefine the position control laws.
A number of steps are taken which are grouped into various sec-
tions. In Section 3.1 we define the systemmodel. In Section 3.2 we
formulate the problemand state somenecessary assumptions. Sec-
tion 3.3 provides an attitude extraction algorithm which allows us
to specify a desired system attitude based upon the values of the
position and velocity error, and Section 3.4 defines attitude error
functions. Finally, in Section 3.5 we describe the position control
laws.
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3.1. Equations of motion

To model the system translational dynamics, we let p, v ∈ R3

denote the position and velocity, respectively, of the vehicle COG
expressed in the inertial frame I. For this problem we assume
that the body-referenced angular velocity vector ω is available as
a control input. We consider the following VTOL UAV model:

ṗ = v, (10)

v̇ = µ+ δ, µ = ge3 − utRTe3, (11)

Q̇ =
1
2


−qT

ηI3×3 + S(q)


ω, (12)

where ut = T/mb, T is the system thrust, mb is the system mass,
e3 = col[0, 0, 1], g is the gravitational acceleration, and δ is a
disturbance which is dependent on aerodynamic drag forces. The
control input of the system is defined as u = [ut , ω]

T. The system
output is defined as y = [p, v, b1, b2]T where b2 is the signal ob-
tained using an accelerometer, b1 = Rr1 is a signal obtained using
a magnetometer, and r1 is the magnetic field of the surrounding
environment (assumed constant). Note that the system attitude R
(or Q ) is not assumed to be a known output of the system.

We consider a well-known model for the accelerometer model
(which includes forces due to linear acceleration v̇) which is given
by

b2 = R (v̇ − ge3) = −ute3 + Rδ = Rr2, (13)

where r2 is the inertial referenced system apparent acceleration,
which satisfies

v̇ = ge3 + r2, r2 = −utRTe3 + δ. (14)

In the development of attitude observers, it is often assumed
that the system is near hover (or v̇ ≈ 0) in order to assume that
the accelerometer measures the direction of the gravity vector.
Also, in most situations the aerodynamic disturbance vector δ is
not included in the model. However, for the VTOL UAV model, one
can easily see that if the aerodynamic disturbance is neglected,
or we assume that δ ≈ 0, then the accelerometer signal provides
the measurement b2 = −ute3, which is the constant vector e3
multiplied by the system thrust. In this case the use of the
accelerometer seems trivial since its measurement is known a
priori and does not contain any information about the system
attitude. Therefore, we see that for the VTOL UAV system, the
assumption that the accelerometer measures only the gravity
vector may be a dangerous assumption which may lead to
unexpected performance, even in the case where v̇ ≈ 0. In fact,
it seems that the utility of the accelerometer measurements is
related to themeasurement of the vector δ since the accelerometer
measures b2 = −ute3 + Rδ. For this reason we believe that it is
important to include a model of the aerodynamic disturbances.

3.2. Problem formulation

Let pr denote a desired reference position, which is assumed
to be constant (or slowly-varying), and let ep = p − pr . Our main
objective is to develop a control law for the system inputs ut
and ω, using the available system outputs y = [p, v, b1, b2], such
that the system states ep and v are bounded and limt→∞ ep(t) =

limt→∞ v(t) = 0. For the position control design we first require
that the following assumptions are satisfied.

Assumption 1. There exist positive constants c1 and c2 such that
∥r2(t)∥ ≤ c1 and ∥ṙ2(t)∥ ≤ c2.

Assumption 2. Given two positive constants, γ1 and γ2, there
exists a positive constant cw(γ1, γ2) such that cw < λmin(W )
where W = −γ1S(r1)2 − γ2S(r2)2.
The second assumption is satisfied if r2 is non-vanishing and is not
collinear to the magnetic field vector r1. In the case where r2 = 0,
the system velocity dynamics become v̇ = ge3 (which corresponds
to the rigid body being in a free-fall state) which is not likely
in normal circumstances. When this assumption is satisfied, it
follows thatW is positive definite. Furthermore, if this assumption
is satisfied, the value of cw > 0 can be arbitrarily increased by
increasing the values of γ1 and γ2.

In addition to this assumption, we also require some conditions
on the aerodynamic force vector δ.

Assumption 3 (Aerodynamic Forces). In light of the fact that the
disturbance force δ is due to aerodynamic forces exerted on the
vehicle we make the following simplifying assumptions.

(a) The aerodynamic disturbance δ is dissipative with respect to
the system translational kinetic energy and satisfies δTv ≤ 0.

(b) The aerodynamic disturbance force δ is only dependent on
the system translational velocity, and there exists a positive
constant c1 such that ∥δ∥ ≤ c1∥v∥2

(c) There exist positive constants c2 and c3 such that ∥δ̇∥ < c2 +

c3∥v∥3.

Assumptions 3(a) and (b) can be realized when the system
is operating in an environment where the exogenous airflow is
negligible (no wind). Assumption 3(c) can be satisfied when the
system aerodynamic forces do not significantly depend on the
system orientation. Although this assumption may be reasonable
for certain VTOL type aircraft, for example the ducted-fan VTOL
UAV (where the aerodynamic profile of the aircraft is symmetrical
about the body-referenced vertical axis), this assumption may not
be the case with certain systems, for example fixed wing aircraft
whose aerodynamics depend largely on the orientation of the
vehicle. Now that we have established the required assumptions,
let us consider the model for the system acceleration from (11).
Due to the underactuated nature of this system, the translational
acceleration is driven by the system thrust and orientation
µ(ut , R). That is, ifµwas a control input, settingµ = −kpep − kvv
would satisfy the objectives (since vTδ ≤ 0). However, since µ is
a function of the system state, we define µd ∈ R3 as the desired
acceleration, and introduce the new error signal

µ̃ = µ− µd. (15)

Subsequently, a new objective is to force µ̃ → 0 in order to
obtain the desired translational dynamics. Since the signal µ is
dependent on the system thrust and attitude, based upon the value
of the desired acceleration µd we wish to obtain a suitable desired
attitude, denoted as Qd = (ηd, qd) ∈ Q, and system thrust ut , such
that the following equation is satisfied

µd = ge3 − utRT
de3, (16)

whereRd = R (Qd) is the rotationmatrix corresponding to the unit-
quaternion Qd, as defined by (4). An extraction method satisfying
these requirements, which has been previously given in Roberts
and Tayebi (2011a), is described in the following section.

3.3. Desired attitude and thrust extraction

In this section, given a value of the desired acceleration µd,
we seek to obtain the value of the desired orientation Rd (or
equivalently in terms of the unit-quaternion Qd) such that Eq. (16)
is satisfied. To solve this problem we use an attitude and
thrust extraction algorithm which has been previously proposed
by Roberts and Tayebi (2011a): given µd where µd ∉ L,

L = {µd ∈ R3
;µd = col[0, 0, µd3];µd3 ∈ [g,∞)}, (17)
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then, one solution for the thrust ut and attitude Qd = (ηd, qd)
where Rd = R(Qd), which satisfies (16) is given by

ut = ∥µd − ge3∥, (18)

ηd =


1
2


1 +

g − eT3µd

∥µd − ge3∥

1/2

, (19)

qd =
1

2∥µd − ge3∥ηd
S(µd)e3. (20)

The extracted attitude Qd has the time-derivative

Q̇d =
1
2


−qTd

ηdI3×3 + S(qd)


ωd, (21)

where the desired angular velocity ωd is given by

ωd = M(µd)µ̇d, (22)

M(µd) =
1

4η2du
4
t


−4S(µd)e3eT3 + 4η2dutS(e3)+ 2S(µd)

− 2eT3µdS(e3)

S (µd − ge3)2 . (23)

3.4. Attitude error

To represent the relative orientation of the desired attitude Qd

with respect to the actual attitude Q , we let Q̃ = (η̃, q̃) ∈ Q and
R̃ = R(Q̃ ) ∈ SO(3) denote the unknown attitude error which is
defined by

Q̃ = Q ⊙ Q−1
d , R̃ = R(Q̃ ) = RT

dR, (24)

where Qd is the unit quaternion obtained using (19) and (20). In
light of Q̇ and Q̇d, as defined by (12) and (21), respectively, the time
derivative of the attitude error is found to be

˙̃Q =
1
2


−q̃T

η̃I + S(q̃)


ω̃,

˙̃R = −S(ω̃)R̃, (25)

ω̃ = RT
d (ω − ωd) , (26)

where ωd is the desired angular velocity as defined by (22). One
of the objectives of the control design is to force the system
orientation to the desired attitude, or in terms of the rotation
matrices, to force R → Rd (and therefore µ → µd), in order
to obtain the desired translational dynamics. As mentioned in
Section 2.1, this corresponds to two possible solutions for the
unit-quaternion which are given by Q̃ = (±1, 0). The multiplicity
of equilibrium solutions is manageable since our objectives are
satisfied for both values of the unit-quaternion.

3.5. Position controller

The position controller design is based upon a value of the
desired system translational acceleration, which is specified by the
virtual control law µd. Using the calculated values for the position
error ep = p−pr , and the systemvelocity v, the value of the desired
acceleration is obtained. This desired acceleration is directly
related to a corresponding desired rigid-body orientation and
thrust, denoted by Qd and ut , respectively, which is obtained using
the attitude and thrust extractionmethod described in Section 3.3.
The desired attitude given in the SO(3) parameterization, denoted
as Rd, is subsequently obtained using Qd with (4). Since the system
attitude is not known, we incorporate the use of a special filter
which is driven by the value of the linear velocity v. We let v̂ ∈ R3

denote the filter state variable which corresponds to the system
velocity v, and define the error function ṽ = v − v̂.

Although the system linear velocity is known, the use of the
signal v̂ through the error function ṽ, for an appropriate choice of
the estimation law ˙̂v can be viewed as a function of the system
acceleration in terms of the unknown signal r2. Since this vector is
known in the body fixed frame (measured using an accelerometer,
b2 = Rr2), the filter variable v̂ through the error function ṽ can
be used with the accelerometer to provide information related to
the system attitude. After these steps, the remaining control design
is focused on forcing the actual system attitude to the desired
attitude using the control input ω. The proposed control law is
given as follows:

ω = M(µd)

fµd − kvφ(v)RT

d (b2 + ute3)

+ ψ, (27)

fµd = −kpφ(ep)v + kvφ(v)

kph(ep)+ kvh(v)


, (28)

ψ = γ1S(Rdr1)b1 + γ2k1S

Rd

v − v̂


b2, (29)

˙̂v = ge3 + RT
db2 + k1


v − v̂


+

1
k1

RT
dS(b2)ψ, (30)

µd = −kph(ep)− kvh(v), (31)

where k1, γ1, γ2 > 0, M(µd) is the function defined by (23), φ(·)
is the bounded function defined in Section 2.2, ut = ∥µd − ge3∥,
Rd = R(Qd) and Qd = (ηd, qd) is obtained from the value of µd
using the attitude extraction algorithm defined in Section 3.3.

Theorem 1. Consider the system given by (10)–(12), where we apply
the control laws ut = ∥µd − ge3∥ and ω is as defined by (27),
where kp > 0 and kv > 0 are chosen such that kp + kv < g. Let
Assumptions 2 and 3 be satisfied. Then the system thrust ut is bounded
and non-vanishing such that

0 < ct ≤ ut(t) ≤ c̄t , ct = g − kp − kv,
c̄t = g + kp + kv,

(32)

and for all initial conditions η̃(t0) ≠ 0 (or equivalently ∥q̃(t0)∥ ≠ 1),
there exist positive constants γ̄1, γ̄2, κ1 > 0 such that for γ1 > γ̄1,
γ2 > γ̄2, k1 > κ1, the system states ep and v are bounded and
limt→∞ ep(t) = limt→∞ v(t) = 0.

Proof. We begin by first proving the upper and lower bounds on
the thrust control input ut . Since the function h(·) is bounded by
unity, the norm of the virtual control lawµd is bounded by ∥µd∥ <
kp + kv . Since the thrust control input is given by ut = ∥µd − ge3∥,
and kp and kv are chosen such that kp+kv < g , one easily arrives at
the lower and upper bounds for ut described in the theorem. A nice
consequence of the boundedness of ut , is that the function M(µd)
defined by (23), which is used in the expression for the desired
angular velocity ωd, is also bounded. In fact, in Roberts and Tayebi
(2011a) the authors show that the norm of this matrix satisfies

∥M(µd)∥ ≤
√
2/ct . (33)

We now focus our attention on the dynamics of the position error
ep = p − pr and the system velocity v. Let µ̃ = µ − µd, where
µ is the function defined by (11). In light of the choice for µd, the
derivatives of the position error and velocity can be written as

ėp = v, v̇ = −kph(ep)− kvh(v)+ µ̃+ δ. (34)

As previously mentioned, the velocity observer error ṽ = v − v̂
is considered as a function of the apparent acceleration vector r2.
In fact, we define an error function associated to the apparent
acceleration r2 which is given by

r̃2 = k1ṽ − (I − R̃)r2. (35)

Another important error function which we will focus on is the
attitude error function R̃, or equivalently Q̃ =


η̃, q̃


, which defines

the relative orientation between the actual system attitude and
the desired attitude. To prove the theorem, we will construct a
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Lyapunov function in terms of the error functions q̃, r̃2, v and
ep, in order to show that all of these states tend to zero. Since
the dynamics of q̃ (or equivalently η̃), and r̃2 are somewhat
complicated, we will begin by first simplifying the expressions for
their derivatives. In order to analyze the dynamics of the attitude
error, it is sufficient to study the derivative of the quaternion-
scalar η̃. This is also desired since the derivative of the quaternion
scalar can be less complicated than the derivative of the quaternion
vector. As a starting point, the derivative of η̃ can be found from
(25) to be ˙̃η = −q̃Tω̃/2where ω̃ = RT

d(ω−ωd) andωd = M(µd)µ̇d.
To find a result for the desired angular velocity ωd we first use the
results (34), in addition to the derivative of the bounded function
h(·), denoted as φ(·) as defined in Section 2.2, to differentiate
the virtual control law µd to obtain µ̇d = −kpφ(ep)v − kvφ(v)
−kph(ep)− kvh(v)+ µ̃+ δ


. Simplifying this result, we obtain

the following expression for the desired angular velocity

ωd = M(µd)

fµd − kvφ(v)δ − kvφ(v)µ̃


. (36)

Recall that the control input ω uses the function ψ , given by (29).
Using (35), the property (6) and the fact S(R̃r2)R̃r2 = 0, ψ can be
rewritten as

ψ = Rd

γ1S(r1)R̃r1 + γ2S(r2)R̃r2 + γ2S(r̃2)R̃r2


. (37)

Finally, using the expression for the control inputω, the error func-
tion r̃2, in addition to (36) and (37) and the fact b2 + ute3 = Rδ, we
find the derivative ˙̃η = −

1
2 q̃

TRT
d


γ1RdS(r1)R̃r1 + γ2RdS(r2)R̃r2 +

γ2RdS(r̃2)R̃r2+kvM(µd)φ(v)(I−R̃)δ+kvM(µd)φ(v)µ̃

. To further

simplify this result, we first recognize that in light of the definition
of the rotationmatrix from (4) and the property S(u)u = 0, one can
find q̃TS(ri)R̃ri = 2q̃TS(ri)


q̃q̃T − η̃S(q̃)


ri = 2η̃q̃TS(ri)2q̃. There-

fore, using the expression for the matrix W defined by Assump-
tion 2, we obtain

˙̃η = η̃q̃TWq̃ −
γ2

2
q̃TS(r̃2)R̃r2

−
kv
2
q̃TRT

dM(µd)φ(v)

(I − R̃)δ + µ̃


. (38)

Note that due to Assumption 2, the matrix W is positive-definite.
We now shift our focus to study the dynamics of the error function
r̃2. In light of the expression for v̇ from (14), the expression for
˙̂v from (30), the attitude error dynamics from (25) and (26), the
expressions (27) and (36), and using the fact that −k1ṽ + r2 −

R̂Tb2 = −r̃2, we obtain

˙̃r2 = −k1 r̃2 − (I − R̃)ṙ2

+ kvRT
dS(b2)M(µd)φ(v)((I − R̃)δ + µ̃). (39)

A commonality between the dynamic equations for ˙̃η and ˙̃r2, is
that they both depend on the error functions (I − R̃) and µ̃.
These two error functions can both be expressed in terms of the
attitude error using the quaternion vector part q̃, which will be
a useful characteristic later in the Lyapunov analysis. To describe
this relationship we define two functions, f1(ut , η̃, q̃), f2(x, η̃, q̃) ∈

R3×3 such that

µ̃ = f1(ut , η̃, q̃)q̃, (I − R̃)x = f2(x, η̃, q̃)q̃, (40)

where x ∈ R3. Using the definition of µ̃ = µ − µd, in addition to
the expressions for µ and µd from (11) and (16), respectively, one
can find f1(ut , η̃, q̃) = 2ut


η̃I − S(q̃)


S(RTe3) and f2(x, η̃, q̃) =

2(S(q̃) − η̃I)S(x). Based upon these definitions and the fact that
∥η̃I − S(q̃)∥ = 1, we find the following upper bounds for these
two functions

∥f1(ut , η̃, q̃)∥ ≤ 2c̄t , ∥f2(x, η̃, q̃)∥ ≤ 2∥x∥. (41)
We now propose the following Lyapunov function candidate:

V = γ kp


1 + eTpep − 1


+
γ

2
vTv

+
γ kr
2

r̃T2 r̃2 + γq

1 − η̃2


, (42)

where γ , γq, kp and kr are positive constants. In light of (34), (38)
and (39), we have

V̇ = −γ kvvTh(v)+ γ vTδ − γ krk1 r̃T2 r̃2 − 2γqη̃2q̃TWq̃

+ γ kvkr r̃T2R
T
dS(b2)M(µd)φ(v)


f1(ut , η̃, q̃)

+ f2(δ, η̃, q̃)

q̃ − γ kr r̃T2 f2(ṙ2, η̃, q̃)q̃ + γ vTf1(ut , η̃, q̃)q̃

+ γqkv η̃q̃TRT
dM(µd)φ(v)


f1(ut , η̃, q̃)+ f2(δ, η̃, q̃)


q̃

+ γ2γqη̃q̃TS(r̃2)R̃r2. (43)

Now, we wish to show that for an appropriate choice of the
control gains, V̇ is guaranteed to be non-positive. However, this
objective is a bit involved, and therefore requires to study the
bound of several functions used in the expression of V̇ . We begin
this analysis by defining the scalar function σ(t) :=

√
2V(t).

Based upon the definition of V from (42), the states v and
r̃2 are bounded by σ as follows ∥v(t)∥ ≤ σ(t)/

√
γ , ∥r̃2(t)∥ ≤

σ(t)/
√
γ kr . Therefore, in light of Assumption 3(b), one can

conclude that

∥δ(v)∥ ≤ c1σ(t)2/γ . (44)

Due to the bounds of the functions f1(ut , η̃, q̃) and f2(δ, η̃, q̃)
from (41), and the definition of r2 from (14) we also find

∥f1(ut , η̃, q̃)+ f2(δ, η̃, q̃)∥ ≤ 2

γ c̄t + c1σ(t)2


/γ (45)

∥b2∥ ≤

γ c̄t + c1σ(t)2


/γ . (46)

Given these bounds, we now apply Young’s inequality to a number
of undesired terms in the expression for V̇:

γ vTf1(ut , η̃, q̃)q̃

≤
γ ϵ1

2
vTh(v)+

2
√
γ c̄2t
ϵ1


γ + σ(t)2q̃Tq̃, (47)

γ kvkr r̃T2R
T
dS(b2)M(µd)φ(v)


f1(ut , η̃, q̃)+ f2(δ, η̃, q̃)


q̃

≤
γ kvkrϵ2

2
r̃T2 r̃2 +

4kvkr
ϵ2γ 3c2t


γ c̄t + c1σ(t)2

4
q̃Tq̃, (48)

where the norm ofM(µd) is given by (33). To determine the bound
of the term involving the time-derivative of r2, we first derive the
expression for ṙ2 to be

ṙ2 = −u̇tRTe3 + utRTS(e3)ω + δ̇

= −
1
ut
(µd − ge3)T


−kpφ(ev)v − kvφ(v)f1(ut , η̃, q̃)q̃

+ kvφ(v)

kph(ep)+ kvh(v)


− kvφ(v)δ


RTe3

+ utRTS(e3)

M(µd)


−kpφ(ev)v − kvφ(v)R̃δ

+ kvφ(v)

kph(ep)+ kvh(v)


+ γ1S(Rdr1)b1

+ γ2RdS(r̃2)R̃r2 + γ2RdS(r2)R̃r2


+ δ̇. (49)

Due to the bounds of the functions h(·), φ(·), the (upper and
lower) bounds of the thrust control input ut , the bound of δ̇ from
Assumption 3(c), the bound of b2 from (46) (same as the bound
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of r2), and the bound of δ from (44), we find that there exist five
positive constants di > 0, such that the norm of ṙ2 is bounded by
ṙ2 ≤ d1 + d2∥v∥ + d3∥v∥2

+ d4∥v∥3
+ d5∥v∥4. However, for the

sake of simplicity, from this result we further conclude that there
exist positive constants c3 and c4 such that ṙ2 ≤ c3 + c4σ(t)4. As a
result of this analysis, we again use Young’s inequality to establish
the following bounds:

γ kr r̃T2 f2(ṙ2, η̃, q̃)q̃

≤
γ krϵ3

2
r̃T2 r̃2 +

2γ kr
ϵ3


c3 + c4σ(t)4

2
q̃Tq̃, (50)

γ2γqη̃q̃TS(r̃2)R̃r2

≤
γ 2
2 γqϵ4

2
r̃T2 r̃2 +

γq

2γ 2ϵ4


c̄tγ + c1σ(t)2

2
η̃2q̃Tq̃, (51)

γqkv η̃q̃TRT
dM(µd)φ(v)


f1(ut , η̃, q̃)+ f2(δ, η̃, q̃)


q̃

≤
2
√
2γqkv


γ c̄t + c1σ(t)2


γ ct

|η̃|q̃Tq̃, (52)

Recall from Assumption 2 that the norm of the matrix W has
a lower bound which is denoted as cw . Therefore, in light of the
lower bounds defined above, and Assumption 3(a) we find that the
expression V̇ is bounded by

V̇(t) ≤ −γ vTh(v) (kv − ϵ1/2)

− γ kr r̃T2 r̃2

k1 −

ϵ2kv + ϵ3

2
−
ϵ4γ

2
2 γq

2γ kr


− γqη̃

2q̃Tq̃


2cw −

1
η̃2


α1(t)
ϵ1

+
α2(t)
ϵ2

+
α3(t)
ϵ3


−
α4(t)
ϵ4

−
2
√
γ c̄2t


γ + σ(t)2

1/2
η̃2

−
2
√
2kv


γ c̄t + c1σ(t)2


γ ct |η̃|


, (53)

α1(t) = 2
√
γ c̄2t


γ + σ(t)2/γq, (54)

α2(t) = 4kvkr

γ c̄t + c1σ(t)2

4
/(γ 3c2t γq), (55)

α3(t) = 2γ kr

c3 + c4σ(t)4

2
/γq, (56)

α4(t) =

c̄tγ + c1σ(t)2

2
/(2γ 2). (57)

Now, let us define a lower bound for |η̃|, which based upon
some appropriate choices of gains, ensures V̇ ≤ 0 for all t ≥

t0. Note that when η̃(t) = 0 we cannot guarantee stability using
(53) since in this case V̇ could potentially be positive. To show
that η̃(t) is never zero, we first introduce the positive constant ρ
which is the desired lower bound for |η̃(t)|. Therefore, ρ must be
chosen to satisfy 0 < ρ < |η̃(t0)|. Subsequently, based upon the
definition of the Lyapunov function candidate (42), we choose γ =

γ̄ (kp(

1 + ∥ep(t0)∥2−1)+∥v(t0)∥2/2+∥r̃2(t0)∥2/2+ξ)−1, where

the parameter ξ is chosen to be positive, and γ̄ is chosen to satisfy
0 < γ̄ < γq


η̃(t0)2 − ρ2


, where γq is chosen to be positive.

Recall kp > 0 and kv > 0 are chosen arbitrarily provided that kp +

kv < g . The remaining gains and parameters are chosen to ensure
that all terms in (53) are guaranteed to be negative at the initial
time t0. The gains and parameters are chosen as follows: choose
ϵ1 such that 0 < ϵ1 < 2kv . Recall that the minimum eigenvalue of
W , denoted by cw > 0, can be increased using the gains γ1 and γ2.
Therefore, there exist constants γ̄1, γ̄2, and ϵ̄i, i = 2, 3, 4, such that
for all γ1 > γ̄1, γ2 > γ̄2, and ϵi > ϵ̄i, the following inequality is
satisfied

2cw >
1
ρ2


α1(t0)
ϵ1

+
α2(t0)
ϵ2

+
α3(t0)
ϵ3


+
α4(t0)
ϵ4

+
2
√
γ c̄2t


γ + σ(t0)2

1/2
ρ2

+
2
√
2kv


γ c̄t + c1σ(t0)2


γ ctρ

. (58)

Finally, choosing k1 > κ1(ϵ2, ϵ3, ϵ4, γ ) := (ϵ2kv + ϵ3)/2 + (ϵ4γ
2
2

γq)/(2γ kr) we conclude that V̇(t0) ≤ 0 at the initial time t0. We
now need to show that this is true for all time. Since the functions
α1(t) through α4(t) are non-increasing if V̇ ≤ 0, then a sufficient
condition for V̇(t) ≤ 0 is |η̃(t)| ≥ ρ.Wewill now show that indeed
ρ ≤ |η̃(t)| for all t > t0. Suppose that there exists a time t1 such
that for all t0 ≤ t < t1, |η̃(t)| ≥ ρ and |η̃(t1)| < ρ when t = t1.
At the time t1 from (42), it is clear that V(t1) ≥ γq


1 − η̃(t1)2


>

γq

1 − ρ2


. However, due to the choice of γ and γ̄ the value of

the Lyapunov function candidate at the initial time t0 must satisfy
V(t0) < γ̄ + γq


1 − η̃(t0)2


< γq


1 − ρ2


and therefore V(t1) >

V(t0). This is a contradiction since V̇(t) ≤ 0 for all t0 ≤ t < t1, and
the functionsV(t),αi(t) andσ(t) are non-increasing in the interval
t0 ≤ t < t1. Therefore, we conclude that |η̃(t)| ≥ ρ and V̇(t) ≤

0 for all t > t0, and the states v and r̃2 are bounded. Therefore,
˙̃r2, v̇, ˙̃η, and V̈ are bounded. Invoking Barbalat’s Lemma, one
can conclude that limt→∞


v(t), r̃2(t), q̃(t)


= 0. Furthermore,

since limt→∞ v̇(t) = 0, and limt→∞ δ(t) = 0, it follows from the
expression of the velocity dynamics v̇ = −kph(ep)− kvh(v)− δ =

0, that limt→∞ ep(t) = 0, which ends the proof. �

4. Conclusion

A new position controller for VTOL-UAVs that does not
require direct measurement of the system’s attitude, nor does
it require the use of an attitude observer has been proposed.
The accelerometer and magnetometer signals are explicitly used
in the control law to capture the necessary information about
the system’s orientation (without, explicitly, reconstructing or
estimating the orientation). Furthermore, the usual simplifying
assumption restricting the accelerometer measurement to the
gravity direction is not required anymore. In fact, in this work,
the accelerometer is used to measure the system’s apparent
acceleration, whichmakes the proposed control efficient when the
system is subjected to significant linear accelerations. We have
shown that, through an appropriate choice of the control gains, the
systemposition is guaranteed to be bounded and to converge to the
desired position for almost all initial conditions. Simulation results
which show the performance of the proposed control scheme, in
the presence of noise and disturbances, are available in Roberts and
Tayebi (2012).
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