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a b s t r a c t

This paper deals with the position control of Vertical Take-Off and Landing (VTOL) Unmanned Aerial
Vehicles (UAVs) without linear velocity measurements. We propose a multistage constructive procedure,
exploiting the cascade property of the translational and rotational dynamics. More precisely, we consider
the force as a virtual control input for the translational dynamics, from which we extract the required
(desired) system attitude and thrust achieving the tracking objective. Thereafter, the control torque is
designed to drive the actual attitude to the desired one. A nonlinear observer, aswell as some instrumental
auxiliary variables are used to obviate the need for the linear velocity. Global asymptotic stability of the
overall closed loop system is achieved. Simulation results are provided to show the effectiveness of the
proposed control scheme.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The control of Unmanned Aerial Vehicles (UAV) has recently re-
ceived an increasing interest in the control community. This in-
terest is motivated by their potential applications in areas such as
surveillance, search and rescue missions, monuments inspections,
etc. VTOL-UAVs, which are suitable for a broad range of appli-
cations requiring stationary flights, constitute an important class
of thrust propelled UAVs. These vehicles are generally under-
actuated, i.e., equipped with fewer actuators than degrees-of-
freedom. It is clear that one of most important components for
reliable autonomous flights is an efficient attitude control and
stabilization scheme. In fact, this problem has been the focus of
extended research over the past years, resulting in a myriad of
successful attitude controllers, see for instance, Tayebi (2008) and
Wen and Kreutz-Delgado (1991). However, the position control of
under-actuatedVTOL vehicles in SE(3) ismore challenging than the
attitude control problem since global asymptotic stability is dif-
ficult to achieve for this class of mechanical systems. Several so-
lutions have been reported in the literature, such as the feedback
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linearization method in Koo and Sastry (1998), the backstepping
approach in Frazzoli, Dahleh, and Feron (2000) and Pflimlin,
Soueres, and Hamel (2007), the sliding mode technique in Madani
and Benallegue (2007), and other control strategies based on gain
scheduling (Kaminer, Pascoal, Hallberg, & Silvestre, 1998) or on
a nested saturation technique (Kendoul, Lara, Fantoni, & Lozano,
2006).
The authors in Hamel, Mahony, Lozano, and Ostrowski (2002)

and Pflimlin et al. (2007) proposed a hierarchical design procedure
for the position control of VTOL-UAVs. The idea consists in using
the vehicle’s orientation and the thrust as control variables to sta-
bilize the vehicle’s position, and then apply a classical backstepping
procedure to determine the torque-input capable of stabilizing the
required orientation. In Hua, Hamel, Morin, and Samson (2009), a
similar control architecture is applied to solve the trajectory track-
ing problem, where the angular velocity is used as an intermediate
variable instead of the orientation. The authors in Aguiar and Hes-
panha (2007) proposed a backstepping design for the trajectory
tracking problem of a class of under-actuated systems, including
VTOL vehicles, where the states are guaranteed to converge to a
ball near the origin.
While the above control schemes rely on the availability of

the full state for feedback, only few work has been done in the
case where the linear velocity is not available for feedback. For
flying vehicles, velocity estimations can be obtained via approxi-
mate derivation of the successivemeasurements fromGPS sensors.
For fast moving vehicles, the standard procedure consists of
integrating the acceleration, and coupling this result with the
derivative of the GPS measurements (Benzemrane, Santosuosso,
& Damm, 2007). This estimation method suffers from several
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problems, namely the fact that the errors induced by a GPS sys-
temmay reachmanymeters, and in practice, numerical integration
alongwithmeasurement noise induces a very fast growing velocity
measurement error. There are several technical solutions to over-
come these problems such as using high-precision sensors like a
D-GPS. However, the GPS signal is not available in indoor and ur-
ban applications (structure/bridge inspection for example) due to
signal blockage and attenuation, which may deteriorate the posi-
tioning accuracy. To solve the linear-velocity estimation problem
without the use of a GPS, several authors have considered the com-
bination of artificial vision and the inertial sensors, see for example
Cheviron, Hamel, Mahony, and Baldwin (2007), Rondon, Salazar,
Escareno, and Lozano (2010) and references therein. Another so-
lution is to use observers to estimate the missing states, as done
in Do, Jiang, and Pan (2003), where the trajectory tracking problem
of a planar-VTOL is treated. It is worth mentioning, that in the case
where a GPS is not available (in indoor applications for instance),
there are several techniques that allow to obtain the UAV position,
such as the combination of an inertial measurement unit (IMU)
with a vision system; or the use of a network of Ultra-wideband
(UWB) receiverswhich track a large number of small (inexpensive)
UWB transmitters.
Themain contribution of thiswork is to provide a solution to the

position tracking problem of VTOL UAVs without linear-velocity
measurements. We exploit the cascaded nature of the system
and first design an intermediary control input for the translational
dynamics of the vehicle, without linear velocity measurements,
from which we can extract the magnitude of the necessary thrust
input and the desired orientation (in terms of unit-quaternion) of
the aircraft. The thrust input will be used to drive the translational
dynamics of the aircraft, and the time-varying desired attitudewill
be considered as a reference input to be tracked by the rotational
dynamics with an appropriate design of the torque input.
In our approach, we ensure that the intermediary translational

control input is a priori bounded and at least twice differentiable.
This, as it will become clear later, will be a key ingredient guar-
anteeing the existence of a solution to the attitude and thrust ex-
traction algorithm, aswell as the boundedness of the actual control
inputs. As a result, the proposed control scheme guarantees global
asymptotic trajectory tracking with an a priori bounded thrust.

2. Systemmodel

In this paper, we consider a VTOL aircraft modeled as a rigid-
body. Let Fi , {ê1, ê2, ê3} denotes the inertial frame, and Fb ,
{ê1b, ê2b, ê3b} denotes the body-fixed frame of the aircraft. Let the
position and linear velocity of the aircraft, expressed in the inertial
frame Fi, be denoted by p ∈ R3 and v ∈ R3 respectively, and let
its angular velocity, expressed in the body-fixed frame Fb, be de-
noted byω ∈ R3. To represent the attitude (orientation) of the air-
craft, we make use of the unit-quaternion representation (Shuster,
1993). The unit-quaternion Q = (qT , η)T is a four-element vector,
composed of a vector component q ∈ R3 and a scalar component
η ∈ R, satisfying the unity constraint: qTq + η2 = 1. The orthog-
onal rotation matrix R(Q) ∈ SO(3) that defines the rotation of the
body frame by an angle γ about the axis described by the unit vec-
tor k̂ ∈ R3, can be described by a unit-quaternion Q = (qT , η)T

such that: q = k̂ sin(γ /2), and η = cos(γ /2). The rotation ma-
trix R(Q), related to the unit-quaternion Q, that brings the inertial
frame into the body frame, can be obtained through the Rodriguez
formula as: R(Q) = (η2− qTq)I3+ 2qqT − 2ηS(q), where I3 is the
3-by-3 identity matrix and the matrix S(x) is the skew-symmetric
matrix such that S(x)u = x × u for any vector u ∈ R3, where ‘×’
denotes the vector cross product.
The quaternion multiplication between two unit quater-

nion, Q1 = (qT1, η1)
T and Q2 = (qT2, η2)

T , is defined
Fig. 1. VTOL aircraft.

by the following non-commutative operation: Q1 � Q2 =(
(η1q2 + η2q1 + S(q1)q2)T , η1η2 − qT1q2

)T . The inverse or conju-
gate of a unit quaternion is defined by, Q−1 = (−qT , η)T , with the
quaternion identity given by (0, 0, 0, 1)T , (Shuster, 1993).
Using this representation of the attitude, the equations of mo-

tion of the VTOL aircraft can be described by
(Σ1):

{
ṗ = v,

v̇ = g ê3 −
T

m
R(Q)T ê3,

(Σ2):

Q̇ =
1
2

(
ηI3 + S(q)
−qT

)
ω,

If ω̇ = τ − S(ω)Ifω,

(1)

where m and g are the aircraft mass and the gravitational
acceleration. If ∈ R3×3 is a symmetric positive definite constant
inertia matrix of the vehicle with respect to Fb. The scalar T and
the vector τ represent respectively the magnitude of the thrust
applied to the vehicle in the direction of ê3b, and the external
torque applied to the systemexpressed inFb. An example of aVTOL
aircraft considered in this paper is illustrated in Fig. 1.

3. Problem formulation

Our objective in thiswork is to design global control laws for the
thrust T (t) and the torque τ(t) allowing the VTOL aircraft to track
a desired trajectory pd(t). We assume that the linear-velocity vec-
tor is not available for feedback. In other words, we would like to
design a linear-velocity-free global control law guaranteeing the
boundedness and the asymptotic convergence to zero of the fol-
lowing position and linear-velocity tracking errors

e(t) = p(t)− pd(t), ṽ(t) , ė(t) = v(t)− ṗd(t). (2)

Due to the under-actuated nature of the system, the design of
the thrust and torque inputs for this class of systems is not
straightforward. In the following, we will present the control
design methodology that we adopt in this work to achieve our
objectives.

3.1. Thrust and desired attitude extraction

Consider the translational dynamics (Σ1) in (1), which can be
rewritten as

(Σ1):

{
ṗ = v,

v̇ = F−
T

m
f (Q,Qd),

(3)

with

f (Q,Qd) ,
(
R(Q)T − R(Qd)T

)
ê3, (4)

F , g ê3 −
T

m
R(Qd)T ê3, (5)
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where the variable F is an ‘‘intermediary’’ control input to the trans-
lational dynamics, and Qd(t) = (qTd , ηd)

T is the unit quaternion
representing the desired attitude of the vehicle.
In the following Lemma, (Roberts & Tayebi, 2009), we will

present a thrust and desired attitude extraction algorithm (in
terms of the unit-quaternion) from the expression of the interme-
diary control input, given in (5).

Lemma 1. Consider Eq. (5) and let the vector F , (µ1, µ2, µ3)
T .

It is always possible to extract the thrust magnitude and the desired
system’s attitude from (5) as

T = m‖g ê3 − F‖, (6)

ηd =

√
1
2
+
m(g − µ3)
2T

, qd =
m
2T ηd

(
µ2
−µ1
0

)
, (7)

under the condition that

F 6= (0, 0, x), for x ≥ g, (8)

where ‖ · ‖ denotes the Euclidean norm of a vector. In addition, under
the condition that the intermediary control F is differentiable, we can
write the desired angular velocity of the aircraft as

ωd = 4(F)Ḟ, (9)

4(F) =
1

γ 21 γ2

 −µ1µ2 −µ22 + γ1γ2 µ2γ2
µ21 − γ1γ2 µ1µ2 −µ1γ2
µ2γ1 −µ1γ1 0

 , (10)

with γ1 = (T /m) and γ2 = γ1 + (g − µ3).

Proof. A similar proof can be found in Abdessameud and Tayebi
(2009) and Roberts and Tayebi (2009). �

The result in Lemma 1 states that if one is able to design an
appropriate intermediary control input F(t) for the translational
dynamics, that satisfies condition (8) for all t > 0, then the posi-
tive thrust magnitude T (t), and the aircraft desired attitude Qd(t),
can be extracted as in (6) and (7) respectively. Note that the solu-
tion (6) and (7) is singularity-free.

3.2. Attitude error dynamics

Provided that the aircraft desired attitude Qd is determined,
we define the attitude tracking error, describing the discrepancy
between the vehicle’s attitude and its desired attitude, namely
Q̃ = (q̃T , η̃)T , by

Q̃ = Q−1d � Q, (11)

governed by the unit-quaternion dynamics

˙̃q =
1
2
(η̃I3 + S(q̃))ω̃, ˙̃η = −

1
2
q̃T ω̃, (12)

ω̃ = ω− R(Q̃)ωd, (13)

where ω̃ is the angular velocity error vector and ωd is the desired
angular velocity of the aircraft given in (9). Matrix R(Q̃) is the ro-
tation matrix related to Q̃, and is given by R(Q̃) = R(Q)R(Qd)T ,
(Shuster, 1993).With the above definition, we can see that attitude
tracking is achieved when Q coincides with Qd, or Q̃ = (0T3,±1)

T ,
and ω̃ = 03, with 03 = col[0, 0, 0]. Note that due to the inherent
redundancy of the quaternion representation, Q and−Q represent
the same physical orientation however, one is rotated 2π relative
to the other about an arbitrary axis. Accordingly, Q̃ = (0T3,±1)

T

correspond to the same physical point.
From (11) and the definition of R(Q), it can be easily shown that
the function f (Q,Qd) in (4) can be expressed in terms of the ele-
ments of Q̃ as

f (Q,Qd) = R(Q)T
(
I3 − R(Q̃)

)
ê3

= 2R(Q)TS(q̄)q̃, (14)

with q̃ = (q̃1, q̃2, q̃3)T , q̄ = (q̃2,−q̃1,−η̃)T . In addition, it is easy
to verify that ‖R(Q)TS(q̄)‖ ≤ 1.

4. Control design procedure

Based on the above extraction algorithm, the main idea in our
design method is to exploit the cascaded nature of the system (1)
and consider a control design procedure that can be summarized
in the following points:

(1) Consider the translational dynamics (Σ1) in (3), and design the
intermediary translational control input, F, for the aircraft that
satisfies condition (8) without linear-velocity measurements.
Then, using the extraction algorithm in Lemma 1, we extract
the necessary thrust T (t) and the aircraft desired attitude
Qd(t). Themagnitude of the thrust will be the input to the sub-
system (Σ1).

(2) Consider the rotational dynamics (Σ2) in (1), and Qd(t) as a
time varying desired attitude, and design a linear-velocity-
free torque input such that the attitude tracking error q̃(t)
converges asymptotically to zero.

(3) Show the global asymptotic stability of the overall system.

4.1. Step 1: intermediary position control design

To design an intermediary control F for the translational dy-
namics (3) that achieves our control objectives without linear-
velocity measurements, we have to take into consideration some
important requirements.
First, it is important to notice that for condition (8) to be

satisfied, the third element of the control input Fmust be bounded
a priori. Hence, to use the extraction algorithm described in
Lemma 1, it is sufficient to design an a priori bounded intermediary
control F. On the other hand, we can see that the term T

m f (Q,Qd)
in (3) constitutes a nonlinear perturbation to the translational dy-
namics, which is completely unknown at this stage of the control
design. Fortunately, we know that f (Q,Qd) is bounded since it is
function of orthogonal rotation matrices. In addition, we can see
from (6) that the design of an a priori bounded intermediary control
input is necessary to guarantee a bounded thrust input and hence
a bounded perturbation term.
Second, we can notice from the expression of ωd in (9) that ω̇d

is function of F̈. It is clear that to implement a trajectory track-
ing attitude controller, that necessarily requires the knowledge of
ωd(t) and ω̇d(t), we need to ensure that these signals are bounded.
In addition, the intermediary control F must be at least twice
differentiable. Moreover, if a nonlinear observer or a partial state
feedback is considered in the design of Fusing the position tracking
errors, Ḟ and F̈will necessarily be function of v and v̇, respectively,
which are not available for feedback.
To achieve our objectives, and solve the above problems, we in-

troduce the following new variables

ξ = e− θ, z = ξ̇ = ṽ− θ̇, (15)

where θ ∈ R3 is a design variable to be determined later. The trans-
lational error dynamics can then be written as

ż = −
T

m
f (Q,Qd)+ F− θ̈− p̈d. (16)
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Consider the following positive definite function

Vt =
1
2

(
zT z+ kpξTξ+ kd(ξ− ψ)T (ξ− ψ)

)
, (17)

where kp, kd are strictly positive scalar gains, and the design vari-
able ψ is the output of an auxiliary system which plays the role
of an estimator of the linear velocity at this stage of the control
design. The time derivative of Vt is given as

V̇t = zT
(
−

T

m
f (Q,Qd)+ F− θ̈− p̈d

)
+ zT

(
kpξ+ kd(ξ− ψ)

)
− kdψ̇

T
(ξ− ψ). (18)

Taking

F− θ̈ = p̈d − kpξ− kd(ξ− ψ), (19)
and using (14), we obtain

V̇t = −
2T
m

zTR(Q)TS(q̄)q̃− kdψ̇
T
(ξ− ψ). (20)

It is clear that with a simple design of ψ̇, the last term in the right
hand side of (20) can be guaranteed to be negative. In addition, to
guarantee the stability result of the overall system, as we will see
in the proof of our result, the first term in the right hand side of
(20) should be considered in the torque input design.
In view of (19), we propose the linear-velocity-free intermedi-

ary control input for the VTOL vehicle, F, and the auxiliary variable
θ as

F = p̈d − kθ1 tanh(θ)− kθ2 tanh(θ̇), (21)

θ̈ = −kθ1 tanh(θ)− kθ2 tanh(θ̇)+ kpξ+ kd(ξ− ψ), (22)
where kθ1 and kθ2 are strictly positive scalar gains, and θ(0) and
θ̇(0) can be selected arbitrarily.
It is worth noticing that the idea behind the introduction of the

new variable θ is to modify (during the transient) the desired tra-
jectory, and design the control scheme such that limt→∞ ξ = 0
and limt→∞ z = 0. Once this is achieved, the variable θ and its
time derivative are forced to converge to zero, ensuring hence the
tracking of the original desired trajectories. As a result, this variable
allows the design of an a priori bounded control input, F, such that

‖F‖ ≤ ‖p̈d‖ +
√
3(kθ1 + kθ2). (23)

Before we proceed further in our control design, we need the fol-
lowing assumption on the desired trajectory and the control gains.

Assumption 1. The second, third and fourth time-derivatives of
the desired trajectory are bounded. The elements of the desired ac-
celeration vector p̈d(t) := (p̈d1 , p̈d2 , p̈d3)

T , and the positive control
gains kθ1 and kθ2 should satisfy one of the following conditions:
(a) kθ1 + kθ2 < |p̈d1(t)|, ∀t ≥ 0,
(b) kθ1 + kθ2 < |p̈d2(t)|, ∀t ≥ 0,
(c) |p̈d3(t)| ≤ α, ∀t ≥ 0, and kθ1 + kθ2 ≤ g − α,
(d) ‖p̈d(t)‖ ≤ δ, ∀t ≥ 0, and kθ1 + kθ2 ≤

1
√
3
(g − δ)

with α > 0 and 0 ≤ δ < g .
It is straightforward to verify that if one of the above cases is met,
condition (8) is satisfied, and the intermediary control F can be
used in the extraction method in Lemma 1. In fact, cases (a) and
(b) ensure that µ1 6= 0 and µ2 6= 0 for all t ≥ 0 respectively, case
(c) is considered such that µ3 < g for all t ≥ 0, and finally, the
more restrictive case (d) guarantees that ‖F‖ < g for all t ≥ 0.
Since F is bounded, and if condition (8) is satisfied for all time, the
extracted value of the thrust T , in (6), is guaranteed to be positive
and a priori bounded as

T ≤ m
(
g + δd +

√
3(kθ1 + kθ2)

)
, Λ, (24)

with δd = ‖p̈d(t)‖∞ andΛ a positive constant. Also, the extracted
desired attitude of the vehicle,Qd(t), is guaranteed to be realizable.
4.2. Step 2: attitude control design

Now,we consider the orientation dynamics and design a torque
input for the vehicle that guarantees tracking of the desired atti-
tude Qd(t) given in (7). It is important to see that the intermediary
control F in (21) does not depend explicitly on the position tracking
error. As a result, the desired angular velocity,ωd(t), derived in (9),
does not depend on the linear-velocity signal. However, the time
derivative of the desired angular velocity, ω̇d(t), will be given as
ω̇d = 91 − 92z, (25)
where the vector91 andmatrix92 are derived in the Appendix for
the sake of clarity of presentation. It is clear that ω̇d is function of
the signal z which depends explicitly on the linear-velocity of the
aircraft. Note that without the introduction of the new variable θ,
the use of the position tracking error explicitly in the expression
of F results in ωd being function of the linear-velocity and ω̇d be-
ing function of the linear-acceleration, whichwill make the control
design quite complicated.
To design the attitude tracking torque, we introduce the follow-

ing variable

� = ω̃− β, (26)
with ω̃ defined in (13) and β being a design parameter to be de-
termined later. Exploiting the rotational dynamics (Σ2) in (1) and
expression (25), we can easily show that

If �̇ = τ − H(·)+ 0z− If β̇, (27)

with:H(·) = S(ω)Ifω− If S(ω̃)R(Q̃)ωd+ If R(Q̃)91,0 = If R(Q̃)92,
and Q̃ is given in (11). Note that the angular velocity error dynamics
(27) depend on the vector z, and hence on the aircraft linear-
velocity, which is not available for feedback.
To design a torque input in (27) without linear-velocity

measurements,we introduce the followingnonlinear observer that
generates estimates of the linear-velocity vector, ẑ, as{
ẑ , ˙̂ξ = ν − Lpξ̃,
ν̇ = 8+ 0T�− L2v ξ̃,

(28)

where Lp and Lv are strictly positive scalar gains, ξ̃ , (ξ̂ − ξ) and
8 , F− θ̈− p̈d− T

m f (Q,Qd). It is important to mention that at this
stage of the control design, all the signals required for the observer
are well determined, among which are F, θ̈, Qd and ωd.
Define the observation error vector as, z̃ , ˙̃ξ = ẑ − z. Using

(16), the observation error dynamics can be written as
˙̃z = −Lpz̃− L2v ξ̃+ 0

T�. (29)
To design the necessary torque input, we consider the following
positive definite function

Va =
1
2

(
z̃+ Lv ξ̃

)T (
z̃+ Lv ξ̃

)
+
1
2
LvLpξ̃

T
ξ̃

+ 2kq(1− η̃)+
1
2
�T If�, (30)

with kq > 0. The time derivative of Va, using (12), (26), (27) and
(29), is given as

V̇a = −(Lp − Lv)z̃T z̃− L3v ξ̃
T
ξ̃+ (z̃+ Lv ξ̃)T0T�+ kqq̃T (�+ β)

+�T
(
τ − H(·)+ 0z− If β̇

)
. (31)

In view of this last equation, and using the observed states, we
propose the following torque input for the rotational dynamics

τ = H(·)+ If β̇− kqq̃− kΩ�− 0
(
ẑ+ Lv ξ̃

)
, (32)

with kΩ > 0, to obtain

V̇a = −(Lp − Lv)z̃T z̃− L3v ξ̃
T
ξ̃+ kqq̃Tβ− kΩ�T�. (33)

It is important to notice that β cannot be function of ẑ, since its time
derivative will give rise to z.
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4.3. Step 3: stability of the overall system

Now, we can state our main result in the following theorem.

Theorem 1. Consider the VTOL-UAV model (1), and let the desired
trajectory pd(t) and the controller gains kθ1 and kθ2 satisfy
Assumption 1. Let the thrust input T (t) and the desired attitudeQd(t)
be given, respectively, by (6) and (7), with F , (µ1, µ2, µ3)T given by
(21) and (22). Let the torque input be as in (32)with the observer (28).
Let the parametersψ and β, in (22) and (26) respectively, be given by

ψ̇ = λ(ξ− ψ), (34)

β = −kβ q̃+
2T
kqm

S(q̄)TR(Q)ν, (35)

with λ > 0, kβ > 0, ν = ẑ + Lpξ̃ and q̄ defined in (14). Pick the
control and observer gains as follows

Lp − Lv > σ1, L3v > σ2, kqkβ >
Λ2

m2

(
1
σ1
+
L2p
σ2

)
, (36)

for some σ1 > 0, σ2 > 0, and Λ given in (24). Then, starting from
any initial conditions, all signals are bounded and limt→∞ ζ(t) = 0,
with ζ(t)T =

(
e(t)T , ṽ(t)T , ξ̃(t)T , z̃(t)T , q̃(t)T , ω̃(t)T

)
.

Proof. First, it is easy to check that if the desired trajectory and
the controller gains kθ1 and kθ2 satisfy Assumption 1, condition (8)
is always satisfied, and hence it is always possible to extract the
magnitude of the thrust and the desired attitude from (6) and (7)
respectively for the VTOL vehicle. Consider the following Lyapunov
function candidate

V = Vt + Va. (37)

Using (34) and (35), the time derivative of V evaluated along the
system trajectories, in view of (20) and (33), is obtained as

V̇ = −kdλ(ξ− ψ)T (ξ− ψ)− (Lp − Lv)z̃T z̃− L3v ξ̃
T
ξ̃− kΩ�T�

− kqkβ q̃T q̃+
2T
m

q̃TS(q̄)TR(Q)(z̃+ Lpξ̃). (38)

Using the fact that ‖R(Q)TS(q̄)‖ ≤ 1 and Lp > Lv from (36), an
upper bound of V̇ can be obtained as

V̇ ≤ −kdλ‖ξ− ψ‖2 − (Lp − Lv − σ1)‖z̃‖2 − kΩ‖�‖2

− (L3v − σ2)‖ξ̃‖
2
−

(
kqkβ −

Λ2

m2

(
1
σ1
+
L2p
σ2

))
‖q̃‖2, (39)

where Λ is given in (24), and we have used the fact that for any
real numbers a and b, we have 2ab ≤ a2/σ +σb2, for some σ > 0.
Therefore, V̇ is negative semi-definite if condition (36) is satisfied.
Hence, we can conclude that z, ξ, ψ, q̃, �, z̃ and ξ̃ are bounded.
Consequently, θ̈, ψ̇, ż, ˙̃z and ν are bounded. Also, we can see that
(ξ̇− ψ̇) is bounded.
Since q̃ and ν are bounded, we can see that β is bounded, and

hence ω̃ is bounded from (26). Hence, we can conclude that ˙̃q is
bounded. In addition, we can easily verify that �̇ is bounded using
the expressions of τ in the closed loop dynamics (27). As a result, V̈
is bounded. Hence, invoking Barbalat lemma, we can conclude that
(ξ−ψ)→ 0, ξ̃→ 0, z̃→ 0,�→ 0 and q̃→ 0, and therefore we
conclude that R(Q̃)→ I3 and η̃→±1.
Using the above results, we know that ξ̈− ψ̈ = ż− λ(ξ̇− ψ̇) is

bounded, and since we have shown that (ξ−ψ)→ 0, we can con-
clude from Barbalat lemma that (ξ̇ − ψ̇) → 0. Consequently, we
can conclude that ξ̇ = z→ 0, since ψ̇ = λ(ξ−ψ)→ 0. Also, since
Table 1
Simulation parameters.

p(0) = (−2, 5,−1), v(0) = (0, 0, 0), q(0) = (0, 0, 0, 1),
ω(0) = θ(0) = θ̇(0) = ξ̂(0) = ν(0) = (0, 0, 0), g = 9.8,
kp = 0.3, kd = 0.5, λ = 1, kθ1 = 1.5, kθ2 = 1.5,
kβ = 40, kq = 40, kΩ = 30, Lp = 1.5, Lv = 0.8.

z and z̃ converge to zero, it is clear that ẑ tends to zero, andwith the
limit of ξ̃, one can conclude that ν→ 0, and consequently, β→ 0
implying that ω̃→ 0.
Exploiting the above boundedness results, and since q̃→ 0 and

(ξ − ψ) → 0, we can conclude from the translational error dy-
namics (16), with (19) and (14), that ż → 0 using the extended
version of Barbalat lemma (See, for instance, Lemma 2 in Hua et al.
(2009)). Hence, we conclude from (16) that ξ → 0 and conse-
quently ψ→ 0.
To show the convergence of e and ṽ, we have to investi-

gate the boundedness and asymptotic convergence to zero of
the variables θ and θ̇. It can be seen that (22) can be rewrit-
ten as: θ̈ = −kθ1 tanh(θ) − kθ2 tanh(θ̇) + χ, with χ =

kpξ + kd(ξ − ψ). Using the above results, we can easily ver-
ify that χ is bounded and tends to zero as t goes to infinity.
Therefore, we can show that θ and θ̇ are bounded and converge
asymptotically to zero, and as a result, e → 0 and ṽ → 0
asymptotically.
To complete the proof, we must show that the input torque in

(32) is bounded. Exploiting the above boundedness results, we can
easily show that τ is bounded ifωd, ω̇d and β̇ are bounded. By tak-
ing the time derivative of (35), we can show that ddt (S(q̄)

TR(Q))
is bounded if ω, ω̃ are bounded, and since ν and ν̇ are bounded,
we know that β̇ is bounded if Ṫ and ωd are bounded. It is impor-
tant to note from the time derivative of (35) that β̇ used in (32) is
completely known, since ω̃ and ν̇ are available from (13) and (28)
respectively. As a result, we conclude that τ is bounded if Ṫ , ωd
and ω̇d are bounded.
Using the above boundedness results, it is clear that Ḟ and F̈ are

bounded, and limt→∞ F = p̈d, limt→∞ Ḟ = p(3)d and limt→∞ F̈ =
p(4)d , where p(3)d and p(4)d are, respectively, the third and fourth
derivatives of the desired trajectory, which are assumed to be
bounded. Hence, using (6), (9) and (25), with (10), (A.2), (A.3) and
Assumption 1, we can conclude that Ṫ , ωd and ω̇d are bounded,
and this ends the proof. �

5. Simulation results

Simulation results are presented to illustrate the effectiveness
of the proposed control scheme. Using SIMULINK, we consider a
VTOL UAV modeled as a rigid body of massm = 3 kg and with in-
ertiamatrix If = diag(col(0.13, 0.13, 0.04)) kg m2. The simulation
parameters are illustrated in Table 1. The desired trajectory is given
by pd(t)T = (10 cos(0.1t + 2), 10 sin(0.1t + 2.4), t)m. Note that
the controller gains are selected to satisfy case (c) of Assumption 1
and condition (36). The obtained results are illustrated in Figs. 2–6.
Figs. 2 and 3 illustrate the three components of the position and

velocity tracking errors. Fig. 4 shows the attitude tracking error
and Fig. 5 illustrates the desired and actual angular velocity of the
aircraft. It is clear from these figures that asymptotic convergence
to zero is guaranteed after few seconds. To illustrate the vehicle’s
position tracking, a 3-D plot of the vehicle’s position with the de-
sired trajectory is given in Fig. 6, as well as the projections of the
curves in the different planes.
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Fig. 2. Position tracking error, with e = (e1, e2, e3)T .

Fig. 3. Velocity tracking error, with ṽ = (ṽ1, ṽ2, ṽ3)T .

Fig. 4. Attitude tracking error, with q̃ = (q̃1, q̃2, q̃3)T .

6. Concluding remarks

We addressed the trajectory tracking problem of a class
of under-actuated systems, VTOL-UAVs, without linear-velocity
measurements. A separate translational and rotational control de-
sign was presented, and global asymptotic stability of the overall
closed loop system was shown. At the first stage of the control de-
sign, the requirement of the linear velocity has been obviated with
the introduction of new control variables reshaping the desired
trajectory during the transient. In the second stage of the control
design, a nonlinear observer has been derived and used to design
a linear-velocity-free control torque guaranteeing the tracking of
the desired attitude derived at the first stage of the control design.
To the best of our knowledge, the proposed linear-velocity-free

control scheme is a new result providing global asymptotic track-
ing for the class of under-actuated systems under consideration.
Furthermore, the proposed control strategy can be easily modi-
fied to solve the trajectory tracking problem of VTOL-UAVs in the
case where the linear-velocity is available for feedback, and global
results can be shown. This result constitutes on its own right an
Fig. 5. Elements of the aircraft angular velocity and the desired angular velocity
vectors, with ωT = (ω1,ω2,ω3) and ωTd = (ω

1
d,ω

2
d,ω

3
d).

Fig. 6. 3D plot of the VTOL vehicle trajectory (blue) with the desired trajectory
(red). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

interesting contribution since global results are difficult to obtain
for this class of under-actuated systems. In the case where the
linear velocity is available, a global result has been obtained in
Frazzoli et al. (2000) for the trajectory tracking problem, where the
control is guaranteed to be smooth provided that the rotation an-
gle of the attitude error is different fromπ/2. Also, the thrust input
is defined as a solution to a second order differential equation. The
authors in Frazzoli et al. (2000), first determine an optimal desired
thrust input and desired orientation, then using the backstepping
procedure, a thrust and input torque are determined. A conceptu-
ally similar approach is considered in Hamel et al. (2002) to solve
the stabilization problem. The main difference between the pro-
posed approach and the work of Frazzoli et al. (2000) and Hamel
et al. (2002), besides the non-availability of the linear velocity, is
the adopted singularity-free attitude extraction method (in terms
of unit-quaternion) as well as the a priori boundedness of the
virtual translational control input and the system’s thrust.
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Appendix

We derive in the following the expressions of the variables
91 and 92 in Eq. (25). From (9), we can write ω̇d = 4̇(F)Ḟ +
4(F)F̈, where 4̇(F) can be directly obtained from Ḟ with γ̇1 =
1
γ1

(
µ1 µ2 −(g − µ3)

)
Ḟ. In view of the design (21), we have

Ḟ = p(3)d − kθ1h(θ)θ̇− kθ2h(θ̇)θ̈

F̈ = p(4)d − kθ1 h̄(θ)θ̇− (kθ1h(θ)+ kθ2 h̄(θ̇))θ̈
− kθ2h(θ̇){(kd + kp)z− kdψ̇ − kθ1h(θ)θ̇− kθ2h(θ̇)θ̈} (A.1)

where p(3)d and p(4)d are, respectively, the third and fourth deriva-
tives of the desired trajectory, and for u = (u1, u2, u3)T ∈ R3, we
have defined h(u) = diag(v11, v

2
1, v

3
1) and h̄(u) = diag(v

1
2, v

2
2, v

3
2),

with vi1 = (1−tanh
2(ui)) and vi2 = (−2u̇i(1−tanh

2(ui)) tanh(ui)),
for i = 1, 2, 3, and ‘‘diag’’ is the diagonal matrix operator. Hence
we can rewrite ω̇d as in (25) with

91 = 4̇(F)Ḟ+4(F){p(4)d − kθ1 h̄(θ)θ̇
− kθ2h(θ̇)(−kdψ̇ − kθ1h(θ)θ̇− kθ2h(θ̇)θ̈)
− (kθ1h(θ)+ kθ2 h̄(θ̇j))θ̈}, (A.2)

92 = kθ2(kp + kd)4(F)h(θ̇). (A.3)
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