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Abstract— In this paper, we show that adaptive control can be
traded off against time-varying static state feedback (TVSSF)
for a certain class of uncertain nonlinear systems. More
precisely, we propose a systematic design procedure leading
to TVSSF guaranteeing asymptotic (exponential) stability. Our
approach, coined Direct time injection in the loop (DTIL), allows
to remove the need for the integral action which is known
to be instrumental in classical adaptive control design. The
time-varying functions involved in the control law, allow an
explicit selection of the convergence rates. Hence, exponential
stability can be achieved without any requirement such as
the persistency of excitation (PE). Interestingly, under certain
conditions, the unknown parameters can be identified through
a static function of the states and time.

I. INTRODUCTION

Adaptive control is one of the most studied techniques in

control theory, with a long-lasting history, that has been and

still is fascinating the control community (see, for instance,

[3], [4], [5], [6], [8], [10], [13], [14], [15]). We believe that it

is fair to say that, adaptive control sparked the development

of important and powerful tools in control theory, that would

probably not have seen the day without the theoretical and

practical challenges that this technique brought to life.

Roughly speaking, among the rich literature related to adap-

tive control, one can distinguish the following two major

classes. The first class is known as identifier-based adaptive

control, relying on a parameterized control input and an

identifier or adaptation law 1. The second class is a non-

identifier based high-gain universal adaptive control, which

does not rely on any parametric identification, but rather uses

the fundamental principle of the high gain, where the gain

is obtained adaptively (see for instance, [3], [7], [9], [16]).

A common feature of the above mentioned techniques, which

is the essence of adaptive control, is the use of a dynamic

adaptation law or a search function, which is usually an

integral action of the output and/or the states2. It is well

known that, classical adaptive control laws lead generally to

asymptotic stability. Exponential stability (which is the most

sought-for property in practical control systems) is rarely

achievable even under the persistency of excitation property.

It is also well known that exponential stability is a desirable

feature, since exponentially stable systems, beside their high
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1In this class there are several variants such as the classical certainty

equivalence based approaches ( see, for instance, [4], [13], [8]), as well as
non-certainty equivalence approaches such as [10].

2In some cases, such as in [10], the parametric adaption uses an additional
state-dependant nonlinear term on top of the integral action

convergence rates, exhibit a certain tolerance to modeling

uncertainties, noise and slow parameters variations [1], ([13],

Section 5.3).

In this paper, we present a new adaptive control point of

view, where we remove the classical integral-based identifier

through a direct time injection in the loop, leading to time-

varying static state feedback control laws, with controllable

convergence rates (i.e., the desired convergence rate can be

explicitly specified through the time-functions involved in the

feedback). Of course, this approach comes with its theoretical

and practical limitations that will be partially addressed in

this paper, but at least it sets (in our opinion) the foundation

for a new perspective in the adaptive control field.

It is worth mentioning that smooth time-varying controllers

have been extensively used in the literature related to non-

holonomic systems (see, for instance, [11], [12]) since the

celebrated paper [2] on the non-existence of smooth time-

invariant state feedback for the stabilization of driftless

nonlinear systems. However, to the best of our knowledge,

TVSSF has not been applied in our present paper’s context

of adaptive control design.

To motivate our contribution, let us take a look at the

following scalar system:

ẋ = θx + u (1)

where θ is constant and unknown. It is well known that the

following certainty equivalence based adaptive controller

u(x, θ̂ ) = −k1x− θ̂x
˙̂θ = k2x2,

(2)

with k1,k2 > 0, guarantees global asymptotic stability (GAS)

of the equilibrium point x = 0.

Roughly speaking, the integral term θ̂ =

∫ t

0
k2x2(τ)dτ is

designed to search for the appropriate value (which is equal

to θ if the PE condition is satisfied), that will generate a

negative closed loop gain

(

−k1 + θ −

∫ t

0
k2x2(τ)dτ

)

.

Now, a question that may arise is whether it is possible

to find an explicit function of the state and time, η(x,t),
(without integral action) that does a similar job as the integral

term θ̂ in terms of searching for the appropriate closed

loop gain. In other words, can we find a TVSSF u(x,t) =
−k1x−η(x,t)x guaranteeing global asymptotic (exponential)

stability of the equilibrium point x = 0. The answer to this

question is yes (for this particular case and for a certain class

of nonlinear systems). One solution to this problem (which

is obtained through a constructive procedure that will be

detailed later) is given by the following TVSSF guaranteeing

Joint 48th IEEE Conference on Decision and Control and
28th Chinese Control Conference
Shanghai, P.R. China, December 16-18, 2009

ThA10.3

978-1-4244-3872-3/09/$25.00 ©2009 IEEE 3477



global exponential stability

u = −k1(t)x−η(x,t)x, (3)

with η(x,t) =
1

2
k2(t)x

2, k2(t) =

∫ t

0
δ (τ)dτ , k1(t) =

δ (t)
2k2(t) ,

where δ (t) > 1
2

for all t ∈ R≥0. One simple choice, for

the function δ is δ (t) = 2αβ e2αt , with αβ > 1
4
, leading to

k1 = α > 0 and k2 = β e2αt .

Interestingly, under the control law (3), we have ˙̃θ =−k2x2θ̃ ,

with θ̃ = θ −η . Therefore, the function η(x,t) plays the role

of an identifier and converges to the unknown parameter

θ if θ > 0. The restriction (θ > 0) is due to the fact that

η(x,t) ≥ 0 in this particular case.

Another interesting feature of the TVSSF (3), that will

become clear later, is that it achieves global exponential

stability regardless of the richness of the signal x.

In this paper, we show the feasibility of our approach for

a class of uncertain nonlinear systems, and through some

simple academic examples we show that our controllers

outperform (in some cases) the classical adaptive control

laws. Unfortunately, it is not clear at this point in time

whether our approach could be generalized to a broader

class of multidimensional nonlinear systems with unmatched

uncertainties.

II. A CLASS OF UNCERTAIN NONLINEAR POLYNOMIAL

SYSTEMS

First, to illustrate our approach, we consider the following

polynomial system

ẋ = θxn + u, (4)

where n is a non-negative integer, x ∈ R is the state, u ∈ R

the control input. The parameter θ is constant and unknown.

A. Control design

Consider the following Lyapunov function candidate

V (x, θ̃ ) =
1

2
x2 +

1

2
θ̃ 2, (5)

where θ̃ = θ −η(x,t). The time-derivative of (5), in view of

(4), is given by

V̇ = x(θxn + u)+ θ̃

(

−
∂η

∂x
(θxn + u)−

∂η

∂ t

)

(6)

At this point, we proceed as in the certainty equivalence

based adaptive control, i.e., set the control input to gener-

ate a negative quadratic term (−k1x2) and a residual term

depending on θ̃ , namely (θ̃xn+1). To this end, let

u = −k1(t)x−η(x,t)xn, (7)

which leads to

V̇ = −k1x2 + θ̃xn+1 + θ̃

(

−
∂η

∂x
(θ̃xn − k1x)−

∂η

∂ t

)

(8)

In classical certainty equivalence based adaptive control,

the adaptive law is designed to cancel out the unwanted

cross term θ̃xn+1. In our approach, we don’t cancel it, we

rather dominate it with
∂η
∂x

to generate a positive quadratic

polynomial in terms of θ̃ and x, leading to V̇ ≤ 0. The term
∂η
∂ t

will be designed to eliminate the unwanted term k1
∂η
∂x

x.

In fact, picking
∂η

∂x
= k2(t)x

n, (9)

∂η

∂ t
= k1(t)k2(t)x

n+1, (10)

the Lyapunov time-derivative (8) becomes

V̇ = −x2(k2z2 − z+ k1) (11)

with z = θ̃xn−1. Note that k2z2 − z + k1 > 0 provided that

k2 > 0 and k1k2 > 1
4
.

Now, from (9), one can find a solution for η as follows:

η(x,t) =
1

n + 1
k2(t)x

n+1. (12)

To satisfy (10), the following condition must hold

dk2(t)

dt
= (n + 1)k1(t)k2(t). (13)

B. Stability analysis

Case n ≥ 1:

Let us assume that k1(t) > 0 and k2(t) > 1
4k1(t) for all t ∈

R≥0. With this choice, we make sure that k2z2 − z + k1 >
0. It is clear that (11) is negative semi-definite, and hence,

one can conclude that x and θ̃ are bounded, from which the

boundedness of η(x,t) follows. Now, let us show that V̇ is

uniformly continuous as long as k1(t) and k̇1(t) are bounded

(regardless of k2(t) which might be unbounded). To this end,

let us evaluate V̈ .

V̈ = −k̇1x2 +(θ̃xn − k1x)(−2k1x +(n + 1)θ̃xn

−2nk2θ̃ 2x2n−1)− k2θ̃x3n+1 + 2k2
2θ̃ 2x4n.

(14)

Since x, θ̃ , and k2xn+1 are bounded, it is clear that V̈ is

bounded as long as k1(t) and k̇1(t) are bounded.

Finally, invoking Barbalat Lemma, one can conclude that

x(t) goes to zero when t tends to infinity.

Case n = 0:

In the case where n = 0, i.e., ẋ = θ +u, the Lyapunov time-

derivative (11) becomes

V̇ = −k1x2 − k2θ̃ 2 + θ̃x, (15)

which is negative definite if k1(t) > 0 and k2(t)> 1
4k1(t) for all

t ∈ R≥0. Therefore, it is clear that x and η(x,t) are bounded.

In this case, to prove the convergence of x(t) to zero, it is not

suitable to use the sufficient condition for uniform continuity

in terms of the boundedness of V̈ , since it requires to the

boundedness of both k1(t) and k2(t). However, one can look

at the closed loop system which is given by
[

ẋ
˙̃θ

]

=

[

−k1(t) 1

0 −k2(t)

][

x

θ̃

]

(16)

from which, one can conclude that θ̃ (t) = θ̃ (0)e−
∫ t

0 k2(τ)dτ .

Therefore, it is clear that θ̃ and x(t) converge exponentially

to zero, if k1(t) and k2(t) satisfy the following condition
∫ t+T

t
ki(τ)dτ ≥ αT, ∀t ≥ 0 (17)

for some α > 0 and T > 0, i = 1,2.
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C. Convergence rates

Since η(x,t) is bounded, it is clear that there exists

a positive constant c such that |k2(t)x
n+1(t)| ≤ c. Hence,

|xn+1(t)| ≤ c
k2(t)

. Consequently, one can achieve any conver-

gence rate through the choice of k2(t).
Remark 1: There are numerous possibilities with regards

to the choice of k1 and k2. One of them consists of picking

k2(t) = α
(n+1)k1(t)

= αt + γ , with α > n+1
4

and γ > 0. This

leads to the following TVSSF

u = −
α

(n + 1)(αt + γ)
x−

1

n + 1
(αt + γ)x2n+1, (18)

with α > n+1
4

and γ > 0, making the equilibrium point x = 0

GAS. The convergence rates achieved with this choice are

low, for |x(t)| ≤ c(αt + γ)−1/(n+1), c > 0. In the case n = 0,

this choice is not guaranteed to work since (17) is violated.

A second possibility consists of picking k1(t) = α > 0, k2 =
β e(n+1)αt , with β > 1

4α . This choice results in the following

TVSSF

u = −αx−β e(n+1)αtx2n+1, (19)

making the equilibrium point x = 0 globally exponential sta-

ble (GES). In this case we achieve exponential convergence

rate as |x(t)| ≤ c
β e−αt , c > 0. In this case, all the required

conditions on k1 and k2 are satisfied including (17).

III. A MORE GENERAL CASE

Now, let us consider the following system

ẋ = θξ (x)+ u, (20)

where θ is an unknown constant parameter, and ξ : R→R is

locally Lipschitz, and well defined over the domain Dξ ⊆ R

containing the origin.

Our result is stated in the following theorem:

Theorem 1: Consider system (20), under the following

TVSSF

u(x,t) = −k1(t)γ(x)−η (ψ(x),t)ξ (x) (21)

with

η (ψ(x),t) =
k2(t)

p + 1
ψ p+1(x) (22)

where p is a non-negative integer. Let k1(t) be a positive

bounded function of time with a bounded first time-derivative

(in the case p ≥ 1). The function k2(t) is solution of k̇2(t) =
(p+1)k1(t)k2(t), with k1(t)k2(t) > 1

4
. In the case p = 0, let

k1(t) and k2(t) satisfy (17). The scalar function ψ : Dψ →
R is continuously differentiable over the domain Dψ ⊆ Dξ

containing the origin, and satisfies

∂ψ(x)

∂x
ξ (x) = ψ p(x), (23)

as well as the condition (ψ(x) = 0 ⇒ x = 0). The scalar

function γ : Dγ → R is given by

γ(x) =
ξ (x)

ψ p−1(x)
(24)

and is assumed to be well defined over the domain Dγ ⊆ Dξ

containing the origin. Then,

i) x = 0 is asymptotically stable.

ii) There exists a positive constant c, such that |ψ(x)| ≤
c(k2(t))

−1/(p+1).

iii) If p is even (including p = 0), ψ(−x) 6= ψ(x), and the

following PE condition is satisfied
∫ t+T

t
k2(τ)ψ2p(x(τ))dτ ≥ αT, ∀t ≥ 0 (25)

for some α > 0 and T > 0, then lim
t→∞

η(x,t) = θ .

iv) If p is odd, and (25) is satisfied, then lim
t→∞

η(x,t) = θ if

θ > 0.

Note that in the case where Dψ ∩ Dγ ∩ Dξ = R, and

lim
|x|→∞

ψ2(x) = ∞ (radially unbounded), the results are global.

Proof: Let us consider the following Lyapunov function

candidate

V (x, θ̃ ) =
1

2
ψ2(x)+

1

2
θ̃ 2, (26)

where θ̃ = θ −η(ψ ,t). The time-derivative of (26), in view

of (20), is given by

V̇ = ψ
∂ψ

∂x
(ξ θ + u)+ θ̃

(

−
∂η

∂ψ

∂ψ

∂x
(ξ θ + u)−

∂η

∂ t

)

, (27)

which, under the control law (21), becomes

V̇ = −k1ψ
∂ψ

∂x
γ + ψ

∂ψ

∂x
ξ θ̃

+θ̃

(

−
∂η

∂ψ

∂ψ

∂x
(ξ θ̃ − k1γ)−

∂η

∂ t

)

.
(28)

Taking
∂η(ψ ,t)

∂ψ
= k2(t)ψ

p, (29)

∂η(ψ ,t)

∂ t
= k1(t)k2(t)ψ

p+1, (30)

and using (23) and (24), and the fact that
∂ψ
∂x

γ = ψ , (28)

becomes

V̇ = −ψ2(x)(k1(t)− z(x,t)+ k2(t)z
2(x,t)), (31)

with z(x,t) = ψ p−1(x)θ̃ .

Note that k1(t)−z(x,t)+k2(t)z
2(x,t) > 0 as long as k1(t) > 0

and 4k1(t)k2(t) > 1. The function η(x,t) given in (22) is

obtained from (29) and (30) under the constraint k̇2(t) =
(p + 1)k1(t)k2(t).
Since V̇ is negative semi-definite, one can conclude that

V (x, θ̃ ) is non-increasing and hence ψ2(x) ≤ ψ2(x) +
θ̃ 2(x,t) ≤ ψ2(x(0)) + θ̃ 2(x(0),0). Therefore, there exists a

compact domain D0 ⊆ Dψ ∩Dγ containing the origin, such

that all trajectories starting in D0 remain in this domain for

all subsequent times. To show that lim
t→∞

ψ(x(t)) = 0, we need

to show that V̇ is uniformly continuous.

The second time-derivative of (26) is given by

V̈ = (θ̃ψ p − k1ψ)(−2k1ψ −2pk2ψ2p−1θ̃ 2

+(p + 1)θ̃ψ p)− k̇1ψ2

−k2θ̃ψ3p+1 + 2k2
2θ̃ 2ψ4p.

(32)
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Since ψ(x) and k2(t)ψ
p+1 are bounded, from (32), one can

conclude that V̈ is bounded as long as k1(t) and k̇1(t) are

bounded. This implies that V̇ is uniformly continuous and

hence V̇ (x,t)→ 0 as t goes to infinity, which guarantees that

lim
t→∞

ψ(x(t)) = 0 and consequently lim
t→∞

x(t) = 0.

In the case where p = 0, we take another route for the proof.

In fact, the closed loop system is given by
[

ψ̇
˙̃θ

]

=

[

−k1 ψ p

0 −k2ψ2p

][

ψ
θ̃

]

(33)

which, in the case p = 0, leads to θ̃ (t) = θ̃ (0)e−
∫ t

0 k2(τ)dτ .

Therefore, it is clear that θ̃ (and consequently ψ(x)) converge

exponentially to zero, if k1(t) and k2(t) satisfy condition (17).

Since k2(t)ψ
p+1 is bounded, it is clear that there exists a

positive constant c such that |k2(t)ψ
p+1(t)| ≤ c, that is, |ψ | ≤

ck
−1
p+1

2 .

Now, to prove the last two claims, we consider the closed

loop system (33), from which one can clearly see that ˙̃θ =
−k2ψ2pθ̃ , hence the convergence of θ̃ to zero is guaranteed

under condition (25). However, there is an obstruction to the

convergence of η(ψ(x),t) to θ in the case where p is odd

since η(x,t) cannot take negative values, an hence cannot

converge to a negative parameter θ .

Remark 2: It is clear that the control law proposed in

Section II for the polynomial system (4), is a particular case

of Theorem 1, with ξ (x) = xn. In this case, setting p = n,

we retrieve ψ(x) = x, γ(x) = x and η(x,t) = 1
n+1

k2(t)x
n+1.

Since ψ(x)2 = x2 is radially unbounded, in this case x = 0

is GAS.

Remark 3: One simple solution that satisfies all the re-

quirements on k1 and k2 in Theorem 1, is given by k1(t) =
α > 0, k2 = β e(p+1)αt, with β > 1

4α . This choice leads to

exponential stability as |x(t)| ≤ c
β e−αt , c > 0.

Remark 4: In practice, the system model might be inac-

curate due to the presence of measurement noise, external

disturbances and unmodeled dynamics, that might cause

η(x,t) to drift since the gain k2(t) is an increasing function

of time. Therefore, in practical applications, one can use

some of the robustification techniques commonly used in

classical adaptive control such as the dead-zone, by freezing

the function η(x,t) when an acceptable level of performance

is reached, and resetting the time t each time η(x,t) is turned

back on.

IV. EXAMPLES

In this section, we present some simple academic examples

to show the feasibility of our approach. In some cases, the

results obtained with the TVSSF, clearly outperform the

results obtained with the classical adaptive control approach.

However, in some situation, where the classical adaptive

control provides global asymptotic stability, our approach

provides only local exponential stability.

A. Example 1

Consider the following system

ẋ = θ + u, (34)

A straightforward application of Theorem 1, with p = 0,

leads to the following TVSSF scheme

u = −k1(t)x−η(x,t), (35)

η(x,t) = k2(t)x, (36)

with k1(t) = α > 0, k2 = β eαt and β > 1
4α . Note that k1 and

k2 satisfy (17). This choice results in the following control

law

u = −αx−β eαtx, (37)

making the equilibrium point (x = 0, θ̃ = 0) GES. In this

case, lim
t→∞

η(x,t) = θ .

B. Example 2

Consider system (1), given in the Introduction. Applying

Theorem 1, with p = 1, we obtain the following TVSSF

scheme

u = −k1(t)x−η(x,t)x, (38)

η(x,t) =
1

2
k2(t)x

2, (39)

with k1(t) = α > 0, k2 = β e2αt and β > 1
4α . This choice

results in the following control law

u = −αx−
β

2
e2αtx3, (40)

which makes x = 0 GES, since |x| ≤ c
β e−αt , c > 0. Further-

more, if (25) is satisfied with ψ(x) = x, and θ > 0 then

lim
t→∞

1

2
k2(t)x(t)

2 = θ .

C. Example 3

Consider the following system

ẋ = θx2 + u. (41)

Again, a straightforward application of Theorem 1, with p =
2, leads to the following TVSSF scheme

u = −k1(t)x−η(x,t)x2, (42)

η(x,t) =
1

3
k2(t)x

3, (43)

with k1(t) = α > 0, k2 = β e3αt and β > 1
4α . This choice

results in the following control law

u = −αx−
β

3
e3αtx5, (44)

which makes x = 0 GES, since |x| ≤ c
β e−αt , c > 0.

Furthermore, if (25) is satisfied with ψ(x) = x, then

lim
t→∞

1

3
k2(t)x(t)

3 = θ . To illustrate the performance of our

approach, we simulated (41) under the control law (44), with

x(0) = 1, θ = 5, k1 = 1 and β = 1. We also simulated (41)

under the following classical adaptive control law

u(x, θ̂ ) = −k1x− θ̂x2

˙̂θ = k2x3,
(45)

with k1 = k2 = 1 and θ̂ (0) = 0. The results are shown in

Fig. 1, Fig. 2 and Fig. 3, where we can clearly see that

the parameter estimate θ̂ of the classical adaptive control

does not converge to the real parameter θ = 5, whereas the

parameter estimate η of the TVSSF does.
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Fig. 1. Example 3: State variable vs. time for the classical adaptive control
and the TVSSF
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Fig. 2. Example 3: Parameter estimate vs. time for the classical adaptive
control and the TVSSF

D. Example 4

Consider the system

ẋ = θ sin2 x + u. (46)

In this example ξ (x) = sin2 x. To find ψ(x), we set p = 2,

and solve
∂ψ

∂x
sin2 x = ψ2, (47)

that is
∫

dψ

ψ2
=

∫

dx

sin2 x
, (48)

which leads to ψ(x) = tanx. The function γ(x) is given by

γ(x) = ξ (x)
ψ(x)

= sinxcosx. Note that ψ is well defined over the

domain Dψ = (− π
2
, π

2
), and γ is well defined over R. The

TVSSF is given by

u(x,t) = −k1(t)sinxcosx−
k2(t)

3
tan3 xsin2 x, (49)
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Fig. 3. Example 3: Control input vs. time for the classical adaptive control
and the TVSSF

with k1(t) = α > 0, k2 = β e3αt and β > 1
4α . The equilibrium

point x = 0 is locally exponentially stable and an estimate of

the domain of attraction is given by D0 = {x ∈ R | ψ(x)2 ≤
σ} for some finite σ > 0. We can show that D0 is actually

(− π
2
, π

2
).

We simulated (46) under the control law (49), with x(0) = 1,

θ = 10, k1 = 1 and β = 1. We also simulated (46) under the

following classical adaptive control law

u(x, θ̂ ) = −k1x− θ̂ sin2 x
˙̂θ = k2xsin2 x,

(50)

with k1 = k2 = 1 and θ̂ (0) = 0. The results are shown in

Fig. 4, Fig. 5 and Fig. 6, where we can clearly see that

the parameter estimate θ̂ of the classical adaptive control

does not converge to the real parameter θ = 10, whereas the

parameter estimate η of the TVSSF does.
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Fig. 4. Example 4: State variable vs. time for the classical adaptive control
and the TVSSF
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Fig. 5. Example 4: Parameter estimate vs. time for the classical adaptive
control and the TVSSF
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Fig. 6. Example 4: Control input vs. time for the classical adaptive control
and the TVSSF

V. CONCLUSION

In this work it is shown that time-varying static state

feedback could be a possible alternative to adaptive control

for a certain class of uncertain nonlinear systems. In fact,

aside from its practical implication, being able to trade off the

classical integral action which is the essence of adaptive con-

trol, against the DTIL is an interesting conceptual fact, which

leads to a new point of view of adaptive control. Interestingly,

the TVSSF resulting from the proposed approach allows the

designer to specify the desirable convergence rates regardless

of the frequency content (richness) of the signals. Moreover,

in certain situations where classical adaptive control fails

to identify the unknown parameters, the DTIL approach

succeeds. Finally, on the negative side, unfortunately the

class of systems for which the DTIL approach is applicable,

seems to be limited at this point in time. In some cases,

where classical adaptive control leads to global asymptotic

stability, the DTIL provides only local exponential stability,

and sometimes even fails to provide local results. Finally,

since system robustness has not been addressed, the results

presented here should be regarded as an initial conceptual

contribution to the design of static adaptive controllers.

Since the present control strategy involves an explicit high

gain in the loop (k2(t) is an increasing function of time),

robustness is likely to be a particularly interesting issue. On

the ambitious side, one might think of the extension of this

work to a wider class of nonlinear uncertain systems with

non-matched uncertainties, as well as the design of time-

varying static state observers.
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