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Abstract— This paper considers the formation control prob-
lem of a group of Vertical Take-Off and Landing (VTOL)
Unmanned Aerial Vehicles (UAV) in SE(3). The vehicles among
the team are required to track a reference velocity signal and
maintain a desired formation. For each vehicle in the formation,
we propose a design methodology based on the separation
of the translational and the rotational dynamics, using the
desired orientation, in terms of the unit-quaternion, as an
intermediate variable to achieve our position tracking objective.
Global asymptotic stability result of the closed loop system is
established using the Lyapunov method. The communication
topology between formation team members is assumed to be
fixed and bidirectional. Our control scheme can also be applied
to the position control of a single VTOL-UAV and constitute, in
its own right, an interesting contribution since global results are
seldom achieved in the available literature. Finally, simulation
results of a scenario of four VTOL-UAVs in a formation are
provided to show the effectiveness of the proposed control
scheme.

I. INTRODUCTION

Cooperative control of mobile agents has received an

extensive interest among the research community in the past

years. This interest is motivated by the idea that through

efficient coordination many inexpensive, simple vehicles can

achieve better performance at lower cost than a single mono-

lithic vehicle. Many interesting results have been reported in

the literature, see for instance, [1]-[4]. These works mainly

deal with simple dynamic models such as linear systems and

single or double integrators. However, much work remains

to be done when it comes to dealing with complex vehicle

dynamics.

More recently, a growing interest in unmanned aerial

vehicles (UAVs) has been shown due to their potential

applications in areas such as high buildings and monuments

investigation, search and rescue missions, and surveillance.

An important class of UAVs are the Vertical Take-Off and

Landing (VTOL) vehicles, which are suitable for broad range

of applications requiring stationary flights. These vehicles

are generally under-actuated i.e., equipped with fewer ac-

tuators than degrees-of-freedom. Several control schemes

have been proposed for the attitude stabilization of rigid

bodies including VTOL vehicles, see for instance, [5], [6].

The attitude synchronization of rigid bodies in space has

also been extensively dealt with in the recent years, see

for instance [7], [8] and references therein. On the other
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hand, the position control of underactuated VTOL vehicles in

SE(3) is more challenging than the attitude control problem

since global asymptotic stability is difficult to achieve for

this class of mechanical systems. Several attempts have been

reported in the literature, such as the feedback linearization

method in [9], the backstepping approach in [10], the sliding

mode technique in [11], and several other propositions have

been developed [12], [13], [14]. The authors in [10] and [15]

propose a design strategy for the stabilization of hovering

VTOLs, and a hierarchical controller composed of a high

level position control and a low level attitude control is

presented. The proposed idea consists in using the thrust and

the vehicle’s orientation as control variables to stabilize the

vehicle’s position, and then applying a classical backstepping

procedure to determine torque-inputs capable of stabilizing

the requested orientation. In [16], a similar control archi-

tecture is applied to solve the trajectory tracking problem,

where the angular velocity is used as an intermediate variable

instead of the orientation, and a high gain controller is

used to determine the torque signals capable of tracking

the requested angular velocity. The difficulty with the latter

design is to prove the stability of the global cascaded system.

More recently, the authors in [17] proposed a backstepping

design for the trajectory tracking problem of a class of

underactuated systems, including VTOL vehicles, where the

states are guaranteed to converge to a ball near the origin.

In this paper, we consider a formation of a group of

VTOL-UAVs, and propose a control scheme such that all

vehicles track a reference velocity signal while maintaining

a prescribed formation pattern. For this purpose, we exploit

the cascaded nature of the system and first design a control

input for the translational dynamics for each vehicle, from

which we can extract the magnitude and direction of the

necessary thrust input for each vehicle. The direction of the

thrust will then define a time-varying desired attitude for

each aerial vehicle to be tracked by the rotational dynamics

with an appropriate design of the torque input. The novelty

in our work, with respect to the existing literature, is the

use of a singularity-free unit-quaternion for the orientation

representation. Indeed, we make use of an extraction method

for the desired direction of the vehicle’s thrust, which

provides always a realizable solution under the condition

that the translational control input is upper bounded by a

well defined quantity. It is clear that in a formation control

design, each vehicle uses information from its neighbors’ to

maintain a prescribed formation, and it is not always possible

to maintain an upper bound of the control if the number of

neighbors is large. The proposed formation control law is

guaranteed to be upper bounded by a prescribed quantity
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regardless of the number of neighbors of each vehicle. It

is important to mention that the proposed formation control

scheme is applicable to solve the trajectory tracking problem

of VTOL-UAVs, when the number of vehicles in the team

is one, and the same results apply. This constitutes a new

contribution to the tracking problem of this type of UAVs.

II. SYSTEM MODEL AND PROBLEM

FORMULATION

In this work, we consider n-VTOL aircraft modeled as

rigid-bodies. The equations of motion of the jth aircraft are

described by

(Σ j) :



















(Σ1 j
) :

{

ṗ j = v j,

v̇ j = gê3 − Tj

m j
R(q j)

T ê3,

(Σ2 j
) :

{

q̇ j = 1
2
q j ⊙ ω̄ j,

I f j
ω̇ j = τ j −S(ω j)I f j

ω j,

(1)

where p j and v j denote, respectively, the position and veloc-

ity of the center of gravity of the jth vehicle with respect to

the inertial frame, Fi , {ê1, ê2, ê3}, expressed in the inertial

frame Fi. m j and g are the vehicle mass and the gravitational

acceleration. The vector ω̄ j = (ωT
j ,0)T , and ω j denotes the

angular velocity of the jth aerial vehicle expressed in the

jth body-fixed frame F j , {ê1 j, ê2 j, ê3 j}. I f j
∈ R

3×3 is the

symmetric positive definite constant inertia matrix of the jth

vehicle with respect to F j. The scalar Tj and the vector τ j

represent respectively the magnitude of the thrust applied to

the jth vehicle in the direction of ê3 j, and the external torque

applied to the system expressed in F j . The unit quaternion

q j = (qT
j ,η j)

T , composed of a vector component q j ∈ R
3

and a scalar component η j ∈ R, represents the orientation

of the vehicle’s body frame, F j, with respect to the inertial

frame, Fi, and are subject to the constraint

qT
j q j + η2

j = 1 (2)

The rotation matrix related to the unit-quaternion q j, that

brings the inertial frame into the body frame, can be obtained

through the Rodriguez formula as

R(q j) = (η2
j −qT

j q j)I3 + 2q jq
T
j −2η jS(q j) (3)

where I3 is the 3-by-3 identity matrix and the matrix S(x) is

the skew-symmetric matrix such that S(x)V = x×V for any

vectors x ∈ R
3 and V ∈ R

3. The quaternion multiplication

between two unit quaternion, q = (qT ,η) and p = (pT ,ε), is

defined by the following non-commutative operation; q⊙p =
(

η p + εq + S(q)p , ηε −qT p
)

. The inverse or conjugate of

a unit quaternion is defined by, q−1
j = (−qT

j ,η j)
T , with the

quaternion identity given by (0,0,0,1)T , [18].

Our objective is to design a thrust and torque inputs for

each VTOL vehicle in the formation to guarantee that all ve-

hicles follow a reference velocity and maintain a prescribed

formation, i.e., maintain fixed relative distances between

neighbors in the team, where the communication topology

between vehicles is assumed to be fixed and undirected. More

formally, our control objective is to guarantee;

v j(t) → vd(t) and p j − pk → δ jk (4)

where the vector δ jk defines the desired position offset

between the jth and kth aircraft, and satisfies δ jk = −δk j.

Also, we assume that the reference velocity vd(t) is bounded

and is available to all vehicles, and v̇d(t), v̈d(t) and v
(3)
d (t)

are bounded. We define the velocity tracking error for each

aircraft as

ṽ j = v j − vd (5)

With this definition, velocity tracking is achieved if ṽ j → 0.

III. CONTROL DESIGN PROCEDURE

The main idea in our work is to exploit the cascaded

nature of the system and first design an intermediary control

input for the translational dynamics for each aircraft, from

which we can extract the magnitude and direction of the

necessary thrust input for each vehicle. The magnitude of the

thrust Tj(t) will be the input to the translational dynamics,

and its direction will define a time-varying desired attitude

for each aerial vehicle, namely qd j
(t), to be tracked by the

rotational dynamics with an appropriate design of the torque

input for each subsystem (Σ2 j
). In this section, we will

present an extraction procedure of the thrust magnitude and

direction for each VTOL vehicle in the formation using the

unit quaternion representation of the attitude. We can rewrite

the second equation of subsystem (Σ1 j
) as

v̇ j = Fj −
Tj

m j

(

R(q j)
T −R(qd j

)T
)

ê3 (6)

Fj = gê3 −
Tj

m j

R(qd j
)T ê3 (7)

where the variable Fj is the intermediary control input to

the translational dynamics. As it is clear that (7) can have

multiple solutions for the thrust magnitude and direction,

the following Lemma [19] gives one possible extraction

that is free from singularities if the control input satisfies

some conditions. Since this procedure applies for all VTOL

vehicles in the formation, we will omit the subscript “ j” in

the following result for clarity of presentation.

Lemma 1: [19]

Consider equation (7) and let the vector F , (µ1,µ2,µ3)
T .

It is always possible to extract the thrust magnitude and

direction from (7) as

T = m
(

(g− µ3)
2 + µ2

1 + µ2
2

)1/2
(8)

qd =
m

2T ηd

(µ2,−µ1,0)T , ηd =

√

1

2
+

m(g− µ3)

2T
(9)

under the condition that the elements of F satisfy

(µ1,µ2,µ3) 6= (0,0,x), for x ≥ g (10)

In addition, we can write the desired angular velocity of each

aircraft in terms of the intermediary control, F , as

ωd = Ξ(F)Ḟ , (11)

Ξ(F) =
1

γ2
1 γ2

(

−µ1µ2 −µ2
2 + γ1γ2 µ2γ2

µ2
1 − γ1γ2 µ1µ2 −µ1γ2

µ2γ1 −µ1γ1 0

)

,
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with γ1 = (T/m) and γ2 = γ1 +(g− µ3).
Proof: Let qd = (qd1,qd2,qd3,ηd)

T . Using (2) and (3),

equation (7) is equivalent to




µ1

µ2

µ3



=





0

0

g



− T

m





2qd1qd3 + 2ηdqd2

2qd2qd3 −2ηdqd1

1−2(q2
d1 + q2

d2)



 (12)

from which, it is clear that there are multiple solutions for

the desired attitude qd , and hence for the thrust magnitude.

One possible solution can be obtained by fixing one of the

above variables. We consider that qd3 = 0, and take the sum

of the squares of the two first equations to obtain

µ2
1 + µ2

2 = 4
T 2

m2
η2

d (1−η2
d) (13)

from which one solution for ηd can be obtained as; η2
d =

m
2T

(

T
m

+
√

T 2

m2 − µ2
1 − µ2

2

)

, under the conditions that µ2
1 +

µ2
2 ≤ T 2

m2 , and T 6= 0. Also, from the last equation of (12)

and (2), we can write the expression of the thrust given in

(8), which is always positive. Note that with this expression

of the thrust, the condition; µ2
1 + µ2

2 ≤ T 2

m2 is always verified.

Hence, using (8) and exploiting the first two equations of

(12), we obtain the elements of the desired attitude vector

qd given in (9), under the conditions that ηd 6= 0 and T 6= 0.

We can see that T = 0 only if (µ1,µ2,µ3) = (0,0,g), and

ηd = 0 if T =−(g−µ3), which is only possible if; µ3 ≥ g and

µ2
1 + µ2

2 = 0. Finally, we can conclude that if the elements

of the control F satisfy condition (10), the solution (8)-(9)

always exist, and is singularity-free.

From the attitude kinematics, the desired angular velocity

is defined as, [18],

ωd = 2

(

ηdI3 + S(qd)
−qT

d

)T

q̇d , (14)

Hence, taking the time derivative of (9) and with simple

computation, we can write the expression of ωd in terms of

the elements of the intermediary control input as given in

(11) for each aircraft.

IV. FORMATION CONTROL

A. Intermediary control design:

We first consider the translational dynamics. In view

of system (Σ1 j) in (1) and equations (5)-(7), the velocity

tracking error dynamics can be written as

˙̃v j = Fj − v̇d −
Tj

m j

f (q j,qd j
) (15)

with f (q j,qd j
) =

(

R(q j)
T −R(qd j

)T
)

ê3. It can be seen

that (15) describes the dynamics of a linear system with a

nonlinear perturbation described by the term;
Tj

m j
f (q j,qd j

).

It is worth noticing that at this stage of control, this non-

linear perturbation term is completely unknown, and since

f (q j,qd j
) contains orthogonal rotation matrices, we know

that it is bounded if Tj is bounded.

In order to design an intermediary control Fj for each

aircraft that achieves our control objectives, we have to take

into consideration some important requirements. First, it is

important to note that for the extraction condition (10) to

be satisfied, the upper bound of the control input Fj must

be determined a priori. Since our objective is to design a

control action for each aircraft that guarantees a prescribed

formation of a group of VTOL UAVs, we will require

the implementation of a term containing some information,

mainly the position, of neighboring aircraft. It is clear that

if this term can be guaranteed to be bounded, using some

saturation functions for example, its upper bound will grow

with the number of neighboring vehicles. The challenge is

then to guarantee that the force control input Fj for each

aircraft can be upper bounded a priori regardless of the

number of neighboring aircraft.

The second requirement that we should consider can be

seen from the expression of ωd j
in (11), which suggests that

ω̇d j
is function of F̈j. Hence, in order to implement a trajec-

tory tracking attitude controller, that necessarily requires the

knowledge of ω̇d j
, we need to implement in each aircraft

the second derivatives of each signal used in the control

Fj. Therefore, if relative positions are implemented in the

intermediary control law, we will need the knowledge of

neighboring aircraft accelerations which are not available for

feedback. Finally, the last requirement that we should satisfy

is to design a bounded control law that guarantees global

stability results.

In order to achieve our control objective and overcome the

above mentioned problems, we introduce the following new

variables for the jth vehicle

ξ j = p j −θ j , z j = ṽ j − θ̇ j := ξ̇ j − vd (16)

for j = 1, ...,n, where θ j is a design variable to be determined

later. Note that the new variable θ j is introduced to modify

(during the transient) the desired trajectory to simplify the

control design. Once the tracking is achieved, the variable

θ j and its time derivative are forced to converge to zero, en-

suring hence the tracking of the original desired trajectories.

The translational error dynamics can then be written as

ż j = Fj −
Tj

m j

f (q j,qd j
)− θ̈ j − v̇d (17)

It is clear that if one is able to design a bounded control

Fj for each vehicle in the formation such that the signals z j,

(ξ j−ξk−δ jk), θ j and θ̇ j converge to zero, we will guarantee

that p j− pk → δ jk and ṽ j → 0 for all j,k ∈ {1, ...,n}, if every

aircraft can communicate with at least one other aircraft in

the group, i.e, the communication graph is connected.

We propose the following control input for each VTOL

vehicle

Fj = v̇d −Φ(θ j) (18)

θ̈ j = −Φ(θ j)+ kz
jz j +

n

∑
k=1

k
p
jk(ξ jk − δ jk) (19)

with Φ(θ j) =
(

kθ1 j
tanh(θ j)+ kθ2 j

tanh(θ̇ j)
)

, ξ jk = ξ j − ξk,

kz
j, kθ1 j

and kθ2 j
are positive scalar gains. The gains k

p
jk are
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the formation-keeping gains defined such that k
p
j j , 0 and

{

k
p

jk = k
p

k j > 0, if aircrafts j and k are connected

k
p
jk = k

p
k j = 0, otherwise

(20)

for j,k ∈ {1, ...,n}. We say that two aircraft are “connected”

if they can communicate with each other and share their

states information. The magnitude of a nonzero k
p
jk deter-

mines the strength of the connection between members of the

formation. In addition, by restrictions (20), we are assuming

that the communication flow between aircraft is undirected.

It is worth noticing from the proposed control (18) that Fj

is guaranteed to be bounded as

‖Fj‖ ≤ ‖ p̈d‖+
√

3(kθ1 j
+ kθ2 j

) (21)

regardless of the number of neighbors of vehicle j. In

addition, an upper bound of the extracted value of the thrust

Tj, in (8), can be determined a priori and is given as

Tj ≤ m
(

g +‖ p̈d‖+
√

3(kθ1 j
+ kθ2 j

)
)

:= Λ j (22)

with Λ j a positive constant.

B. Attitude control design:

In this section, we consider the rotational dynamics and

design a torque input for each aircraft in order to track the

desired orientation, qd j
(t), extracted according to (9) from

Fj given in (18). We define the attitude tracking error for

each vehicle, namely q̃ j = (q̃T
j , η̃ j)

T , and is given by; q̃ j =

q−1
d j

⊙ q j, and is governed by the unit-quaternion dynamics

˙̃q j =
1

2
(η̃ j I3 + S(q̃ j))ω̃ j, ˙̃η j = − 1

2
q̃T

j ω̃ j, (23)

ω̃ j = ω j −R(q̃ j) ωd j
, (24)

where ω̃ j is the angular velocity error vector. R(q̃ j) is the

rotation matrix, related to q̃ j, and is given by R(q̃ j) =
R(q j)R(qd j

)T , [18]. The vector ωd j
is the (desired) angular

velocity and is given in (11) for each aircraft. The time

derivative of the desired angular velocity can be obtained

as; ω̇d j
= Ξ̇(Fj)Ḟj + Ξ(Fj)F̈j, for each aircraft, where Ξ̇(Fj)

can be easily derived from Ḟj. From (18), and after simple

computations, we can easily verify that in order to evaluate

ωd j
and ω̇d j

for each aircraft, we will need only available

signals and aircraft must transmit only the variables ξ j and

z j. In addition, ωd j
and ω̇d j

are guaranteed to be bounded if

the signals ż j, θ j , θ̇ j and θ̈ j are bounded for j ∈ {1, ...,n}.

In order to design an attitude tracking control law, we

introduce the following new variable for each vehicle as

Ω j = ω̃ j −β j (25)

with β j a design variable to be determined later. Exploiting

the rotational dynamics (Σ2 j
) in (1), we can easily show that

I f j
Ω̇ j = τ j −H j(ω j, β̇ j, ω̇d j

,ωd j
, q̃ j) (26)

H j(·) = S(ω j)I f j
ω j − I f j

S(ω̃ j)R(q̃ j)ωd j
+ I f j

R(q̃ j)ω̇d j
+ I f j

β̇ j

We propose the following torque control for each vehicle

τ j = H j(ω j, β̇ j, ω̇d j
,ωd j

, q̃ j)−α jq̃ j − kΩ
j Ω j (27)

β j = −k
β
j q̃ j (28)

with α j, kΩ
j and k

β
j are positive scalar gains, and

β̇ j =
−k

β
j

2
(η̃ jI3 + S(q̃))ω̃ j (29)

C. Stability Analysis:

Now, we can state our result in the following theorem

Theorem 1: Consider the VTOL-UAVs formation mod-

eled as in (1), where the closed loop system is given by (17)

and (26), with the control inputs (18)-(19) and (27)-(28). If

the control gains satisfy

kθ1 j
+ kθ2 j

< (
√

3)−1(g−‖ p̈d(t)‖), (30)

kz
j > σ j, and α jk

β
j (m

2
jσ j) > 2Λ2

j , (31)

for some constant σ j > 0 and for j ∈ {1, ...,n}, and Λ j

is given in (22), then all signals are bounded and ṽ j → 0,

p j − pk → δ jk, q̃ j → 0 and ω̃ j → 0 asymptotically for j,k ∈
{1, ...,n}.

Proof: First, it is straightforward to check that if (30) is

satisfied, then ‖Fj‖< g and condition (10) is always satisfied,

and hence it is always possible to extract the magnitude of

the thrust and its direction from (8) and (9) respectively for

each VTOL vehicle in the team.

Consider the following Lyapunov function candidate

V =
1

2

n

∑
j=1

(

zT
j z j +

1

2

n

∑
k=1

k
p
jk(ξ jk − δ jk)

T (ξ jk − δ jk)

)

+
n

∑
j=1

(

1

2
ΩT

j I f j
Ω j + 2α j(1− η̃ j)

)

(32)

The time derivative of V evaluated along the closed loop

dynamics (17) and (26) with (23), and the control inputs

(18)-(19) and (27) with (25), is given by

V̇ =
n

∑
j=1

zT
j

(

−kz
jz j −

Tj

m j

f (q j,qd j
)−

n

∑
k=1

k
p
jk(ξ jk − δ jk)

)

+
n

∑
j=1

α jq̃
T
j β j −

n

∑
j=1

kΩ
j ΩT

j Ω j +
1

2

n

∑
k=1

k
p
jkξ̇ T

jk(ξ jk − δ jk)

Then, using (16) and restrictions (20), and the fact that

δ jk = −δk j, we can easily show that

1

2

n

∑
j=1

n

∑
k=1

k
p
jk(z j − zk)

T (ξ jk − δ jk) =
n

∑
j=1

n

∑
k=1

k
p
jkzT

j (ξ jk − δ jk)

which, with (28) and the relation ξ̇ jk = z j − zk, yields

V̇ =
n

∑
j=1

(

−kz
jz

T
j z j −

Tj

m j

zT
j f (q j,qd j

)−α jk
β
j q̃T

j q̃ j − kΩ
j ΩT

j Ω j

)

Exploiting equations (2) and (3), we can easily show that

‖ f (q j,qd j
)‖ ≤ ‖I3 −R(q̃ j)‖F = 2

√
2‖q̃ j‖ (33)
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where ‖ · ‖ denotes the Euclidean norm and ‖ · ‖F is the

Frobenius norm1, and we have used the fact that the ro-

tational matrix is orthogonal.

Then, the time derivative of V can be upper bounded using

(33) as

V̇ ≤ ∑n
j=1

(

−kz
j‖z j‖2 +

2
√

2Tj

m j
‖z j‖‖q̃ j‖−α jk

β
j ‖q̃ j‖2

)

−∑n
j=1 kΩ

j ‖Ω j‖2

≤ ∑n
j=1

(

−(kz
j −σ j)‖z j‖2 − (α jk

β
j −

2T 2
j

m2
j σ j

)‖q̃ j‖2

)

−∑n
j=1 kΩ

j ‖Ω j‖2

where we have used the fact that for any real numbers a and

b, we have 2ab≤ a2/σ +σb2, for some σ > 0. Therefore, V̇

is negative semi-definite if (31) is satisfied. Hence, we can

conclude that z j, ξ jk, q̃ j, Ω j are bounded for j,k ∈ {1, ...,n}.

Consequently, θ̈ j and ż j are bounded for j ∈ {1, ...,n}, from

(17) and (18)-(19).

Since q̃ j is bounded, we can see that β j, in (28), is

bounded, and hence ω̃ j is bounded from (25). Hence, we

can conclude that ˙̃q j and β̇ j are bounded from (23) and (29)

respectively. In addition, from equation (26) with (27), we

can conclude that Ω̇ j is bounded and so is ˙̃ω j. As a result,

V̈ is bounded. Hence, invoking Barbalat’s lemma, [20], we

can conclude that z j → 0, Ω j → 0 and q̃ j → 0, and therefore,

ω̃ j → 0, η̃ j →±1 and R(q̃ j) → I3, for j ∈ {1, ...,n}.

From equation (17) with (18)-(19), and exploiting the

above boundedness and convergence results, and invoking

the extended Barbalat’s lemma (see for example lemma 3 in

[16]), we can conclude that ż j → 0. Hence, the closed loop

translational dynamics, (17) with (18)-(19), reduce to

n

∑
k=1

k
p
jk(ξ j − ξk − δ jk) = 0, for j = 1, ...n (34)

which is equivalent to; ∑n
j=1 ∑n

k=1 k
p
jk(ξ j − δ j)

T (ξ j − ξk −
δ jk) = 0, where the constant vector δ j can be regarded as the

desired position of the jth aircraft with respect to the center

of the formation. It is then clear that δ jk = δ j−δk. Then using

(20), equation (34) is equivalent to; 1
2 ∑n

j=1 ∑n
k=1 k

p
jk(ξ j−ξk−

δ jk)
T (ξ j − ξk − δ jk) = 0, from which we can conclude that

ξ j − ξk → δ jk.

In order to complete the proof, we have to investigate the

boundedness and asymptotic convergence to zero of θ j and

θ̇ j. It can be seen that (19) can be rewritten as

θ̈ j = −kθ1 j
tanh(θ j)− kθ2 j

tanh(θ̇ j)+ u j (35)

for j = 1, ...,n with u j = kz
jz j +∑n

k=1 k
p
jk(ξ jk −δ jk). Using the

above results, one can easily verify that u j is bounded and

tends to zero as t goes to infinity. One can show that the

following Lyapunov function candidate

Wj =
1

2
θ̇ T

j θ̇ j + kθ1 j
1T

3 log(cosh(θ j)),

1The Frobenius norm of a square matrix M is given by: ‖M‖F =
√

tr(MT M)

TABLE I

SIMULATION PARAMETERS

p1(0) = (7,0,1) , p2(0) = (6,0,−2) , p3(0) = (13.5,−2,0.5),
p4(0) = (15,−0.5,1), g = 9.8, v j(0) = (0,0,0), q j(0) = (0,0,0,1),

ω j(0) = θ j(0) = θ̇ j(0) = (0,0,0), kz
j = 3, kθ1 j = 1.8, kθ2 j = 1.8,

k
β
j = 20, α j = 20, kΩ

j = 50, for j = 1,2,3,4,

k
p
jk = 2.5, for ( j,k) ∈ {(1,2),(2,3),(2,4)},

δ1 = (1,1,0), δ2 = (−1,1,0), δ3 = (−1,−1,0), δ4 = (1,−1,0).

where 13 = col[1,1,1] and log(·), cosh(·) are defined

element-wise for a vector, in view of (35), has a time-

derivative given by

Ẇj = −θ̇ T
j (kθ2 j

tanh(θ̇ j)−u j). (36)

Due to the fact that u j(t) is bounded and converges to zero,

one can show that θ j and θ̇ j are bounded and converge

asymptotically to zero, under the condition that system (35)

does not have a finite escape time. From (36), we can see

that: Ẇj ≤ ‖θ̇ j‖‖u j‖. Using the relation ‖θ̇ j‖2 ≤ 2Wj, we

will obtain: Ẇj ≤ A
√

Wj, with
√

2‖u j‖ ≤ A, which can

be rewritten as:
dWj√

Wj
≤ Adt. Suppose that there exists a

finite time t f such that limt→t f
Wj(t) = +∞. Then, integrat-

ing the last inequality along the interval [t1,t f ] yields to:

(2
√

Wj(t f )−2
√

Wj(t1)) = +∞ ≤ A(t f − t1). We can see that

this leads to a contradiction, since the left hand side of the

inequality is infinite, whereas the right hand side is assumed

to be finite. Hence, we can conclude that system (35) cannot

have a finite escape time.

Finally, one can conclude that θ j → 0 and θ̇ j → 0 for all

j ∈ {1, ...,n}. As a result, we conclude that p j − pk → δ jk

and ṽ j → 0 for all j,k ∈ {1, ...,n}.

Remark 1: It is important to mention that the proposed

control scheme is also applied to solve the position trajectory

tracking problem a single VTOL-UAV, with k
p
jk = 0, and

global asymptotic stability is guaranteed, which is a new

contribution to the trajectory tracking problem of this type

of UAVs.

V. SIMULATION RESULTS

Using SIMULINK, we consider a scenario of four VTOL

vehicles that are required to maintain a planar square forma-

tion while tracking a common desired velocity. The vehicles

are modeled as rigid bodies whose inertia matrices are

taken as I f j
= diag(0.065,0.065,0.02) and of mass m j = 5

Kg. The simulation parameters are illustrated in table I,

where the controller gains are selected such that conditions

(30)-(31) are satisfied. The reference velocity is given by

vd(t) = ((−2.5/π)cos(t/(2π)),(1.25/π)cos(t/(2π)),−0.5).
The vectors δ jk are computed according to the variables δ j

in the above table such that the desired formation pattern is

a square, with δ jk = δ j −δk. The obtained results are shown

in Figs.1-2. Fig. 1 illustrates the three components of the

velocity tracking errors for the four vehicles respectively,

where the global convergence to zero is guaranteed after

few seconds. Fig. 2 shows the position of the VTOL aircraft

at instants of time, where, starting from an arbitrary initial
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Fig. 1. Velocity tracking error of the four aircraft
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Fig. 2. VTOL aircraft formation

condition, we can see that the four aircraft converge to the

desired square formation during the first 8 sec.

VI. CONCLUSION

We addressed the formation control problem of a class

of under-actuated systems, the VTOL UAVs. Exploiting the

cascaded nature of the system, a separate translational and

rotational control design was presented, and global asymp-

totic stability of the closed-loop system was shown. The

design procedure is based on the unit-quaternion extraction

method of the desired orientation, which is guaranteed to

be singularity-free, under the condition that the translational

control input is upper bounded by a predefined quantity. This

has led us to design a bounded control for each vehicle whose

upper bound can be selected independently from the number

of neighbors in the formation. Although in this work we

present a formation control scheme, the proposed control

law can be applied to a single VTOL-UAV leading to global

asymptotic stability, which constitutes, in our opinion, an

interesting contribution since global results in SE(3) are

difficult to achieve for this class of systems. Still several

interesting issues regarding the formation control problem,

such as the collision avoidance, directed communication

topology and the presence of time delays, need to be in-

vestigated. These topics will be the subject of our future

work.
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