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Abstract— In this paper, we propose a quaternion-based
dynamic output feedback for the attitude tracking problem
of a rigid body without velocity measurement. Our approach
consists of introducing an auxiliary dynamical system whose
output (which is also a unit quaternion) is used in the control
law together with the unit quaternion representing the attitude
tracking error. Roughly speaking, the necessary damping that
would have been achieved by the direct use of the angular
velocity can be achieved, in our approach, by the vector part q̃ of
the error signal between the output of the auxiliary system and
the unit quaternion tracking error. The resulting velocity-free
control scheme guarantees almost global 1 asymptotic stability
which is as strong as the topology of the motion space can
permit. Simulation results are provided to show the effectiveness
of the proposed control scheme.

I. INTRODUCTION

The attitude control problem of a spacecraft, or a rigid

body in space in general, has been extensively studied during

the past four decades. This is a particularly interesting

problem in dynamics since the angular velocity of the body

cannot be integrated to obtain the attitude of the body [8].

From a practical point of view, the design of efficient and

low-cost attitude controllers is an important issue which is

of great interest for aerospace industry for instance. The

attitude stabilization of a rigid body in space, using the unit-

quaternion and the angular velocity in the feedback control

law, has been investigated by many researchers and a wide

class of controllers has been proposed (see, for instance, [8],

[14], [19], [20]). In [14], some quaternion based feedback

controllers for the attitude stabilization have been proposed

and tested experimentally on a quadrotor aircraft.

The attitude control of a rigid body with full states measure-

ments (i.e., quaternion and angular velocity), being relatively

well understood, the research has been directed towards other

performance and implementation-cost optimization issues, by

removing the requirement of the velocity measurement. The

passivity property, was the main idea behind the design of

the attitude controllers, without velocity measurement, in [6],
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1In this paper we use the term almost global (see, for instance, [9]) to
indicate that the boundedness of the states is guaranteed over Qu×Qu×R3,
where Qu is the set of unit-quaternion. Furthermore, the closed-loop system
has four equilibrium points (three repeller equilibria and one attractor) that
are mathematically different but represent the same physical attitude of the
rigid body. All trajectories starting in Qu×Qu×R3–except the three repeller
equilibria— will converge to the unique attractor equilibrium. For more
details about the topological obstruction to continuous global stabilization
of rotational motion, the reader is referred to [2].

[10], [17]. In fact, in [6], the authors used the passivity-

based adaptive control approach for robotic manipulators

to derive their adaptive attitude control scheme without

velocity measurement. In [10], a quite similar passivity

argument has been used to develop a velocity-measurement-

free attitude stabilization controller using a lead filter. In

[15], an alternative solution to the attitude regulation problem

without velocity measurement and without the use of a

lead filter has been proposed. The author in [17] derives

quite similar results as the results of [10] by using the

Rodrigues Parameters instead of the quaternion [13]. The

second approach that has also been used to avoid the velocity

measurement is based on the use of nonlinear observers.

In fact, in [12], a nonlinear velocity observer, using just

the torque and orientation measurements, has been proposed

based on the analogy to second-order linear systems, where a

separation principle-like property was conjectured. In, [16],

based on the work of [12] and [18], an estimation algorithm

for the constant gyro bias has been proposed. This algorithm,

using the orientation and gyroscopic measurements, has

been combined with the attitude control scheme proposed

in [6]. The extension of the velocity-free attitude regulation

controllers to the tracking problem is not an obvious task

especially when we aim for non-local results. In [3], two

attitude tracking controllers without velocity measurement

have been proposed. The first one is a locally exponentially

stabilizing controller-observer scheme. The second scheme,

guaranteeing also local exponential stability under an ade-

quate choice of the control parameters, is a generalization

of the lead filter based regulation scheme of [10] to the

attitude tracking problem. In [4] a local velocity-free adaptive

quaternion-based tracking controller for a rigid body with

uncertainties has been proposed. Another alternative to the

work of [3] has been proposed in [1] based on the results

of [17] using the Rodrigues parameters instead of the unit-

quaternion. Note that unlike the quaternion representation,

the three-parameters (Rodrigues parameters) attitude repre-

sentation suffers from singularity problems [13].

In the present paper, we use the four-parameters representa-

tion (quaternion), which is globally non-singular, to represent

the attitude motion, and provide a new solution to the attitude

tracking problem without velocity measurement. To the best

of our knowledge, our result is the first velocity-free unit

quaternion-based tracking controller guaranteeing almost

global asymptotic stability. Our main idea is the introduction

of an auxiliary unit-quaternion dynamical system having the

same structure as the actual unit-quaternion attitude model.

Under a feedback involving the unit quaternion tracking error

and the vector part q̃ of the error signal between the output of
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the auxiliary system and the unit quaternion tracking error,

we show that the map between the auxiliary system input

and q̃ is passive. Therefore, the auxiliary system input can be

designed as a simple linear feedback in terms of q̃ achieving

almost global asymptotic attitude tracking. Simulation results

are also provided to support the theoretical developments.

II. DYNAMICAL MODEL AND PROBLEM STATEMENT

The dynamical model of a spacecraft or a rigid body in

space is given by

If Ω̇ = −Ω × IfΩ + τ, (1)

Ṙ = RS(Ω), (2)

where Ω denotes the angular velocity of the body expressed

in the body-fixed frame A. The orientation of the rigid body

is given by the orthogonal rotation matrix R ∈ SO(3).
If ∈ R3×3 is a symmetric positive definite constant inertia

matrix of the body with respect to the frame A whose origin

is at the center of mass. The vector τ is the torque applied the

rigid body, considered as the input vector. The matrix S(Ω) is

a skew-symmetric matrix such that S(Ω)V = Ω×V for any

vector V ∈ R3, where × denotes the vector cross-product.

Our objective is to design a feedback controller, without

velocity measurement, for the stabilization of the equilibrium

point (R̃ := RRT
d = I , Ω − Ωd = 0), where Rd(t) is the

desired orientation and Ωd(t) is the desired angular velocity.

III. UNIT-QUATERNION

The orientation of a rigid body with respect to the inertial

frame can be described by a four-parameters representation,

namely unit-quaternion [11]. A quaternion Q = (q0, q) is

composed of a scalar component q0 ∈ R and a vector q ∈
R3. The set of quaternion Q is a four-dimensional vector

space over the reals, which forms a group with the quaternion

multiplication denoted by “⋆”. The quaternion multiplication

is distributive and associative but not commutative [11]. The

multiplication of two quaternion Q = (q0, q) and P = (p0, p)
is defined as [11], [13]

Q ⋆ P = (q0p0 − qT p , q0p + p0q + q × p), (3)

and has the quaternion (1,0) as the identity element. Note

that, for a given quaternion Q = (q0, q), we have Q⋆Q−1 =

Q−1 ⋆ Q = (1,0), where Q−1 = (q0,−q)
‖Q‖2 .

The set of unit-quaternion Qu is a subset of Q such that

Qu = {Q = (q0, q) ∈ R × R3 | q2
0 + qT q = 1}. (4)

Note that in the case where Q = (q0, q) ∈ Qu, the unit-

quaternion inverse is given by Q−1 = (q0,−q).

A rotation matrix R by an angle γ about the axis described

by the unit vector k̂ ∈ R3, can be described by a unit-

quaternion Q = (q0, q) ∈ Qu such that

q = k̂ sin(
γ

2
), q0 = cos(

γ

2
), (5)

The rotation matrix R is related to the quaternion through

the Rodriguez formula [7], [13]

R(Q) = I + 2q0S(q) + 2S2(q)
= (q2

0 − qT q)I + 2qqT + 2q0S(q).
(6)

Algorithms allowing the extraction of q and q0 from a

rotation matrix R, can be found in [13].

In this paper, instead of using the rotation matrix R to

describe the orientation of the rigid body in space, we will

use the unit-quaternion. The dynamical equation (2) can be

replaced by the following dynamical equation in terms of the

unit-quaternion [7], [13]:

Q̇ =
1

2
Q ⋆ QΩ, (7)

where Q = (q0, q) ∈ Qu and QΩ = (0, Ω) ∈ Q. In the

sequel, we will use Q⋆ to denote the quaternion (0, ⋆). We

also define the unit-quaternion error E = (e0, e), which

describes the discrepancy between two unit-quaternion Q =
(q0, q) and Q̄(q̄0, q̄), as follows:

E = Q̄−1 ⋆ Q = (q̄0q0 + q̄T q , q̄0q − q0q̄ − q̄ × q). (8)

Note that the unit-quaternion Q and Q̄ coincide if E =
(1,0).
It is also important to mention that the equilibrium point

(R = I,Ω = 0) for (1) and (2) is equivalent to the

equilibrium point (q = 0, q0 = ±1, Ω = 0) for (1) and

(7). Since q0 = 1 corresponds to γ = 0 and q0 = −1
corresponds to γ = 2π, it is clear that q0 = ±1 correspond to

the same physical point. Hence, the two equilibrium points

(q = 0, q0 = ±1,Ω = 0) are in reality a unique physical

equilibrium point corresponding to (R = I,Ω = 0).

IV. MAIN RESULTS

Assume that the desired orientation to be tracked is given

by

Q̇d =
1

2
Qd ⋆ QΩd

, (9)

where Ωd is the desired angular velocity, which is assumed

to be bounded as well as its first and second time-derivatives.

Let us define the unit-quaternion tracking error Qe, which

describes the discrepancy between the actual unit-quaternion

Q and the desired unit-quaternion Qd, as follows Qe =
(Qd)−1 ⋆ Q ≡ (qe

0, q
e). Therefore, we have

Qd ⋆ Qe = Q.

Differentiating both sides of the above equation with respect

to time, we have

Q̇d ⋆ Qe + Qd ⋆ Q̇e = Q̇.

Hence,

Q̇e = (Qd)−1 ⋆ (Q̇ − Q̇d ⋆ Qe).

Using (7) and (9), the error quaternion dynamics is given by

Q̇e = − 1
2QΩd

⋆ Qe + 1
2Qe ⋆ QΩ

= − 1
2Qe ⋆ (Qe)

−1
⋆ QΩd

⋆ Qe + 1
2Qe ⋆ QΩ.

(10)
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Using the fact that (Qe)
−1

⋆ QΩd
⋆ Qe = QΩ̄d

, with

Ω̄d = RT (Qe)Ωd, where RT (Qe) is obtained from (6) by

substituting Q by Qe, we have

Q̇e = 1
2Qe ⋆ QΩ̃

=
(

− 1
2 (qe)

T
Ω̃, 1

2 (qe
0I + S(qe))Ω̃

)

≡ (q̇e
0, q̇

e)

(11)

where Ω̃ = Ω − Ω̄d.

Let us introduce the following auxiliary system:

˙̄Q =
1

2
Q̄ ⋆ Qβ , (12)

with Q̄(0) = (q̄0(0), q̄(0)) ∈ Qu, Qβ = (0, β) ∈ Q, where

the input β of (12) will be designed later. We define the

unit-quaternion Q̃ = Q̄−1 ⋆ Qe = (q̃0, q̃) ∈ Qu describing

the discrepancy between the unit-quaternion tracking error

Qe and the auxiliary unit-quaternion signal Q̄.

Now, we can state the following theorem:

Theorem 1: Consider system (1) under the following con-

trol law

τ = −α1q
e − α2q̃ + IfRT (Qe)Ω̇d + S(Ω̄d)If Ω̄d, (13)

with α1 > 0, α2 > 0, and let the input of the auxiliary

system (12) be

β = Γ1q̃, (14)

with Γ1 = ΓT
1 > 0.

The vectors qe and q̃ are the vector parts of the unit-

quaternion Qe and Q̃ respectively. Then, Qe, Q̃ and Ω
are globally bounded2, and lim

t→∞
qe(t) = lim

t→∞
q̃(t) =

lim
t→∞

Ω̃⋆(t) = 0, lim
t→∞

qe
0(t) = ±1 and lim

t→∞
q̃0(t) = ±1,

where Ω̃⋆(t) ≡ Ω(t) − Ωd(t).

Proof: The dynamical equation for the angular velocity

tracking error is given by

If
˙̃Ω = −(Ω̃+Ω̄d)×If (Ω̃+Ω̄d)+If (Ω̃×Ω̄d−RT (Qe)Ω̇d)+τ.

(15)

After some algebraic manipulations, one can show that

d
dt

( 1
2 Ω̃T If Ω̃) = −Ω̃T S(Ω̄d)If Ω̄d

− Ω̃T (S(Ω̄d)If + IfS(Ω̄d))Ω̃

+ Ω̃T (τ − IfRT (Qe)Ω̇d).

(16)

Since If = IT
f > 0, it is clear that (S(Ω̄d)If + IfS(Ω̄d))

is a skew symmetric matrix and hence Ω̃T (S(Ω̄d)If +
IfS(Ω̄d))Ω̃ = 0. Therefore,

d

dt
(
1

2
Ω̃T If Ω̃) = Ω̃T (τ−IfRT (Qe)Ω̇d−S(Ω̄d)If Ω̄d), (17)

2The global boundedness here indicates that the states are bounded for

any (Qe(0), Q̃(0), Ω(0)) ∈ Qu ×Qu ×R3. Note that the unit-quaternion

Q̃ and Qe are bounded by definition.

Using (11) and (12), one can show that

˙̃
Q = d

dt
(Q̄−1 ⋆ Qe)

= − 1
2Qβ ⋆ Q̃ + 1

2 Q̃ ⋆ QΩ̃

=
(

1
2 q̃T (β − Ω̃) , 1

2 q̃0(Ω̃ − β) + 1
2 q̃ × (Ω̃ + β)

)

:= ( ˙̃q0, ˙̃q).
(18)

Consider the following Lyapunov function candidate

V = α2

(

q̃T q̃ + (q̃0 − 1)2
)

+ α1

(

(qe)
T
qe + (qe

0 − 1)2
)

+ 1
2 Ω̃T If Ω̃

= 2α2(1 − q̃0) + 2α1(1 − qe
0) + 1

2 Ω̃T If Ω̃
(19)

whose time-derivative, in view of (11), (17) and (18) is given

by

V̇ = −2α2
˙̃q0 − 2α1q̇

e
0 + d

dt
( 1
2 Ω̃T If Ω̃)

= −α2q̃
T (β − Ω̃) + α1Ω̃

T qe

+ Ω̃T (τ − IfRT (Qe)Ω̇d − S(Ω̄d)If Ω̄d)),

(20)

which in view of (13) and (14), leads to

V̇ = −α2q̃
T Γ1q̃. (21)

Therefore, one can conclude that Q̃, Qe and Ω̃ are globally

bounded. Therefore, it is clear that V̈ is bounded. Hence, in-

voking Barbalat’s lemma, one can conclude that lim
t→∞

q̃(t) =

0, which implies that lim
t→∞

q̃0(t) = ±1. Consequently, one

can show that
¨̃
Q is bounded since Ω̇d is bounded, and

hence lim
t→∞

˙̃
Q(t) = 0, which in turns, from (18), implies

that lim
t→∞

(Ω̃(t) − β(t)) = 0. Since lim
t→∞

q̃(t) = 0, it is

clear, from (14), that lim
t→∞

β(t) = 0. Consequently, one

can conclude that lim
t→∞

Ω̃(t) = 0. Using the fact that Ω̈d

is bounded and the previous boundedness results, one can

show that
¨̃Ω is bounded, and hence, one can conclude that

lim
t→∞

˙̃Ω(t) = 0. As t goes to infinity, from (15), we have

0 = −IfRT (Qe)Ω̇d − S(Ω̄d)If Ω̄d + τ . Therefore, from

(13), it is clear that lim
t→∞

(α1q
e(t) + α2q̃(t)) = 0, which

implies that lim
t→∞

qe(t) = 0 since lim
t→∞

q̃(t) = 0. Finally,

lim
t→∞

qe
0(t) = ±1. Since Qe tends to (±1, 0), when t goes to

infinity, it is clear R(Qe) goes to I and hence, Ω̄d tends to

Ωd. Consequently, lim
t→∞

(Ω(t) − Ωd(t)) = 0. ¤

Remark 1: It is clear that our control scheme includes

the attitude regulation problem as a particular case, i.e., for

Rd = I and Ωd = 0.

Remark 2: From the proof of Theorem 1, it is clear

that for the closed loop system, V̇ = 0 at the following

four equilibrium points (q̃0 = ±1, qe
0 = ±1, Ω̃⋆ = 0), and

V̇ < 0 outside these equilibrium points. Note that these four

equilibrium points represent the same physical equilibrium

for the rigid body (R̃ := RRT
d = I , Ω̃⋆ = 0). If initially, the

closed-loop system is at one of these four equilibrium points,

it will remain there for all subsequent time. In the case where

the closed-loop system is not at one of the four equilibrium

points, it will converge to the attractive equilibrium point
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(q̃0 = 1, qe
0 = 1, Ω̃⋆ = 0) for which V = 0 and V̇ = 0. The

three isolated equilibrium points (q̃0 = 1, qe
0 = −1, Ω̃⋆ = 0),

(q̃0 = −1, qe
0 = 1, Ω̃⋆ = 0) and (q̃0 = −1, qe

0 = −1, Ω̃⋆ = 0)
are not attractors, but repeller equilibria [8]. In fact, if the

system is initially at one of the three repeller equilibria, and

we apply a small disturbance at qe
0 = −1 or/and q̃0 = −1

(preserving the conditions −1 ≤ qe
0 ≤ 1 and −1 ≤ q̃0 ≤ 1),

one can see from (19) that V decreases, and since V̇ < 0
outside these equilibrium points, one can conclude that qe

0

and q̃0 will converge to 1.

Remark 3: The introduction of the auxiliary system (12)

allows to generate a passive map −β 7→ q̃ [5]. In fact, this

can be easily seen by substituting (13) in (20) to get
∫ T

0

−α2q̃
T βdt ≥ V (X(T )) − V (X(0)), (22)

with XT (t) = (q̃(t), q̃0(t), q
e(t), qe

0(t), Ω̃(t)). Therefore, the

auxiliary system input β can be designed in a straightforward

manner as in (14). The resulting closed-loop system is a

feedback interconnection of a passive system and a constant

gain. This, guarantees global boundedness of X(t) and the

convergence of q̃ to zero. Finally, thanks to the fact that the

largest positively invariant set {X| V̇ = 0} is simply the set

{X| q̃ = 0, qe = 0, Ω̃⋆ = 0}.

Remark 4: It is worth noting that the main purpose

of the auxiliary dynamical system (12) is to generate a

passive mapping between (−β) and the vector part of the unit

quaternion error q̃. In fact, under the control law (13) and

forcing the input of system (12) to be proportional to q̃, we

ensure asymptotic convergence of q̃ to zero. The convergence

of q̃ to zero will guarantee the convergence of Ω̃⋆ to zero (as

shown in the proof of Theorem 1). Once q̃ and Ω̃⋆ converge

to zero, the convergence of q to zero is guaranteed in view

of the system dynamics (1) and the structure of the control

law (13).

Remark 5: Our result in Theorem 1 differs from the result

of [3] mainly in two aspects: 1) In [3], the authors show

the existence of control gains guaranteeing local exponential

stability while in our case, using a different controller and

a different proof, the choice of the control gains is straight-

forward resulting in almost global asymptotic stability. 2)

Theorem 2 presented in [3], using a lead filter, is an extention

of the regulation controller proposed in [10] where the

necessary damping, that would have been achieved by the use

of the angular velocity in the feedback controller, is achieved

by a filtered derivative of the actual unit quaternion. In our

approach, the lead filter is not used and hence the designer

does not have to worry about the cut-off frequency of the

lead filter in the presence of noise. The necessary damping

is achieved, roughly speaking, by substituting the angular

velocity by q̃.

V. SIMULATION RESULTS

In this section, we present some simulation results showing

the effectiveness of the proposed controller. The inertia

matrix has been taken as If = diag(20, 20, 30). We applied

the control law of Theorem 1, with α1 = α2 = 20 and
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, qe
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, qe
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, qe
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) versus time

Γ1 = diag(3, 3, 3). The initial conditions have been taken

as follows: Q(0) = (0, 0, 1, 0) and Q̄(0) = (0, 1, 0, 0).
The reference trajectory is given by (9) with Qd(0) =
(1, 0, 0, 0) and Ωd = 0.1 sin(0.2πt)[1, 1, 1]T . The simulation

was performed with Simulink for a time span of 50 seconds.

Figure 1 shows the evolution of the three components of the

angular velocity tracking error Ω−Ωd with respect to time.

Figure 2, shows the evolution of the unit-quaternion tracking

error Qe, describing the deviation between the orientation of

the body and the desired orientation, with respect to time.

Figure 3, shows the time evolution of the unit-quaternion

error Q̃, describing the deviation between Qe and Q̄. Figure

4, shows the control input versus time.

VI. CONCLUSION

A new quaternion-based solution to the attitude tracking

problem, without velocity measurement, has been proposed.

Our approach is based on the use of a unit-quaternion
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Fig. 4. Control input τ versus time

auxiliary system whose input is related to the vector part

of the unit quaternion error q̃ via a passive map, under an

appropriate unit quaternion-based feedback. The proposed

control scheme includes the attitude regulation problem as

a particular case, and guarantees almost global asymptotic

stability of the equilibrium point (R̃ := RRT
d = I , Ω̃⋆ = 0).
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