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Abstract— We consider the attitude and gyro-bias estimation
as well as the attitude stabilization problem of a rigid body in
space using low-cost sensors. We assume that a biased measure-
ment of the angular velocity of the rigid body is provided by a
low-cost gyroscope, and the attitude measurements are obtained
using low-cost (low-pass) sensors such as accelerometers and
magnetometers. We provide an attitude and gyro-bias estima-
tion algorithm using the biased gyro measurement and the
attitude measurements—which represent the true attitude only
at low frequencies— provided by the low-cost attitude sensors.
Finally, the proposed estimation algorithm is coupled with a
quaternion-based attitude stabilization scheme, and simulation
results are provided to show the effectiveness of the proposed
algorithm.

I. INTRODUCTION

The attitude stabilization problem of a rigid spacecraft or

a rigid body in general is an interesting problem in view of

the theoretical and practical challenges involved in it. From a

pure theoretical point of view, this problem has been solved

by several authors in the literatures under the assumption

that the angular velocity and the attitude of the rigid body

are well known (see for instance [8], [23], [22]). A few

controllers have also been tested experimentally in [17]. The

problem becomes more challenging if the angular velocity is

supposed to be unknown. In this case also, several solutions

have been proposed in the literature (see, for instance,

[3], [4], [9], [15], [18], [20]). In the case where low-cost

gyroscopes, providing biased angular velocity measurements,

are used, several authors in the literature proposed estimation

algorithms providing an estimation of the constant gyro-

bias assuming that the attitude of the rigid body is well

known ([5], [10], [19], [21]). In practical applications using

low-cost sensors, we generally use low-cost gyroscopes that

provide a biased-measurement1 of the angular velocity of the

rigid body; while the attitude is generally obtained by fusing

data from low-pass accelerometers and magnetometers which

provide a relatively accurate measurement at low frequen-

cies. In [2], [17] a linear complementary filtering approach,

assuming small angles variation, has been used to generate

the pitch and roll by fusing the measurements provided by
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1The angular velocity is relatively accurate only at high frequencies,
i.e., the constant component of the angular velocity (gyro-bias) cannot be
measured

the gyroscopes and the tilt-meters in the frequency domain.

A nonlinear complementary filtering approach with gyro-bias

estimation has also been discussed in [5], [10]. In [13], it is

shown that there exists a non-local high gain observer for

the roll and pitch angles estimation using low-pass tiltmeters

assuming exact knowledge of the angular velocity and low

translational accelerations. In [14], a Kalman filter based

state estimation algorithm that fuses data from rate gyros

(assumed to provide exact angular velocity measurements)

and accelerometers, providing long-term drift free attitude

estimates, has been derived. The algorithm is a kind of

complementary filtering in the sense that the data fusion is

based on a switching architecture consisting of two modes

(low and high accelerations). In [1], it is shown that it

is possible to solve the attitude regulation problem (in a

local sense) of a rigid body using rate gyros (assumed

to provide exact angular velocity measurements) and low

pass accelerometers. The Kalman filter has been used by

several authors in the literature attempting to estimate the

attitude of a rigid body in space using low-cost sensors.

For instance, in [11] an extended Kalman filter has been

used for real-time estimation of the attitude of a rigid

body using accelerometers, magnetometers and gyroscopes.

Although used successfully in certain applications, extended

Kalman filters, applied for nonlinear systems, often exhibit

an unpredictable behavior.

In this paper, we attempt to go a step further in providing a

reasonable solution to the attitude estimation and stabiliza-

tion of a rigid body in space using low-cost sensors. In fact,

assuming that a biased angular velocity measurement can

be obtained via a low-cost gyroscope and a measure of the

attitude can be obtained using low-pass sensors, we derive

an estimation algorithm providing asymptotic estimates for

the gyro-bias and the actual attitude of the body over a

wide range of frequencies. The main idea is based on

the estimation of a ‘virtual’ angular velocity of the body

generating the attitude of the body (which is the true attitude

at low frequencies but not at high frequencies) provided by

the low-pass sensors. This ’virtual’ angular velocity, namely

Ω̄, is used in the adaptation law for the bias estimate.

Thereafter, a new complementary filter is used to recover the

actual attitude. The proposed estimation algorithm has been

coupled with a quaternion based PD controller for the attitude

stabilization. Simulation results are provided to illustrate the

performance of the proposed estimation and control scheme.
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II. DYNAMICAL MODEL

The dynamical model of a spacecraft or a rigid body in

space is given by

If Ω̇ = −Ω × IfΩ + τ, (1)

Ṙ = RS(Ω), (2)

where Ω denotes the angular velocity of the body expressed

in the body-fixed frame A. The orientation of the rigid

body is given by the orthogonal rotation matrix R ∈ SO(3).
If ∈ R3×3 is a symmetric positive definite constant inertia

matrix of the body with respect to the frame A whose

origin is at the center of mass. The vector τ is the torque

applied the rigid body, considered as the input vector.

The matrix S(Ω) is a skew-symmetric matrix such that

S(Ω)V = Ω × V for any vector V ∈ R3, where × denotes

the vector cross-product.

III. UNIT QUATERNION

The orientation of a rigid body with respect to the in-

ertial frame can be described by a unit quaternion [12]. A

quaternion Q = (q0, q) is composed of a scalar component

q0 ∈ R and a vector q ∈ R3. The set of quaternion Q is a

four-dimensional vector space over the reals, which forms a

group with the quaternion multiplication denoted by “⋆”. The

quaternion multiplication is distributive and associative but

not commutative [12]. The multiplication of two quaternion

Q = (q0, q) and P = (p0, p) is defined as [12], [16]

Q ⋆ P = (q0p0 − qT p , q0p + p0q + q × p), (3)

and has the quaternion (1,0) as the identity element. Note

that, for a given quaternion Q = (q0, q), we have Q⋆Q−1 =

Q−1 ⋆ Q = (1,0), where Q−1 = (q0,−q)
‖Q‖2 .

The set of unit quaternion Qu is a subset of Q such that

Qu = {Q = (q0, q) ∈ R × R3 | q2
0 + qT q = 1}. (4)

Note that in the case where Q = (q0, q) ∈ Qu, the unit

quaternion inverse is given by Q−1 = (q0,−q).
A rotation matrix R by an angle γ about the axis described by

the unit vector k̂ ∈ R3, can be described by a unit quaternion

Q = (q0, q) ∈ Qu such that

q = k̂ sin(
γ

2
), q0 = cos(

γ

2
), (5)

Algorithms allowing to obtain R from q and q0 as well as

the extraction of q and q0 from a rotation matrix R, can be

found in [6], [16].

In this paper, instead of using the rotation matrix R to

describe the orientation of the rigid body in space, we will

use the unit quaternion. The dynamical equation (2) can be

replaced by the following dynamical equation in terms of the

unit quaternion [6], [16]:

Q̇ =
1

2
Q ⋆ QΩ, (6)

where Q = (q0, q) ∈ Qu and QΩ = (0, Ω) ∈ Q. In the

sequel, we will use Q∗ to denote the quaternion (0, ∗).

We also define the unit quaternion error Q̃, which describes

the deviation between two unit quaternion Q and Q̂, as

follows:

Q̃ = Q̂−1 ⋆Q = (q̂0q0 + q̂T q , q̂0q− q0q̂− q̂× q) := (q̃0, q̃).
(7)

IV. PROBLEM STATEMENT

In this paper, our main objective is the attitude estimation

and control using low-cost inertial measurement units (IMU).

It is clear that if the angular velocity Ω and the initial

orientation of the aircraft are exactly known, it is possible

to get the instantaneous attitude of the aircraft by integrating

(6). Unfortunately, the angular velocity obtained from the gy-

roscopes are often biased, which prevents the exact recovery

of the attitude from (6). Moreover, the attitude provided by

the IMU (i.e., for instance, through the fusion of the mea-

surements obtained from magnetometers and accelerometers)

is valid only at low frequencies, which is a serious drawback

if one seeks the attitude recovery over a wide range of

frequencies. In this paper, we aim to provide a solution to this

crucial problem by estimating the gyro-bias using the attitude

measurements which are valid only at low frequencies as

well as gyroscopic measurements. By recovering the gyro-

bias, one can recover the angular velocity, and hence, an

estimation of the attitude can be obtained, over a wide

range of frequencies, using a new complementary filter and

integrating (6) under the assumption that initially, the rigid

body is at rest or slowly moving2. Furthermore, we will show

that the estimated attitude and gyro bias can be used in a

quaternion-based PD controller for the attitude stabilization

of the rigid body in space.

V. GYRO-BIAS ESTIMATION USING EXACT ATTITUDE

MEASUREMENTS Q

As we said before, the main problem, in practice, is that

low-cost gyroscopes do not provide exact measurements of

Ω. One reasonable assumption is to consider

Ω = Ωg − b (8)

where Ωg is a measurement provided by the gyroscopes,

and b is an unknown finite constant (or slowly varying)

bias. Under this assumption, several authors in the literature

provided a way to estimate b assuming that Q is available

[10], [19]. In fact, in [19], the following estimator, leading to

a global exponential convergence of the bias estimation-error

to zero, has been proposed:

˙̂
Q =

1

2
Q̂ ⋆ Qβ , (9)

with

β = RT (Q̃)(Ωg − b̂ + ksgn(q̃0)q̃), (10)

˙̂
b = −

1

2
sgn(q̃0)q̃, (11)

2This assumption allows to use the initial conditions of (6) from the initial
attitude provided by the accelerometers and magnetometers which are valid
at low frequencies.
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where k > 0, Q̃ = Q⋆Q̂−1 = (q̃0, q̃) and R = (q̃2
0−q̃T q̃)I+

2q̃q̃T − 2q̃0S(q̃). A quite similar estimator (termed passive

complementary filter), has also been presented in [10], using

the rotation matrix instead of the quaternion.

In this context (i.e., in the case where Q and Ωg are

known), another alternative solution, quite similar to [10],

[19], for the estimation of the gyro bias b, which does not

involve the term RT (Q̃) as well as the scalar part of the

error-quaternion, is provided in the following proposition:

Proposition 1: Assume that Ω and Ω̇ are bounded and

consider the following estimator

˙̂
Q = 1

2 Q̂ ⋆ Qβ

β = Ωg − b̂ + Γ1q̃
˙̂
b = −Γ2q̃

(12)

where Q̂ = (q̂0, q̂) ∈ Qu, Qβ = (0, β) ∈ Q, Γ1 =
ΓT

1 > 0, Γ2 = ΓT
2 > 0, and q̃ is the vector part of the

unit quaternion deviation defined in (7). Then, Q̃ and b̂ are

globally bounded and lim
t→∞

b̂(t) = b, lim
t→∞

q̃(t) = 0 and

lim
t→∞

q̃0(t) = ±1. Furthermore, for all initial conditions such

that (Q̃(0), b̃(0)) 6= ((−1, 0, 0, 0), 0), we have lim
t→∞

q̃0(t) =

1.

Proof: The time derivative of Q̃, in view of (6) and (12),

is given by

˙̃Q := ( ˙̃q0, ˙̃q)
=

(

1
2 q̃T (β − Ω) , 1

2 q̃0(Ω − β) + 1
2 q̃ × (Ω + β)

)

(13)

Consider the following Lyapunov function candidate

V = q̃T q̃ + (q̃0 − 1)2 + 1
2 b̃T Γ−1

2 b̃

= 2(1 − q̃0) + 1
2 b̃T Γ−1

2 b̃,
(14)

where b̃(t) = b̂(t) − b. The time derivative of (14), in view

of (13) and (8), is given by

V̇ = −2 ˙̃q0 + b̃T Γ−1
2

˙̃
b

= −q̃T (β − Ω) + b̃T Γ−1
2

˙̂
b

= −q̃T (β − Ωg + b) + b̃T Γ−1
2

˙̂
b

(15)

which in view of (12), becomes

V̇ = −q̃T Γ1q̃. (16)

Now, one can conclude that Q̃ and b̃ are globally bounded.

One can also show that V̈ is bounded. Hence, lim
t→∞

q̃(t) =

0, which implies that lim
t→∞

q̃0(t) = ±1. Since Ω and Ω̇

are bounded, it is clear that
¨̃Q is bounded, and hence

lim
t→∞

˙̃Q(t) = 0, which in turns, from (13), implies that

lim
t→∞

(Ω(t) − β(t)) = 0. Finally, using the fact that

lim
t→∞

q̃(t) = 0, one can conclude from (12) that lim
t→∞

(β(t)−

Ωg(t)+b̂(t)) = 0. Consequently, lim
t→∞

(Ω(t)−Ωg(t)+b̂(t)) =

0, which implies that lim
t→∞

b̂(t) = b.

It is clear that V̇ = 0 at the following two equilibrium

points (q̃0 = ±1, b̃ = 0) and V̇ < 0 outside these

equilibrium points. If initially, the system is at one of these

two equilibrium points, it will remain there for all subsequent

times. In the case where the system is not at one of the

two equilibrium points, it will converge to the attractive

equilibrium point (q̃0 = 1, b̃ = 0) for which V = 0 and

V̇ = 0. The equilibrium point (q̃0 = −1, b̃ = 0) is not an

attractor, but a repeller [8]. In fact, if the system is initially

at q̃0 = −1 and we apply a small disturbance (preserving

the condition −1 ≤ q̃0 ≤ 1), one can see from (14) that V
decreases, and since V̇ < 0 outside the equilibrium points,

one can conclude that q̃0 will converge to 1. ¤

VI. MAIN RESULTS

A. Gyro-bias estimation using low-cost sensors

In this section, we will assume that the angular velocity

is given by (8), and gyroscopes are used to provide Ωg .

We will also assume that the orientation of the rigid body

is obtained using low-cost sensors, such as accelerometers

and magnetometers, which generally provide accurate atti-

tude measurements at low frequencies. In this case, just an

estimate of the rotation matrix R̄, which is generally a good

estimation of the actual rotation matrix R at low frequencies,

is available. From the rotation matrix estimate R̄, one can

get the quaternion estimate Q̄ whose dynamics, reflecting the

low pass property of the low-cost sensors, is given by

˙̄Q =
1

2
Q̄ ⋆ QΩ̄, with Q̄(0) = Q(0). (17)

where QΩ̄ denotes the quaternion (0, Ω̄), and Ω̄ is a “virtual”

angular velocity leading to the measurement Q̄. We assume

that Ω̄ is related to Ω through the following first order low-

pass filter
˙̄Ω = −AΩ̄ + AΩ, (18)

where A is a 3× 3 diagonal positive definite matrix, namely

A = diag{a1, a2, a3}, defining the dynamics of the low-cost

sensors used to measure Q̄. The positive constants a1, a2 and

a3 describe the cut-off frequencies of the attitude sensors. It

is clear that Ω̄ coincides with Ω at low frequencies, which

implies that Q̄ coincides with Q at low frequencies.

The dynamical equation (17) can also be written as follows

˙̄Q =
1

2
E(Q̄)Ω̄, (19)

E(Q̄) =









−q̄1 −q̄2 −q̄3

q̄0 −q̄3 q̄2

q̄3 q̄0 −q̄1

−q̄2 q̄1 q̄0









(20)

where Q̄ = (q̄0, q̄1, q̄2, q̄3), ET (Q̄)E(Q̄) = I3×3, with

I3×3 being the 3 × 3 identity matrix. Hence from (19), one

can obtain Ω̄ as follows:

Ω̄ = 2ET (Q̄) ˙̄Q, (21)

Now, our objective is to derive an estimation algorithm for

the gyro bias b, using only Ωg and Q̄.

Proposition 2: Consider the following estimator

˙̄̂
Ω = −A ˆ̄Ω + A(Ωg − b̂), (22)

46th IEEE CDC, New Orleans, USA, Dec. 12-14, 2007 FrC18.3

6426



˙̂
b = −ΓΩ̃. (23)

where Ω̃ = Ω̄ − ˆ̄Ω and Γ = ΓT > 0. Then b̃ is bounded,

and lim
t→∞

b̂(t) = b and lim
t→∞

Ω̃(t) = 0. The convergence of

the signals is exponential.

Proof: Let us consider the following Lyapunov function

candidate:

V =
1

2
b̃T Γ−1b̃ +

1

2
Ω̃T A−1Ω̃ (24)

where b̃(t) = b̂(t) − b. Using the fact that

˙̃Ω = −AΩ̃ + Ab̃, (25)

the time derivative of (24) is given by

V̇ = b̃T Γ−1 ˙̂
b − Ω̃T Ω̃ + Ω̃T b̃, (26)

which in view of (23), becomes

V̇ = −Ω̃T Ω̃. (27)

This implies that b̃ and Ω̃ are bounded. One can also show

that V̈ is bounded. Therefore, lim
t→∞

Ω̃(t) = 0. Since
¨̃Ω

is bounded, it is clear that lim
t→∞

˙̃Ω(t) = 0, which, from

(25), implies that lim
t→∞

b̃(t) = 0. Finally, the exponential

convergence property can be easily deduced from the fact

that the estimation error dynamics is given by
(

˙̃Ω
˙̃
b

)

=

(

−A A
−Γ 0

)(

Ω̃

b̃

)

(28)

¤

Now, let us assume that the positive definite diagonal

matrix A is unknown. In this case, we propose the following

algorithm which, roughly speaking, relies on the richness of

the measured angular velocity signal

Proposition 3: Consider the following estimator

˙̄̂
Ω = −Ā ˆ̄Ω + Ā(Ωg − b̂) + M(t)θ̂, (29)

˙̂
b = −ΓΩ̃. (30)

˙̂
θ = Γ̄M(t)Ω̃. (31)

where Ω̃ = Ω̄ − ˆ̄Ω, Γ̄ = Γ̄T > 0, Γ is a diagonal

positive definite matrix and Ā is a diagonal positive semi-

definite matrix. The matrix M(t) is given by M(t) =
diag{m1(t),m2(t), m3(t)}, where m1, m2 and m3 are the

three components of the vector (Ωg − ˆ̄Ω − b̂). Assume that

Ωg and b are bounded. Then Ω̃, b̂ and θ̂ are bounded and

lim
t→∞

Ω̃(t) = 0. Moreover, if F (t)
△
=[A,−M(t)]T satisfies the

following persistency of excitation condition

σ1I6×6 ≤
1

T

∫ t+T

t

F (τ)FT (τ)dτ ≤ σ2I6×6, ∀t (32)

for some positive constants σ1, σ2 and T , then Ω̃, (b̂ − b)
and (θ̂ − θ) converge exponentially to zero.

Proof: Let us consider the following Lyapunov function

candidate:

V =
1

2
b̃T AΓ−1b̃ +

1

2
θ̃T Γ̄−1θ̃ +

1

2
Ω̃T Ω̃ (33)

where b̃(t) = b̂(t) − b and θ̃(t) = θ̂(t) − θ, with θ =
[θ1, θ2, θ3]

T being a vector whose elements are the diagonal

elements of ∆A = A− Ā = diag{θ1, θ2, θ3}. Using the fact

that

˙̃Ω = −AΩ̃ + Ab̃ + ∆A(Ωg − ˆ̄Ω − b̂) − M(t)θ̂

= −AΩ̃ + Ab̃ − M(t)θ̃,
(34)

the time derivative of (33) is given by

V̇ = b̃T AΓ−1 ˙̂
b+ θ̃T Γ̄−1 ˙̂

θ +Ω̃T (−AΩ̃+Ab̃−M(t)θ̃) (35)

which in view of (30) and (31), becomes

V̇ = −Ω̃T AΩ̃ = −XT CT CX, (36)

where X = [Ω̃T b̃T θ̃T ]T and C = [A1/2 03×3 03×3] with

A1/2A1/2 = A. This implies that b̃, θ̃ and Ω̃ are bounded.

The error dynamics is given by

Ẋ = N(t)X, (37)

with

N(t) =





−A A −M(t)
−Γ 0 0

Γ̄M(t) 0 0



 (38)

Hence, system (37) is exponentially stable if the pair

(N(t), C) is uniformly completely observable (UCO) [7].

The pair (N(t), C) is UCO if the pair (N(t) − K(t)C, C)
is UCO for some K(t) ∈ L∞. Picking K(t) = [γA−1/2 −
A1/2, − Γ, − Γ̄M(t)]T for some γ > 0, we obtain

N(t) − K(t)C =





−γI A −M(t)
0 0 0
0 0 0





=

(

−γI F (t)
06×3 06×6

)

(39)

Finally, condition (32) follows from ([7], Lemma 4.8.4,

Lemma 5.6.3). ¤

Remark 1: Note that Ω̄, required in the algorithm pro-

posed in Proposition 2 and Proposition 3, cannot be obtained

from (18) since Ω is unknown. On the other hand, since the

derivative of Q̄ is not available, a practical solution is to

substitute ˙̄Q in (21) by the so-called ‘dirty derivative’

[ ˙̄Q(t)] ≈
s

1 + τ̄ s
[Q̄(t)] (40)

where 1
τ̄ is the cut-off frequency of the low-pass filter.

B. Complementary filtering

It is important to notice that, although the gyro-bias could

be recovered with just the use of Ωg and Q̄, it is not

guaranteed that the real attitude Q could be recovered by

integrating

˙̂
Q =

1

2
Q̂ ⋆ Qβ , Q̂(0) = Q̄(0),

β = Ωg − b̂.
(41)
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In fact, even though b̂(t) converges exponentially to b (i.e.,

β(t) converges exponentially to Ω(t)), and Q̂(0) = Q(0),
one cannot precisely recover the real attitude Q when t goes

to infinity. Nevertheless, one can show that a fast conver-

gence of b̃ and a small magnitude of the angular velocity,

lead to a small error between the estimated quaternion Q̂
and the real quaternion Q. In fact, one has

‖Q(t) − Q̂(t)‖ ≤ ‖Q(0) − Q̂(0)‖

+ 1
2

∫ t

0
‖Q(τ) ⋆ QΩ(τ) − Q̂(τ) ⋆ Qβ(τ)‖dτ

≤ ‖Q(0) − Q̂(0)‖ + 1
2

∫ t

0
‖Q(τ) − Q̂(τ)‖‖Ω(τ)‖dτ

+ 1
2

∫ t

0
‖b̃(τ)‖dτ

(42)

where the property ‖Q ⋆ QΩ‖ ≤ ‖Ω‖ has been used.

Since Q̂(0) = Q(0) and b̃ converges exponentially to zero,

inequality (42) leads to

lim
t→∞

‖Q(t) − Q̂(t)‖ ≤ min

{

2 ,

∫ ∞

0

‖Ω(τ)‖dτ + ǫ

}

,

(43)

where ǫ = 1
2

∫ ∞

0
‖b̃(τ)‖dτ . Applying Gronwall-Bellman

lemma, one can also derive the following inequality from

(42)

lim
t→∞

‖Q(t)−Q̂(t)‖ ≤ min

{

2 , ǫ exp

[

1

2

∫ ∞

0

‖Ω(τ)‖dτ

]}

,

(44)

On the other hand, since the measurement Q̄ is reliable at

low frequencies, it is natural to rely on that instead of Q̂ from

(41) at low frequencies. Therefore, we propose the following

complementary filter based quaternion estimation:

˙̂
Q =

1

2
Q̂ ⋆ Qβ , Q̂(0) = Q̄(0),

β = F1(s)[Ωg − b̂] + F2(s)[Ω̄ + Γ̄q̃]
(45)

where Γ̄ = Γ̄T > 0, q̃ is the vector part of Q̃ = Q̂−1 ⋆ Q̄,

and b̂(t) is bounded and converges exponentially to b (such

as in proposition 2 and proposition 3). F1(s) and F2(s) are

two complementary filters such that F1(s) + F2(s) = 1. At

low frequencies, F2(s) is close to one allowing to select

β = Ω̄ + Γ̄q̃ which forces the solution Q̂ to converge to

Q̄ from any initial condition as shown below. Taking the

following Lyapunov function candidate:

V = q̃T q̃ + (q̃0 − 1)2

= 2(1 − q̃0)
(46)

and using the fact that

˙̃Q = d
dt (Q̂

−1 ⋆ Q̄)
=

(

1
2 q̃T (β − Ω̄) , 1

2 q̃0(Ω̄ − β) + 1
2 q̃ × (Ω̄ + β)

)

:= ( ˙̃q0, ˙̃q),
(47)

we obtain, in view of (47) and the fact β = Ω̄ + Γ̄q̃, the

following result

V̇ = −q̃T Γ̄q̃. (48)

VII. ATTITUDE STABILIZATION USING LOW-COST

SENSORS

It is well known that the following control law

τ = −α1q − α2Ω, (49)

where α1 is a positive scalar and α2 is a symmetric positive

definite matrix, guarantees global asymptotic stability of the

equilibrium point (R = I,Ω = 0) as shown, for instance, in

[8], [9], [22], [23]. The equilibrium point (R = I,Ω = 0) for

(1) and (2) is equivalent to the equilibrium point (q = 0, q0 =
±1, Ω = 0) for (1) and (6). Note that the two equilibrium

points (q = 0, q0 = ±1, Ω = 0) are in reality a unique

physical equilibrium point corresponding to (R = I, Ω = 0).
The vector quaternion q and the angular velocity Ω could be

replaced, respectively, by q̂ given by (45) and (Ωg − b̂) given

in Proposition 2 or Proposition 3.

VIII. SIMULATION RESULTS

A. Simulation results for Proposition 2

The inertia matrix is taken as If = diag{4.9e − 3, 4.9e −
3, 8.8e − 3}Kg.m2, and the unknown gyro bias is taken

as b = [1, 0.5,−0.5]T rad/s. We applied the control law

τ = −α1q̂ − α2(Ωg − b̂), where by q̂ is given by

(45) and b̂ as given by Proposition 2. The initial con-

ditions have been taken as follows: Q(0) = Q̂(0) =
Q̄(0) = (0.3919,−0.2006, 0.532, 0.7233) corresponding to

initial Euler angles of (π/6,−π/4, π/3), Ω(0) = b̂(0) =
(0 0 0)T . The gain Γ has been taken as Γ = 30I3×3.

The control gains have been taken as α1 = 0.5 and α2 =
0.5 I3×3. The cut-off frequency of the filtered derivative,

used to get Ω̄, is taken as 1
τ̄ = 103rad/s. We assume that

the quaternion Q̄ is obtained using low-cost sensors such as

Q̄ is an accurate description of Q for frequencies less than
3
2π Hz. This is taken into consideration through the choice of

the matrix A = 3I3×3. The gain in the complementary filter

has been chosen as Γ̄ = 20I3×3 and the transfer functions

used in the complementary filter have been taken as:

F1(s) =
s2

s2 + 2ξωns + w2
n

, F2(s) =
2ξωns + w2

n

s2 + 2ξωns + w2
n

with ξ = 0.7 and wn = 3.

Figure 1 shows the evolution of the adapted parameters

function of time. Figure 2 shows the evolution of the actual

quaternion q = (q0, q1, q2, q3) and its estimation q̂ function

of time. Figure 3 shows the evolution of the angular velocity

Ω function of time.

IX. CONCLUSION

An attitude and gyro-bias estimation algorithm, based on

the measurements provided by low-cost sensors, has been

proposed for a rigid body in space. We assume that the

real angular velocity is equal to the velocity provided by the

gyroscope plus a certain unknown constant bias. We also as-

sume that the attitude sensors provide measurements that are

true only at low frequencies. Using a new quaternion based

complementary filter, our algorithm is able to asymptotically

recover the actual attitude of the rigid body over a wide
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Fig. 1. The adapted parameter b̂ = (b̂1, b̂2, b̂3) versus time, for Proposition
2
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Fig. 2. Actual Q (solid) and its estimation Q̂ (dashed) versus time, for
Proposition 2
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Fig. 3. The angular velocity Ω versus time, for Proposition 2

range of frequencies. The proposed estimation algorithm has

been coupled with a quaternion-based PD controller and

simulation results have been provided. For space limitation

reason, we presented simulation results just for proposition

2.
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