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Abstract—We propose a new position control scheme for
vertical take-off and landing (VTOL) unmanned airborne ve-
hicles (UAVs). Traditionally, the control schemes for this type
of vehicle assume that the system attitude is accurately known
(or measured). Unfortunately, there does not exist any sensor
that directly measures the orientation of a rigid body. Instead,
to obtain the orientation of the aircraft, separately designed
attitude-estimation schemes relying, for instance, on an inertial
measurement unit (IMU) must be employed. Consequently, one
drawback of this common practice, on top of the possible
inaccuracies in recovering the systems attitude, is mainly related
to the difficulty of proving the stability of the overall closed-
loop system (observer-controller). Motivated by this problem, we
propose a new position control scheme that does not require
the recovery of the system’s attitude. Instead, we rely on a
direct use of the vector measurements provided by the IMU. Our
approach can efficiently handle large linear accelerations, which
is not the case in traditional controllers relying on IMU-based
attitude observers that assume that the accelerometer provides a
measurement of the gravity vector in the body-attached frame.

I. INTRODUCTION

Vertical take-off and landing (VTOL) unmanned airborne
vehicles (UAVs) are more commonly being sought to perform
a number of tasks, including surveillance, structure inspection,
and a variety of other applications where human presence is
either difficult or dangerous to achieve. One of the limitations
associated with the operation of these aircraft is attributed to
the requirement of skilled and trained operators to pilot the
system. This limits the usefulness of these systems to persons
without the required training. Fortunately, this problem has
motivated several groups in the research community to develop
flight-control systems for these types of aircraft which allow
the aircraft to operate more autonomously, thereby reducing
the required skill of the pilot or operator. By relieving the
operator of some of the pilot-related duties, more attention can
be placed on viewing a camera or other sensors to address the
primary mission objective, instead of primarily concentrating
on flying the aircraft. As a result of these efforts the research
community has seen substantial and interesting advancements
in the design of position controllers, for example see [1], [2],
[3], [4], [5], [6], [7], [8].

The existing controllers are designed to provide the neces-
sary control input (in terms of the system angular velocity or
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control-torque that is applied to the rotational dynamics of the
system) based upon measurements obtained using a common-
sensor set. These sensors usually include a global positioning
system (GPS) (to obtain the system position and velocity), and
a sensor to provide the attitude of the aircraft (with respect
to a fixed inertial frame). However, there does not exist any
inertial sensor (to our knowledge) that directly measures the
orientation of a rigid body with respect to an inertial frame.
In fact, the commercially available orientation sensors employ
Kalman filtering or some other attitude observer in order to
provide the orientation of the aircraft. Therefore, there can be
un-modeled dynamics or other errors associated with the filter
(or attitude observer) that may not be accounted for by the
proposed control scheme.

Due to the unavailability of such a sensor which directly
measures orientation, the research community has also been
motivated to develop a number of attitude-observers. Typically,
the existing attitude-observers utilize a set of vectors (usually
assumed to be known in the inertial frame) which are measured
in the body-fixed frame. Some examples of attitude observers
which use vector measurements can be found in [9], [10],
[11], [12], [13] and [14]. However, the main limitation of
these types of observers is due to the limited number of
sensors that can measure the body-referenced coordinates of
a vector which is known in the inertial frame. Typically,
the two sensors used most commonly in this capacity are
the accelerometer and magnetometer, which due to devel-
opments in technologies such as Integrated Micro-Electrical-
Mechanical systems (IMEMs), are small, inexpensive, and
widely available. The magnetometer is used to measure the
known inertially-referenced ambient magnetic field in the
body-fixed frame, where the accelerometer is typically used
to measure the body-referenced gravity vector. Herein lies a
problem since the accelerometer also measures forces due to
the acceleration of the device which are likely significant due
to aircraft motion, especially in the context of position control.

To address the problem associated with the accelerometers
dependance on linear accelerations, a different type of attitude
observer has been previously proposed which uses a GPS in
addition to the vector measurements from the accelerometer
and magnetometer. Examples of this type of observers can
be found in [15], [16], and [17]). These so-called velocity-
aided attitude observers, alternatively use the accelerometer
to measure the apparent acceleration of the system, rather
than assuming only gravity is measured, resulting in significant
improvements in performance when the system experiences
relatively large linear accelerations.

A second challenge associated with the position control
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problem is due to the fact that practitioners have no other
option but to couple an attitude observer with one of the
proposed control schemes. Due to the fact that the existing
controllers assume that the orientation is directly measured
(accurately known), rather than obtained from an attitude
observer, there are currently no guarantees for stability (to
our knowledge) when these two systems are coupled together.
To address this problem, a velocity-free attitude stabilization
control scheme that uses direct vector measurements (without
attitude-estimation) has been proposed in [13]. A position
tracking controller has also been proposed in [18], where the
control laws were derived using the vector measurements as
inputs (rather than the system orientation), thereby eliminating
the need for an attitude observer. However, since this work
assumed that the inertial vectors are accurately known in
the inertial frame, the use of an accelerometer to measure
the gravity vector in the body frame may lead to unex-
pected performance, especially when the controller demands
significant accelerations of the system, thereby affecting the
accelerometer signals.

In this paper, we present a new type of position control,
which avoids the use of an attitude observer by using the vector
measurements (accelerometer and magnetometer) directly in
the control scheme. However, motivated by the velocity aided
attitude observers, in this work we also use the accelerometer
to measure the system translational acceleration, instead of
assuming only the gravity vector is measured, which (to our
knowledge) has not been previously achieved in the available
literature in this context. As a result of our proposed control
laws, we show that for an appropriate choice of control gains,
the system position is guaranteed to converge to a target
position which is constant (or slowly varying with respect to
time), for almost all initial conditions. This resulting control
scheme is likely to provide better performance since it does
not assume that the orientation is accurately known, does not
require the use of an attitude observer, and is not negatively
affected by large system accelerations which could otherwise
destroy the performance of previous observers/controllers that
use the accelerometer to measure the gravity vector.

II. BACKGROUND

A. Attitude Representation

Let I denote an inertial frame of reference rigidly attached
to the earth (assumed flat), and B denote a frame of reference
rigidly attached to the aircraft center of gravity. To describe
the rotation from I → B we use the quaternion Q = (η, q),
η ∈ R, q ∈ R3, where Q belongs to the set of unit quaternion

Q = (η, q) ∈ Q := {Q ∈ S3 | ∥Q∥ = 1}, (1)

where S denotes a three-dimensional sphere ([19], [20],[21]).
The unit norm constraint of the quaternion implies η2+qTq =
1. The rotation I → B can also be described using a direct
cosine (rotation) matrix R(η, q) ∈ SO(3) where SO(3) is the
special-orthogonal group

SO(3) := {R ∈ R3×3 | det R = 1 | RRT = RTR = I3×3}.
(2)

The rotation matrix R(η, q) corresponding to the unit quater-
nion Q = (η, q) can be determined using the so-called
Rodrigues formula

R(η, q) = I3×3 + 2S(q)2 − 2ηS(q), (3)

where S(·) is the skew-symmetric matrix

S(u) =

 0 −u3 u2
u3 0 −u1
−u2 u1 0

 , (4)

where u = [u1, u2, u3]
T. The set Q requires the use of some

unique mathematical operations which we will define now.
Given Q,P ∈ Q where P = (p0, p) the quaternion product is
defined by

Q⊙ P =
(
p0η − qT p, ηp+ p0q + S(q)p

)
. (5)

Note that the quaternion product of two unit-quaternion pre-
serves the properties of the unit quaternion, i.e Q ⊙ P ∈ Q.
The unit-quaternion inverse is given by Q−1 = (η,−q)
which has the property Q ⊙ Q−1 = Q−1 ⊙ Q = (1,0) and
Q ⊙ (1,0) = (1,0) ⊙ Q = Q, where (1,0) is known as the
identity quaternion.

B. Attitude Dynamics

Let ω denote the body-referenced angular velocity of the
frame B wrt I (expressed in B). Using the body-referenced
angular velocity an expression for the time-derivative of the
quaternion Q is given by

Q̇ =
1

2
Q⊙

[
0
ω

]
=

1

2

[
−qT

ηI3×3 + S(q)

]
ω. (6)

Similarly, an expression for the time-derivative of the rotation
matrix R(η, q) is given by Ṙ (η, q) = −S (ω)R (η, q) .

C. Bounded Functions

Consider a bounded, differentiable function, denoted as
h(·) : R3 → R3, where we also denote ϕ(u) := ∂

∂uh(u),
which satisfies the following properties:

uTh(u) > 0 ∀u ∈ R3, ∥u∥ ∈ (0,∞)
0 ≤ ∥h(u)∥ < 1
0 < ∥ϕ(u)∥ ≤ 1

}
∀u ∈ R3, ∥u∥ ∈ [0,∞).

(7)

Throughout the paper we make use of one example of this
type of function which is given by h(u) =

(
1 + uTu

)−1/2
u

from which one can derive the expression for ϕ(u) to be

ϕ(u) =
(
1 + uTu

)−3/2 (
I3×3 − S(u)2

)
. (8)

D. System Model

Let p, v ∈ R3 denote the position and velocity, respectively,
of the vehicle COG expressed in the inertial frame I. Let the
unit quaternion Q = (η, q) represent the rotation between the
frame I and B which is rigidly attached to the vehicle COG.
Let R = R(η, q) denote the rotation matrix corresponding
to the quaternion Q. Using the framework outlined in section
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II-B we consider the following well-known model for a VTOL
UAV ( [5], [7], [8] )

ṗ = v, (9)
v̇ = µ+ δ(v), µ = ge3 − utR

Te3, (10)

Q̇ =
1

2

[
−qT

ηI3×3 + S(q)

]
ω, (11)

where ut = T/mb, T is the system thrust, mb is the
system mass, e3 = col [0, 0, 1], g is the gravitational accel-
eration, and δ(v) is a disturbance which is dependant on
aerodynamic drag forces. The control input of the system
is defined as u = [ut, ω]

T. The system output is defined
as y = [p, v, b1, b2]

T where b2 is the signal obtained using
an accelerometer, b1 = Rr1 is a signal obtained using a
magnetometer, and r1 is the magnetic field of the surrounding
environment (assumed constant). Note that the system attitude
Q,R is not assumed to be a known output of the system. The
accelerometer model is given by

b2 = R (v̇ − ge3) = −ute3 +Rδ = Rr2, (12)

where r2 is known as the system apparent acceleration such
that v̇ = ge3 + r2, or equivalently

r2 = −utRTe3 + δ. (13)

III. PROBLEM FORMULATION

Let pr denote a desired reference position, which is assumed
to be constant (or slowly-varying), and let ep = p − pr.
Our main objective is to develop a control law for the
system inputs ut and ω, using the available system outputs
y = [p, v, b1, b2], such that the system states (ep, v) are
bounded and limt→∞ (ep, v) = 0. To develop the control laws
we first make a number of simplifying assumptions.

Assumption 1 (Aerodynamic Forces): In light of the fact
that the disturbance force δ is due to aerodynamic forces
exerted on the vehicle we make the following simplifying
assumptions:
(a) The aerodynamic disturbance δ is dissipative with respect

to the system translational kinetic energy and satisfies
δTv ≤ 0.

(b) The aerodynamic disturbance force δ is only dependant on
the system translational velocity, and there exists a positive
constant c1 such that δ is bounded by ∥δ∥ ≤ c1∥v∥2.

(c) There exists positive constants c2 and c3 such that the
time-derivative of the aerodynamic disturbance force is
bounded by ∥δ̇∥ < c2 + c3∥v∥3.

Assumption 1(a) and 1(b) can be realized when the system is
operating in an environment where the exogenous airflow is
negligible (no wind). Assumption 1(c) can be satisfied when
the system geometry is sufficiently symmetrical such that
the system aerodynamic forces do not significantly depend
on the system orientation. Although this assumption may be
reasonable for certain VTOL type aircraft, for example the
ducted-fan, this assumption may not be the case with certain
systems, for example fixed wing aircraft, where the system
aerodynamics depend largely on the orientation of the vehicle.

Assumption 2: Given two positive constants γ1, γ2, there
exists a positive constant cw(γ1, γ2) such that the matrix

W = −γ1S(r1)2 − γ2S(r2)
2, (14)

is bounded by cw ≤ λmin(W ), where λmin(W ) denotes the
minimum eigenvalue of W .

Assumption 2 is satisfied provided that the value for r2 is
non-vanishing and is non-collinear to the magnetic field vector
r1. Note that in the case where r2 = 0, v̇ = ge3 which is
unlikely under normal operating conditions.

Now that we have established the required assumptions,
let us consider the model for the system acceleration from
(10): due to the underactuated nature of this system, the
translational acceleration is driven by the system thrust and
orientation µ(ut, R). That is, if µ were a control input,
setting µ = −kpep − kvv would satisfy the objectives (since
vTδ(v) ≤ 0). However, since µ is a function of the system
state, we define the µd ∈ R3 as the desired acceleration, and
introduce the new error signal

eµ = µ− µd. (15)

Subsequently, a new objective is to force eµ → 0 in order
to obtain the desired translational dynamics. Since the signal
µ is dependant on the system thrust and attitude, based upon
the value of the desired acceleration µd we wish to obtain a
suitable desired attitude, denoted as Qd = (ηd, qd) ∈ Q, and
system thrust ut, such that the following equation is satisfied

µd = ge3 − utR
T
d e3, (16)

where Rd = R (ηd, qd), is the rotation matrix corresponding
to the unit-quaternion Qd, as defined by (3). An extraction
method which satisfies these requirements has been previously
given in [8]. For the sake of clarity, this attitude and thrust
extraction algorithm is restated in the following section.

A. Desired Attitude and Thrust Extraction

Given an arbitrary vector µd ∈ R3 we wish to find the value
of attitude Rd ∈ SO(3) and system thrust ut ∈ R that satisfies

ge3 − utR
T
d e3 = µd. (17)

A solution to this problem, which has been proposed in [8],
is provided as follows: Given µd where µd /∈ L,

L = {µd ∈ R3;µd = col[0, 0, µd3];µd3 ∈ [g,∞)}, (18)

then a value of the thrust ut and attitude Qd = (ηd, qd) which
satisfies (17) is given by

ut = ∥µd − ge3∥, (19)

ηd =

(
1

2

(
1 +

g − eT3µd
∥µd − ge3∥

))1/2

, (20)

qd =
1

2∥µd − ge3∥ηd
S(µd)e3. (21)

The extracted attitude Qd has the time derivative

Q̇d =
1

2

[
−qTd

ηdI3×3 + S(qd)

]
ωd, (22)
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where the desired angular velocity ωd is given by

ωd = M(µd)µ̇d, (23)

M(µd) =
1

4η2du
4
t

(
−4S(µd)e3e

T
3 + 4η2dutS(e3) + 2S(µd)

−2eT3µdS(e3)
)
S (µd − ge3)

2
. (24)

It is worth noting that there are an infinite number of
solutions for the desired attitude which achieve the desired
system acceleration. The above attitude extraction offers a
unique solution since it effectively includes an extra constraint
by fixing the desired yaw angle.

B. Attitude Error

Let Qe = (ηe, qe) ∈ Q and Re = R (ηe, qe) ∈ SO(3)
denote the attitude error which are defined by Qe = Q⊙Q−1

d ,
and Re = RT

dR, where Qd is the unit quaternion obtained
using (20) and (21). In light of the derivatives Q̇ and Q̇d, as
defined by (11) and (22), respectively, the time derivative of
the attitude error is found to be

Q̇e =
1

2
Qe⊙

[
0
ωe

]
, Ṙe = −S(ωe)Re, ωe = RT

d (ω − ωd) ,

(25)
where ωd is the desired angular velocity as defined by (23).

IV. POSITION CONTROLLER

As previously discussed, the control scheme is based upon
a value of the desired attitude, in terms of Rd or Qd, which
is obtained using the value of the desired translational accel-
eration µd. To avoid the singularity in the attitude extraction
algorithm, defined by (18), we must ensure that the expression
for µd is bounded a priori. This can be accomplished using the
bounded function h(·) defined in section (II-C). We choose the
following expression for the desired translational acceleration:

µd = −kph(ep)− kvh(v), (26)

from which we obtain the required system thrust ut and
desired attitude Qd = (ηd, qd) from (19)-(21), and the rotation
matrix Rd using (3). To avoid the singularity in the attitude
extraction (to ensure a solution for Qd and Rd exists) we
choose positive gains kp and kv which satisfy the following
requirement

kp + kv < g, (27)

which ensures the singularity can never be reached. Due to
this choice of gains, from (19) one can deduce that the thrust
is non-vanishing and bounded. That is there exists positive
constants ct and c̄t such that

0 < ct ≤ ut ≤ c̄t,
ct = g − kp − kv, c̄t = g + kp + kv.

(28)

Furthermore, as a consequence of the lower bound for the
thrust, in [8] the authors find an upper bound for the matrix
M(µd), defined by (24), which is given by

∥M(µd)∥ ≤
√
2/ct. (29)

In light of the choice for µd, the derivatives of the position
error and velocity are now given by

ėp = v, (30)
v̇ = −kph(ep)− kvh(v) + eµ + δ. (31)

To obtain the desired angular velocity ωd, using (8), (23), (30)
and (31) we first calculate the derivative of µd to be

µ̇d = fµd − kvϕ(v)eµ − kvϕ(v)δ, (32)
fµd = −kpϕ(ep)v + kvϕ(v) (kph(ep) + kvh(v)) . (33)

To define the control law, we are required to use vector
measurements (instead of the attitude Q or R), however
the inertial referenced vector r2 which corresponds to the
accelerometer measurement is not available. To obviate the
requirement of r2, we define the error signal ṽ = v− v̂ where
v̂ ∈ R3 is an adaptive state which is designed such that ṽ is
related to r2 in some manner. To this end, we now propose
the following control law

ω = M(µd)
(
fµd − kvϕ(v)R

T
d (b2 + ute3)

)
+ β, (34)

β = γ1S(Rdr1)b1 + γ2k1S (Rd (v − v̂)) b2 (35)
˙̂v = ge3 +RT

d b2 + k1 (v − v̂) +RT
dS(b2)β/k1, (36)

where k1, γ1, γ2 > 0, M(µd) is the function defined by (24),
and ϕ(·) is the bounded function defined by (8). The role of β
in the feedback structure is to use the vector measurements
in order to force the system attitude to the desired value
(correction term which forces Q→ Qd). The remaining term
in the expression for ω is related to the desired angular velocity
ωd (tracking term).

In light of these control laws we propose the following
theorem:

Theorem 1: Consider the system given by (9)-(11), where
we apply the control laws ut and ω as defined by (19) and (34)
where the gain restriction (27) is satisfied. Let Assumptions
1 and 2 be satisfied. Then the system thrust ut is bounded
and non-vanishing, and for all initial conditions ηe(t0) ̸= 0
there exists gains γ̄1, γ̄2, κ1 > 0 such that for γ1 > γ̄1,
γ2 > γ̄2, k1 > κ1, the system states (ep, v) are bounded
and limt→∞ (ep, v) = 0.

Proof: First, let us define the following error function

ψ = k1ṽ − (I −Re) r2,

where ṽ = v − v̂ and I = I3×3 is the identity matrix. Using
the error function for ψ, in addition to the fact that S(Rdu) =
RdS(u)R

T
d and RT

dR = Re, the expression for the function
β, defined by (35), can now be written as

β = γ1RdS(r1)Rer1 + γ2RdS(r2)Rer2 + γ2RdS(ψ)Rer2.
(37)

At this point in the proof, we wish to study the dynamics of the
attitude error (in terms of the quaternion scalar ηe) as a result
of the proposed control law, which requires we first calculate
the expression for the desired angular velocity ωd. Due to the
control law µd from (26), the derivative µ̇d from (32), and
using (23) we find the expression for the desired angular ve-
locity is given by ωd =M(µd) (fµd − kvϕ(v)δ − kvϕ(v)eµ) ,
which we use, along with (25), (37), the control law ω from
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(34), and the properties b2 + ute3 = Rδ and qTe S(ri)Reri =
2ηeq

T
e S(ri)

2qe. to eventually obtain the time-derivative of ηe
to be given by

η̇e = ηeq
T
eWqe −

γ2
2
qTe S(ψ)Rer2

−kv
2
qTeR

T
dM(µd)ϕ(v) ((I −Re) δ + eµ) , (38)

where W is the matrix defined by (14). Note that due to
Assumption 2, the matrix W = WT is positive-definite. We
now focus our attention to study the dynamics of the error
function ψ. In light of the expression for v̇ from (10), the
attitude error dynamics (25), the expression for ˙̂v from (36),
and using the fact that −k1ṽ + r2 − R̂Tb2 = −ψ, we obtain

ψ̇ = −k1ψ − (I −Re) ṙ2

+kvR
T
dS(b2)M(µd)ϕ(v) ((I −Re) δ + eµ) ,(39)

For the sake of convenience, we define two functions,
f1(ut), f2(x) ∈ R3×3 such that

eµ = f1(ut)qe, (I −Re)x = f2(x)qe, x ∈ R3,

where from the definition of eµ = µ − µd, in addition to the
expressions for µ and µd from (10) and (17), respectively, one
can find f1(ut) = 2ut (ηeI − S(qe))S(R

Te3) and f2(x) =
2 (S(qe)− ηeI)S(x). Based upon these definitions we find
the following upper bounds for these two functions

∥f1(ut)∥ ≤ 2c̄t ∥f2(x)∥ ≤ 2∥x∥. (40)

We now propose the following Lyapunov function candidate:

V = γkp

(√
1 + eTp ep − 1

)
+
γ

2
vTv+

γkψ
2
ψTψ+γq

(
1− η2e

)
,

(41)
where γ, kψ, γq > 0. In light of (30), (31), (38), (39), and the
expression for µd defined by (26), we derive the derivative of
V as follows:

V̇ = −γkvvTh(v) + γvTδ − γkψk1ψ
Tψ − 2γqη

2
eq

T
eWqe

+γkvkψψ
TRT

dS(b2)M(µd)ϕ(v) (f1(ut) + f2(δ)) qe
−γkψψTf2(ṙ2)qe + γvTf1(ut)qe + γ2γqηeq

T
e S(ψ)Rer2

+γqkvηeq
T
eR

T
dM(µd)ϕ(v) (f1(ut) + f2(δ)) qe.

(42)
To study the upper bound for V̇ we first study the bounds for a
number of functions. First, let us define the function σ(t) ∈ R
where

σ(t) :=
√
2V(t). (43)

Based upon the definition of V from (41), one can find
∥v(t)∥ ≤ σ(t)/

√
γ and ∥ψ(t)∥ ≤ σ(t)/

√
γkψ. Therefore,

in light of Assumption 1, one can conclude that the value of
δ(v) is bounded by

∥δ(v)∥ ≤ c1σ(t)
2/γ. (44)

Due to the bounds of the functions f1(ut) and f2(δ) from
(40), and the definition of r2 from (13) we also find

∥f1(ut) + f2(δ)∥ ≤ 2
(
γc̄t + c1σ(t)

2
)
/γ, (45)

∥b2∥ ≤
(
γc̄t + c1σ(t)

2
)
/γ, (46)

Given these bounds, we now apply Young’s inequality to a
number of the undesired terms in the expression for V̇:

γvTf1(ut)qe ≤
γϵ1
2
vTh(v) +

2
√
γc̄2t
ϵ1

√
γ + σ(t)2qTe qe,

(47)
γkvkψψ

TRT
dS(b2)M(µd)ϕ(v) (f1(ut) + f2(δ)) qe

≤ γkvkψϵ2
2

ψTψ +
4kvkψ
ϵ2γ3c2t

(
γc̄t + c1σ(t)

2
)4
qTe qe,

(48)

where the norm of the matrix M(µd) is given by (29). To
determine the bound of the term involving the derivative of r2,
we differentiate the expression for r2 given by (13), which we
have omitted due to space constraints. However, based upon
the result for the derivative, in addition to the bound of b2 and
δ from (46) and (44), respectively, we find that there exists
positive constants d1,2,3,4,5 > 0, such that the norm of ṙ2 is
bounded by ṙ2 ≤ d1 + d2∥v∥ + d3∥v∥2 + d4∥v∥3 + d5∥v∥4.
However, for the sake of simplicity, from this result we further
conclude that there exists positive constants c3 and c4 such that
ṙ2 ≤ c3+c4σ(t)

4. Note that the constants di, and therefore c3
and c4, depend on the gains kp, kv, γ1 and γ2, but they do not
depend on the gain k1, which will be useful later in the proof.
As a result of this analysis, we again use Young’s inequality
to establish the following bounds:

γkψψ
Tf2(ṙ2)qe

≤ γkψϵ3
2

ψTψ +
2γkψ
ϵ3

(
c3 + c4σ(t)

4
)2
qTe qe,

(49)

γ2γqηeq
T
e S(ψ)Rer2

≤ γ2γqϵ4
2

ψTψ +
γ2γq
2γ2ϵ4

(
c̄tγ + c1σ(t)

2
)2
η2eq

T
e qe.

(50)

Finally, we also find the bound of the following function

γqkvηeq
T
eR

T
dM(µd)ϕ(v) (f1(ut) + f2(δ)) qe

≤ 2
√
2γqkv

(
γc̄t + c1σ(t)

2
)
|ηe|qTe qe/(γct).

(51)

Recall from Assumption 2 the norm of the matrix W has a
lower bound which is denoted as cw. Therefore, in light of
these results we find the expression V̇ is bounded by

V̇(t) ≤ −vTh(v) (kv − ϵ1/2)

−γqη2eqTe qe
(
2cw − 1

η2e

(
α1(t)

ϵ1
+
α2(t)

ϵ2
+
α3(t)

ϵ3

)
− α4(t)

ϵ4|ηe|

−
2
√
γc̄2t

(
γ + σ(t)2

)1/2
η2e

−
2
√
2kv

(
γc̄t + c1σ(t)

2
)

γct|ηe|

)
−γkψψTψ

(
k1 −

ϵ2kv + ϵ3
2

− ϵ4γ2γq
2γkψ

)
,

(52)
α1(t) = 2

√
γc̄2t

√
γ + σ(t)2/γq,

α2(t) = 4kvkψ
(
γc̄t + c1σ(t)

2
)4
/(γ3c2tγq),

α3(t) = 2γkψ(c3 + c4σ(t)
4)2/γq,

α4(t) = γw(c̄tγ + c1σ(t)
2)2/(2γ2).

(53)

Note that when ηe(t) = 0 we cannot guarantee stability
using (52) since in this case V̇ could potentially be positive.
Consequently, we must show that ηe(t) ̸= 0 for all t > t0.
Due to this requirement we are forced to exclude the initial
condition ηe(t0) = 0. To show that ηe(t) is never zero, we first
introduce the positive constant ρ which is the desired minimum
bound for |ηe(t)|. Therefore, ρ must be chosen to satisfy
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0 < ρ < |ηe(t0)|. Subsequently, based upon the definition
of the Lyapunov function candidate (41), we choose the gain
γ as follows

γ =
γ̄

kp

(√
1 + ∥ep(t0)∥2 − 1

)
+ 1

2∥v(t0)∥2 +
kψ
2 ∥ψ(t0)∥2 + ξ

,

(54)
where ξ > 0, and γ̄ is chosen to satisfy

0 < γ̄ < γq
(
ηe(t0)

2 − ρ2
)
. (55)

The remaining gains are chosen as follows: Choose kp, kv > 0
such that (27) is satisfied, and choose 0 < ϵ1 < 2kv . Recall
from (14) that the gain cw > 0 can be increased using the
gains γ1 and γ2. Therefore, there exists gains γ̄1,γ̄2, and ϵ̄i,
i = 2, 3, 4, such that for all γ1 > γ̄1, γ2 > γ̄2, and ϵi > ϵ̄i the
following inequality is satisfied

2cw >
1

ρ2

(
α1(t0)

ϵ1
+
α2(t0)

ϵ2
+
α3(t0)

ϵ3

)
+
α4(t0)

ϵ4ρ

+
2
√
γc̄2t

(
γ + σ(t0)

2
)1/2

ρ2
+

2
√
2kv

(
γc̄t + c1σ(t0)

2
)

γctρ
,

(56)
where we note that the functions σ(t) and α1(t) through α4(t)
are non-increasing if V̇ ≤ 0. Finally, we choose the gain k1 to
satisfy k1 > κ1 := k1 > ϵ2kv + ϵ3/2 + ϵ4γ2γq/(2γkψ). Due
to these choices for the gains we conclude that V̇(t0) ≤ 0,
and a sufficient condition for V̇(t) ≤ 0 is |ηe(t)| ≥ ρ. We will
now show that indeed ρ ≤ |ηe(t)| for all t > t0. Suppose that
there exists a time t1 such that for all t0 ≤ t < t1, |ηe(t)| ≥ ρ
and |ηe(t1)| < ρ when t = t1. At the time t1 from (41), it is
clear that V(t1) ≥ γq

(
1− ηe(t1)

2
)
> γq

(
1− ρ2

)
. However,

due to the choice of the gain γ and γ̄, given by (54) and (55),
respectively, the value of the Lyapunov function candidate at
the initial time t0 must satisfy V(t0) < γ̄+γq

(
1− ηe(t0)

2
)
<

γq
(
1− ρ2

)
and therefore V(t1) > V(t0). This is a contra-

diction since V̇(t) ≤ 0 for all t0 ≤ t < t1. Therefore, we
conclude that |ηe(t)| ≥ ρ and V̇(t) ≤ 0 for all t > t0, and the
states (v, ψ) are bounded. Therefore the expressions for ψ̇, v̇,
η̇e, and V̈ are bounded. Barbalat’s Lemma therefore implies
that limt→∞ (v, ψ, qe) = 0. Since ψ → 0 and qe → 0, this
further implies that ṽ → 0. Furthermore, since limt→∞ v̇ = 0,
and limt→∞ δ = 0, it follows from the expression of the
velocity dynamics v̇ = −kph(ep) − kvh(v) − δ = 0, then
limt→∞ ep = 0 which satisfies the control objectives.

V. CONCLUSION

We proposed a new position controller for VTOL-UAVs
which uses low cost sensors, namely an accelerometer and
magnetometer, in addition to a GPS. The main advantage of
this controller is that it does not require direct measurement
of the system attitude, nor does it require the use of an
attitude observer. Alternatively, in this control-scheme we use
the accelerometer and magnetometer signals directly in the po-
sition controller (and not for attitude estimation). Furthermore,
the accelerometer is now used to obtain the system apparent
acceleration, instead of measuring the gravity vector in the
body-fixed frame (which would normally require the system

to be non-accelerating), which offers superior performance
when the system is subjected to linear accelerations. We have
shown that, through an appropriate choice of the control gains,
the system position is guaranteed to converge to the desired
position for almost all initial conditions.
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