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A Unified Adaptive Iterative Learning Control Framework
for Uncertain Nonlinear Systems

Abdelhamid Tayebi and Chiang-Ju Chien

Abstract—In this note, we propose a unified framework for adaptive it-
erative learning control design for uncertain nonlinear systems. It is shown
that if a Lyapunov based adaptive control law is available for the system
under consideration and the Lyapunov function satisfies certain conditions,
it is straightforward to extend the adaptive controller to handle repetitive
systems operating over a finite time interval. According to the value of a
certain parameter , the parametric adaptation law can be a pure time-do-
main adaptation, a pure iteration-domain adaptation or a combination of
both.1 The advantages and disadvantages of the three possible adaptation
types are discussed and some illustrative examples are given.

Index Terms—Adaptive control, iterative learning control, nonlinear
systems.

I. INTRODUCTION

After more that two decades of intensive research, iterative learning
control (ILC) is now a well-established control technique that fits well
systems that are repetitive in nature. Roughly speaking, this technique
aims to generate, in an iterative manner, the adequate control input
leading to a “perfect” tracking over a finite time-interval for systems
executing repetitive tasks over a finite time-interval (see, for instance,
[1]–[4], [13], and [16]). In its early stages, the design of ILC schemes
was, primarily, based upon the contraction mapping approach and the
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1A pure iteration-domain adaptation is described by a difference equation,
a pure time-domain adaptation is described by a differential equation, and a
combination of both is described by a differential-difference equation.

use of the time-weighted norm (or �-norm) to prove the convergence
of the iterative process. This approach basically consists of adjusting
the previous control input with an adequate correcting term depending,
generally, on the current and/or the previous tracking error profiles.
This approach encountered several well-known obstacles, such as the
resetting condition, low convergence rates, requirement of the global
Lipschitz condition for nonlinear systems, and use of the output time-
derivatives for systems with high relative degree. In this framework, the
reference trajectory as well as the disturbances are usually assumed to
be iteration-invariant [i.e., the reference trajectory (or the disturbance)
has to be the same at each iteration].

In the mid-1990s, a new ILC approach, adaptive ILC, based on a Lya-
punov-like theory was introduced to overcome some of the limitations
of the original approach [5]–[8], [11], [12], [14], [16], [17]. This new
design methodology, which inherits the main attributes from its coun-
terpart in standard nonlinear theory, provided powerful tools to handle
complex systems that were difficult to handle using the contraction
mapping approach. In fact, among the benefits of this approach, one can
recall the relaxation of the resetting and Lipschitz conditions, the ability
to handle systems with high relative degree, and iteration-varying dis-
turbances and reference trajectories. In this framework, the previous
control input is adjusted indirectly through the adjustment of some pa-
rameters in the control law. The adjustment of the parameters can be
performed along the iteration axis [14], [16], [17], along the time-axis
(initializing the parameter estimates with their final values obtained at
the preceding iteration) [6], or combining both [7], [8], [11], [12]. In
fact, in [7] and [8], only uniform boundedness has been proven for a
particular class of uncertain nonlinear systems in lower triangular form.
Afterwards, the authors in [11] extended the work of [7] and [8] by
proving the stability and the asymptotic convergence of the tracking
error and the composite learning error for a class of uncertain non-
linear systems in lower triangular form. In the tutorial paper [11], a
combined iteration-domain and time-domain adaptive ILC algorithm
has been proposed for a specific class of uncertain nonlinear systems
with specific structural properties.

In this note, we provide a unified formulation of adaptive ILC for a
quite large class of uncertain nonlinear systems.2 In fact, we provide a
systematic procedure for the design of adaptive ILC schemes for un-
certain systems based on the existence of a Lyapunov function for the
system under consideration. The proposed parametric adaptation law
is quite general in the sense that it depends on a scalar 
 allowing
to select the desired type among the three adaptation types discussed
above, namely, a pure time-domain adaptation for 
 = 0, a pure it-
eration-domain adaptation for 
 = 1, and a combination of both for

 2 (0; 1). In this framework, the reference trajectory is allowed to be
iteration-varying and the initial tracking error, at each iteration, is set
either to zero (resetting condition) or to the tracking error obtained at
the end of the previous iteration (alignment condition). The advantages
and disadvantages of the three adaptation types are discussed, and some
examples illustrating the design procedure are provided. A preliminary
version of this note has been presented in [15].

II. ADAPTIVE ILC DESIGN

Let us consider the following nonlinear system:

_xk(t) = f(xk(t); uk(t); �; t) (1)

where xk 2
n is the state vector (denoting generally the tracking

error), uk 2 m is the control vector, � 2 p is an unknown constant
vector, t 2 [0; T ] is the time, and k 2 + in the iteration (or trial)
index. The nonlinear function f : n

�
m
�

p
� [0; T ] ! n is

2No structural assumptions, such as those used in [7], [8], [11], and [12], are
made. The proposed proof does not involve directly the structural properties of
the system under consideration.
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such that f(xk(t); uk(t); �; t) is bounded over [0,T ] as long as xk(t)
and uk(t) are bounded over [0,T ]. In general, (1) represents the error
dynamics, and the explicit appearance of the time in (1) is often due to
the time-varying reference trajectory.

Suppose that one can design a well-defined3 dynamic control law of
the form

uk(t) = g(xk(t); �̂k(t); t)

_̂
�k(t) = h(xk(t); t) (2)

such that there exist a positive definite function

�(xk; ~�k) = V (xk) +W (~�k) (3)

with V and W being two differentiable positive definite functions,
satisfying

_� = LfV (xk) + LhW (~�k) � ��(xk) (4)

where �(xk) is a positive definite function, ~�k = �̂k � �; LfV �
(@V =@xk)f , and LhW � (@W=@~�k)h.

We assume that h(xk(t); t) is bounded over [0,T ] as long as xk(t) is
bounded over [0,T ]. We also assume thatW (~�k) satisfies the following
properties:

P1)

@W (~�k)

@~�k

2

�
@W (~�k)

@~�k
~�k (5)

P2)

W (~�k)�W (~�k�1) � �
(��k) +
@W (~�k)

@~�k
��k (6)

where 
(��k) is a positive semidefinite function and ��k(t) =
�̂k(t) � �̂k�1(t).

Note that properties P1) and P2) are purely technical, needed for
the proof of our theorem. They are unnecessary in certain situa-
tions, as will be discussed later in our remarks. For instance, these
properties are satisfied if we consider W (~�k) = (1=2)~�Tk �

�1~�k ,
with � being a symmetric positive definite matrix. In this particular
case, (@W (~�k)=@~�k) = ~�Tk �

�1 and W (~�k(t)) � W (~�k�1(t)) =
�(1=2)��Tk �

�1��k + ��Tk �
�1~�k .

Throughout this note, we will use the Lpe norm defined as follows:

kx(t)kpe
t

0
kx(� )kpd�

1=p

; if p 2 [1;1)

sup0���tkx(�)k; if p =1

where kxk denotes any consistent norm of x and t belongs to the finite
interval [0,T ]. We say that x 2 Lpe when kxkpe exists (i.e., when
kxkpe is finite).

Now, one can state our result in the following theorem.
Theorem 1: Consider system (1) under the following adaptive ILC

scheme:

uk(t) = g(xk(t); �̂k(t); t)

(1� 
)
_̂
�k(t) = �
�̂k(t) + 
�̂k�1(t) + h(xk(t); t) (7)

with 
 2 [0; 1]; �̂�1(t) = 0. For 
 2 [0; 1), we set �̂k(0) = �̂k�1(T ).
Assume that xk(0) = 0 or xk(0) = xk�1(T ); 8k 2 +. Then we
have the following.

i) For 
 2 [0; 1); xk(t); ~�k(t); uk(t) 2 L1e, for all k 2 + and
for all t 2 [0; T ], and limk!1 xk(t) = 0; 8t 2 [0; T ].

3g(x (t); �̂ (t); t) and h(x (t); t) are bounded as long as x (t); �̂ (t) and
t are bounded.

ii) For 
 = 1; xk(t) 2 L1e; ~�k(t); uk(t) 2 L2e for all k 2

+ and for all t 2 [0; T ], and limk!1
T

0
�(xk(�))d� = 0.

Moreover, with xk(0) = 0, we have limk!1 xk(t) = 0; 8t 2
[0; T ].

Proof: First, we will prove (i), i.e., for 
 2 [0; 1). Let us consider
the following positive definite function:

	(xk; ~�k) = V (xk) + (1� 
)W (~�k): (8)

In the sequel, we will use 	k(t) to denote 	(xk(t); ~�k(t)); Vk(t) to
denote V (xk(t)); and Wk(t) to denote W (~�k(t)). The time derivative
of (8), in view of (1)–(5), is given by

_	k = LfVk + (1� 
)
@Wk

@~�k

_̂
�k

= LfVk + LhWk +
@Wk

@~�k
(�
�̂k + 
�̂k�1)

� ��(xk) +
@Wk

@~�k
(�
�̂k + 
�̂k�1)

� �

@Wk

@~�k
(�̂k � �̂k�1) = �


@Wk

@~�k
(~�k � ~�k�1):

Using property P1) and a simplified version of Young’s inequality, i.e.,
(@Wk=@~�k)~�k�1 � k(@Wk=@~�k)k

2 + (1=4)k~�k�1k
2, we have

_	k � �

@Wk

@~�k
~�k + 


@Wk

@~�k

2

+



4
k~�k�1k

2

�



4
k~�k�1k

2: (9)

Since �̂�1(t) = 0 and �̂0(0) = �̂�1(T ), it is clear that 	0(t) and
hence x0(t) and ~�0(t) are bounded for all t 2 [0; T ].

Now, let us use the following positive definite functional:

�	(xk; ~�k; t) = 	(xk; ~�k) + 

t

0

W (~�k(�))d� (10)

whose difference can be evaluated, in view of (1)–(6), as follows:

��	k(t) = 	k(t)�	k�1(t) + 

t

0

(Wk(�)�Wk�1(�))d�

= Vk(t)� Vk�1(t) + (1� 
)(Wk(t)�Wk�1(t))

+ 

t

0

(Wk(�)�Wk�1(�))d�

= �Vk�1(t)� (1� 
)Wk�1(t) + Vk(0)

+ (1� 
)Wk(0) + 

t

0

(Wk(�)�Wk�1(�))d�

+
t

0

(LfVk(�) + (1� 
)
@Wk

@~�k

_̂
�k(�))d�

� �
t

0

�(xk(�))d��

t

0


(��k)d�+Vk(0)� Vk�1(t)

+ (1� 
)(Wk(0)�Wk�1(t)): (11)

Now, using the fact that Vk(0) = 0 (or Vk(0) = Vk�1(T )) and
Wk(0) = Wk�1(T ), we have

��	k(T ) � �
T

0

�(xk(�))d� � 

T

0


(��k(�))d� � 0: (12)

Hence, �	k(T ) is bounded for all k 2 + since �	0(T ) is bounded due
to the boundedness of 	0(t) over [0; T ]. This implies that 	k(T ) and
T

0
W (~�k(�))d� are bounded for all k 2 +, which in turn implies

that T

0
k~�kk

2d� is bounded for all k 2 + since W is a positive
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definite function. Now, from (9), in the case where Vk(0) = Vk�1(T ),
one has

	k(t) � 	k(0)+
t

0




4
k~�k�1k

2
d� � 	k�1(T )+

T

0




4
k~�k�1k

2
d�

and in the case where Vk(0) = 0, one has

	k(t) � (1� 
)W (~�k�1(T )) +
T

0




4
k~�k�1k

2
d�

which implies that 	k(t) is bounded for all k 2 + and all t 2 [0; T ],
and hence xk(t); ~�k(t); uk(t) are bounded for all k 2 + and for all
t 2 [0; T ]. Now, from (12), it is easily seen that

�	k(T ) = �	k(0) +

k

j=1

��	j(T )

� �	k(0)�

k

j=1

T

0

�(xj(�))d� � 


k

j=1

T

0


(��j(�))d�:

(13)

Hence
k

j=1

T

0

�(xj(�))d� + 


k

j=1

T

0


(��j(�))d� � �	k(0)� �	k(T ):

(14)

Since 	k(t) is bounded for all k 2 + and for all t 2 [0; T ], it is clear
that �	k(t) is bounded for all k 2 + and for all t 2 [0; T ]. There-
fore, from (14), one can conclude that limk!1

T

0
�(xk(�))d� = 0

and, in the case where 
 6= 0; limk!1
T

0

(��k(�))d� = 0. Since

xk(t); ~�k(t); uk(t) 2 L1e, one has _xk(t) 2 L1e. Consequently, one
can conclude that limk!1 �(xk(t)) = 0 for all t 2 [0; T ] and hence
limk!1 xk(t) = 0 for all t 2 [0; T ].

Now, let us prove ii), i.e., for 
 = 1. Consider the following positive
definite functional:

�	(xk; ~�k; t) = Vk(t) +
t

0

W (~�k(�))d� (15)

whose time derivative, in view of (1)–(5) and (6), is given by

_�	k(t) = _Vk(t) +Wk(t)

= LfVk +Wk(t)�Wk�1(t) +Wk�1(t)

� LfVk � 
(��k) +
@W (~�k)

@~�k
��k +Wk�1(t)

= LfVk + LhWk � 
(��k) +Wk�1(t)

� ��(xk)� 
(��k) +Wk�1(t) �Wk�1(t): (16)

Since �̂�1(t) = 0, it is clear that �̂0(t) = h(x0(t); t). Since x0(0) is
bounded, it is clear that �̂0(0) is bounded. Therefore, from (16), it is
clear that �	0(t) is bounded for all t 2 [0; T ]. The difference of �	k(t)
can be evaluated, in view of (1)–(4) and (6), as follows:

��	k(t) = Vk(t)� Vk�1(t) +
t

0

(Wk(�)�Wk�1(�))d�

= �Vk�1(t) + Vk(0) +
t

0

LfVk(�)d�

+
t

0

(Wk(�)�Wk�1(�))d�

� �
t

0

�(xk(�))d� �
t

0


(��k)d� � Vk�1(t) + Vk(0)

(17)

Now, using the fact that Vk(0) = 0 (or Vk(0) = Vk�1(T )), we have

��	k(T ) � �
T

0

�(xk(�))d� �
T

0


(��k(�))d� � 0 (18)

which implies that �	k(T ) is bounded for all k 2 + since �	0(T ) is
bounded.

Let $k(t) =
t

0
W (~�k(�))d� . It is clear that $k(t) � $k(T ) �

$ < 1 for all t 2 [0; T ]. Therefore

�	k(t) = Vk(t) +$k(t) � Vk(t) +$: (19)

Thus

�	k�1(t) � Vk�1(t) +$: (20)

On the other hand, one has

��	k(t) = �	k(t)� �	k�1(t)

� �
t

0

�(xk(�))d� �
t

0


(��k)d� � Vk�1(t) + Vk(0)

� Vk(0)� Vk�1(t): (21)

From (20) and (21), one can conclude that

�	k(t) � Vk(0) +$: (22)

Case 1) (Vk(0) = Vk�1(T )): Since �	k(T ) is bounded 8k 2 +,
it is clear that Vk(T ) is bounded 8k 2 +. Hence, from
(22), one can conclude that �	k(t) is bounded 8k 2 +;

8t 2 [0; T ].
Case 2) (Vk(0) = 0): It is clear that �	k(t) is bounded 8k 2 +;

8t 2 [0; T ].
Consequently, xk(t) 2 L1e; ~�k(t); uk(t) 2 L2e for all k 2 + and
for all t 2 [0; T ].

We have also

k

j=1

T

0

�(xj(�))d� +

k

j=1

T

0


(��j(�))d� � �	k(0)� �	k(T )

(23)

which implies that limk!1
T

0
�(xk(�))d� = 0 and limk!1

T

0


(��k(�))d� = 0.
Now, let us show that limk!1 xk(t) = 0; 8t 2 [0; T ], in the case

where xk(0) = 0; 8k 2 +. In fact, in this case, (17) leads to

��	k(t) � �Vk�1(t)�
t

0

�(xk(�))d� �
t

0


(��k(�))d� � 0

(24)
which leads to

k

j=1

Vj�1(t) +

k

j=1

t

0

�(xj(�))d�

+

k

j=1

t

0


(��j(�))d� � �	k(0)� �	k(t): (25)

Since �	k(t) is bounded 8k 2 +; 8t 2 [0; T ], it is clear that
limk!1 Vk(t) = 0, which implies that limk!1 xk(t) = 0;
8t 2 [0; T ].

Now, we would like to provide the following remarks.
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Fig. 1. Example 1: Sup-norm of the tracking error versus the iteration number for 
 = 0; 0:5; 1.

Fig. 2. Example 1: RMS-norm of the estimation error (~� ) versus the iteration number for 
 = 0; 0:5;1.

Remark 1: Note that the parametric adaptation law given in (7) is
a hybrid time-domain and iteration-domain adaptation mechanism for

 2 (0; 1). In the case where 
 = 0, the adaptation law becomes a pure
time-domain adaptation [6], while for 
 = 1, it becomes a pure itera-
tion-domain adaptation [16]. With 
 2 [0; 1), we guarantee the bound-
edness of the infinity norm of the tracking error and the control input
as well as the convergence to zero of the infinity norm of the tracking
error. With 
 = 1, we guarantee the boundedness of the infinity norm
of the tracking error, the boundedness of the L2-norm of the control
input, and the convergence to zero of the L2-norm of the tracking error
if the alignment condition is satisfied and the convergence to zero of the
tracking error if the resetting condition is satisfied. It is worth noting
that, in the case where an upper bound of the parameter � is known, i.e.,
k�k < �m, one can guarantee the boundedness of the infinity-norm of
the control input, with 
 = 1, by using a projection mechanism in the
parametric adaptation law.

Remark 2: With 
 = 1, property P1) is not required to derive the
result in Theorem 1, and the unknown vector � in (1) can be time-
varying. For 
 = 0, both properties P1) and P2) are not required to
derive the result in Theorem 1.

Remark 3: It is worth noting that with 
 = 0, we will need to
save only �̂k(T ) in the memory instead of saving �̂k(t); t 2 [0; T ].
This will considerably contribute to memory space saving in real-time
applications.

Remark 4: In the case of 
 2 [0; 1), it is possible to guarantee the
convergence of the parametric estimation error to zero when k tends to
infinity, for all t 2 [0; T ], if the control law (2) guarantees some form
of persistency of excitation. In fact, according to the proof of item (i)

of our theorem, we have limk!1

T

0

(��k(� ))d� = 0 for 
 2 (0; 1).

Since all the signals are bounded, it is possible to show that _̂
�k(t) is

bounded, and hence limk!1
��k(t) = 0 for all t 2 [0; T ] as long as 


is positive definite. Therefore, when k tends to infinity, the adaptive ILC
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Fig. 3. Example 2: Sup-norm of the tracking error versus the iteration number for 
 = 0; 0:5; 1.

Fig. 4. Example 2: RMS-norm of the estimation error (i.e., (1=2)(rms(~� ) + rms(~� )) versus the iteration number for 
 = 0; 0:5;1.

(7) reduces, in the case of 
 2 [0; 1), to a pure time-domain integral-
type adaptive control with �̂k(0) = �̂k�1(T ). On the other hand, in the
case where 
 = 1, it is not always possible to achieve the convergence
of the parametric estimation error to zero when k tends to infinity, for
all t 2 [0; T ]. In fact, one can easily see that �̂k(0) = 0 for all k if
h(xk(0);0) = 0 for all k.

Remark 5: It is well known in adaptive control that parameter drift is
a major issue associated to noise and disturbances. This problem may
occur in practical applications with 
 = 0. Several techniques have
been proposed in the literature to deal with this problem (e.g., dead
zone, projection, leakage, or � modification). Our parametric adapta-
tion law in (7), in the case where 
 2 (0; 1), contains a leakage term
(�-modification) (
=(
�1))�̂k that helps eliminate the parameter drift
in practical applications (see, for instance, [9]).

Remark 6: Using a pure iteration-domain adaptation (i.e., 
 = 1)
will avoid the use of the integral to calculate �̂k . This is very helpful

in real-time applications, since the use of an approximative numerical
integration is avoided.

Remark 7: In the case where 
 2 [0; 1); h is allowed to depend on
�̂k , i.e., h(xk(t); �̂k(t); t). In the case where 
 = 1, one can also allow
h to depend on �̂k if we assume that the following adaptation law:

�̂k(t) = �̂k�1(t) + h(xk(t); �̂k(t); t) (26)

has a unique solution �̂k(t), which is bounded over [0,T ] if �̂k�1(t)
and xk(t) are bounded over [0,T ].

Remark 8: It is not straightforward to conclude about the conver-
gence rates, achieved with the ILC scheme (7), in terms of 
. In fact, it
depends on the system under consideration as illustrated in our simu-
lation results, where we can clearly see that the best convergence rates,
for example 1, are obtained with 
 2 [0; 1) and the best convergence
rate, for example 2, is obtained with 
 = 1.
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III. ILLUSTRATIVE EXAMPLES

Example 1: Consider the following system:

_xk = �x2k + uk (27)

where xk 2 ; uk 2 , and � 2 is an unknown constant. Assume
that the reference trajectory is given by xd(t). Assume that xd(t) and
_xd(t) are bounded over [0; T ]. The error dynamics is then given by

_~xk = �(~xk + xd(t))
2 + uk � _xd(t) (28)

where ~xk = xk � xd. Under the following control law:

uk(t) = ��̂k(t)(~xk + xd(t))
2 � k~xk + _xd(t)

_̂
�k(t) = �~xk(~xk + xd(t))

2 (29)

with k > 0, the following positive definite function:

�(~xk; ~�k) =
1

2
~x2k +

1

2�
~�2k (30)

satisfies

_� = LfV (~xk) + LhW (~�k) � �k~x2k: (31)

Hence, the adaptive ILC leading to the results in Theorem 1 is given
by

uk(t) = ��̂k(t)(~xk + xd(t))
2 � k~xk + _xd(t)

(1� 
)
_̂
�k(t) = �
�̂k(t) + 
�̂k�1(t) + �~xk(~xk + xd(t))

2 (32)

with � > 0; 
 2 [0; 1]; and �̂
�1(t) = 0. For 
 2 [0; 1), we set

�̂k(0) = �̂k�1(T ). Note that � is allowed to be time-varying in the
case 
 = 1.

Example 2: Consider the following system:

_yk = apyk + kpuk (33)

where yk 2 ; uk 2 . The parameters ap and kp 6= 0 are unknown.
We assume that the sign of kp is known. The objective is to make yk
track the output of the following stable reference model:

_ym = amym + kmr (34)

where r(t) is a bounded reference input.
Consider the following direct model reference adaptive controller:

uk(t) = �̂1;k(t)r(t)+ �̂2;kyk(t)

_̂
�1;k(t) = �sgn(kp)�ek(t)r(t)

_̂
�2;k(t) = �sgn(kp)�ek(t)yk(t) (35)

where � > 0 and ek = yk � ym. Under this controller, the following
Lyapunov function:

� =
1

2jkpj
e2k +

1

2�
~�21;k + ~�22;k (36)

where ~�1;k = �̂1;k � �?1 ; ~�2;k = �̂2;k � �?2 ; �
?
1 = (km=kp) and

�?2 = ((am � ap)=kp) leads to

_� =
am
jkpj

e2k � 0: (37)

Hence, the adaptive ILC leading to the results in Theorem 1 is given by

uk(t) = �̂1;k(t)r(t)+ �̂2;kyk(t)

(1� 
)
_̂
�1;k = �
�̂1;k + 
�̂1;k�1 � sgn(kp)�ek(t)r(t)

(1� 
)
_̂
�2;k = �
�̂2;k + 
�̂2;k�1 � sgn(kp)�ek(t)yk(t): (38)

Example 3: Consider the following uncertain nonlinear system:

_x1 = x2 + �1(x1)
T �

_x2 = u+ �2(x1; x2)
T �

y = x1 (39)

where � is an unknown constant vector of dimension p and �1 and
�2 are known vectors of smooth functions of dimension p. Let yd(t)
be a bounded reference trajectory (twice differentiable). We define the
tracking error as ~x1 = x1 � yd. Applying the backstepping approach,
one can design the following adaptive control law:

u = �yd + k1 _yd � ~x1 � k2z � �T2 �̂ +
@ 

@x1
x2 + �T1 �̂ +

@ 

@�̂

_̂
�

(40)

_̂
� = � �1~x1 + �2 � �1

@ 

@x1
z (41)

where k1; k2 > 0; � = �T > 0; z = x2 �  , and

 = _yd � k1~x1 � �T1 �̂: (42)

Under this adaptive control law, the following Lyapunov function:

V (~x1; z; ~�) =
1

2
~x21 +

1

2
z2 +

1

2
~�T��1~� (43)

leads to

_V = �k1~x
2

1 � k2z
2: (44)

Hence, this adaptive controller can be extended to the case where (39)
is executing a repetitive task over a finite time-interval. The initial con-
ditions at each iteration must satisfy either the resetting condition, i.e.,
~x1;k(0) = zk(0) = 0 or the alignment condition, i.e., ~x1;k(0) =

~x1;k�1(T ); zk(0) = zk�1(T). The boundedness and the convergence
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of ~x1;k(t) and zk(t) are guaranteed as per Theorem 1. In this example,
a second-order system was considered for simplicity. It is worth noting
that our approach can be used for a more general class of nonlinear
systems stabilizable via adaptive backstepping [10]. We have just to be
careful with the initial conditions since new variables are introduced
at each step of the backstepping procedure. In fact, the resetting or the
alignment condition has to be satisfied for all the variables, other than
the parameter estimation errors, involved in the final Lyapunov func-
tion. Note that the backstepping procedure generally leads to a para-
metric adaptation rule with a right-hand side depending on the esti-
mated parameters �̂, and hence Remark 7 applies.

IV. SIMULATION RESULTS

We simulated Example 1, with � = 1; k = � = 10; xk(0) =

0; and xd(t) = sin(2�t), over the finite time interval [0,1]. Fig. 1
shows the evolution of the sup-norm of the tracking error versus the
iteration number for different values of 
. Fig. 2 shows the root mean
square (rms) estimation error versus the iteration number. Note that the
estimated parameters converge to the real parameter for 
 = 0; 0:5. In
the case where 
 = 1, the convergence of the estimated parameter to
the real one, for all t 2 [0; 1], is not guaranteed.

We simulated the adaptive ILC given in Example 2 over the time in-
terval [0, 10] s, with am = �2; ap = 5; km = 1; kp = 1; and � = 10.
The reference input r(t) has been taken as a unit step. The initial condi-
tions have been taken as xm(0) = xk(0) = 0; �̂1;0(0) = �̂2;0(0) = 0.
Fig. 3 shows the evolution of the sup-norm of the tracking error versus
the iteration number for different values of 
. Fig. 4 shows the rms es-
timation error versus the iteration number. It is clear, in this example,
that the best convergence is achieved with 
 = 1. The estimated pa-
rameters do not converge to the real ones, over the whole time interval,
for 
 = 0; 0:5; 1.

V. CONCLUSION

We proposed a systematic procedure for the design of adaptive ILC
schemes for uncertain nonlinear systems based on the existence of a
Lyapunov function for the system under consideration. In fact, if a
Lyapunov-based standard adaptive control law can be designed and the
Lyapunov function satisfies properties P1) and P2), we show that the
extension of the standard adaptive controller to an adaptive ILC con-
troller is straightforward. The resulting parametric adaptation law is
quite general in the sense that it includes the pure time-domain adap-
tation for 
 = 0, the pure iteration-domain adaptation for 
 = 1, and
the combination of both for 
 2 (0; 1). It has been shown that the main
advantages of the pure time-domain adaptation is the low memory-size
requirement in real-time implementations as well as the simplicity of
the design since both properties P1) and P2) are not required. The pure
iteration-domain adaptation is a discrete-type integration along the it-
eration axis and hence does not require an approximative numerical
integration at each iteration in real-time applications and does not re-
quire the unknown parameters to be time-invariant (as in the case of
the pure time-domain or in the case of the combination of both adapta-
tion types). With the pure iteration-domain adaptation, i.e., 
 = 1, we
guarantee the boundedness of the infinity norm of the tracking error, the
boundedness of the L2-norm of the control input, and the convergence
to zero of the L2-norm of the tracking error (under the alignment con-
dition) and the convergence to zero of the infinity norm of the tracking

error (under the resetting condition). With the pure time-domain or with
the combination of both adaptation types, i.e., 
 2 [0; 1), we guarantee
the boundedness of the infinity norm of all signals as well as the con-
vergence to zero of the infinity norm of the tracking error.
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