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Attitude Synchronization of Multiple Rigid
Bodies With Communication Delays

Abdelkader Abdessameud, Abdelhamid Tayebi, and Ilia G. Polushin

Abstract—We consider the attitude synchronization problem of multiple
rigid bodies (or spacecraft) in the presence of communication delays.
Specifically, we propose a virtual systems-based approach that removes
the requirement of the angular velocity measurements. First, we present
a solution to the leaderless and leader-follower problems in the case
of time-varying communication delays and undirected communication
topology. Second, we present an attitude synchronization scheme that
solves the leaderless problem under directed interconnection between rigid
bodies in the presence of constant communication delays. Finally, we show
that the proposed schemes can be extended in a straightforward manner
to solve the cooperative attitude tracking control problem.

Index Terms—Attitude synchronization, communication delays, output
feedback.

I. INTRODUCTION

The attitude synchronization problem of rigid bodies or multiple
spacecraft has gained extensive interest in recent years. In deep space
applications for instance, this interest is motivated by the advantages
gained by replacing a traditionally large and expensive spacecraft by
a cluster of micro-satellites to accomplish a common task in a coor-
dinated manner [1]. Several solutions to the attitude synchronization
problem in the full state information case can be found in, e.g., [2],
[3], and references therein. Some solutions to this problem, in the case
where the angular velocities are not available for feedback, have also
been reported in the literature (e.g., [4]–[7]). In these papers, informa-
tion exchange between members of the team plays a central role, how-
ever, communication delays that are inherently present in transmission
systems have not been considered.

The effects of communication delays in linear multi-agent systems,
described by second-order dynamics, have been extensively studied in
[8]–[10] to cite only a few, and sufficient conditions have been derived
to achieve the stability of the system. The communication delays in
nonlinear systems have also been considered in bilateral teleoperation
[11], [12], synchronization of Euler-Lagrange systems [13], [14], and
the formation control of a class of unmanned aerial vehicles [15]. How-
ever, it is not straightforward to extend the results of the above papers
to the attitude synchronization problem. The main difficulty resides in
the nonlinearity of the attitude dynamics, where the angular velocity
of the rigid body cannot be integrated to obtain an equivalent orienta-
tion variable. This is the reason behind the existence of only few papers
dealing with this problem in the available literature.
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Using the Modified Rodriguez parameters (MRP) and the La-
grangian formulation for the attitude dynamics, the authors in [16]
proposed a solution to the spacecraft attitude synchronization problem
in the presence of constant communication delays. To avoid the in-
herent singularity of the MRP representation, the globally non-singular
unit-quaternion representation has been considered in [17] and a vari-
able structure attitude synchronization scheme for a team of spacecraft
is proposed in the presence of time-varying communication delays. In
[18], a similar control problem is addressed using continuous control
laws. The proposed control schemes in the above papers rely on some
synchronization variables defined in terms of both attitude and angular
velocity tracking errors. More recently, a different analysis method
has been considered in [19], where the relative attitudes are defined
using linear differences between individual attitudes given in terms
of unit-quaternion. It is worth mentioning that in [16]–[19], only the
cooperative attitude tracking problem has been considered, where
a common desired attitude trajectory is required to be available to
each spacecraft in the team. Moreover, the communication topology
between spacecraft is assumed to be undirected. In [20], the attitude
kinematics of rigid bodies have been considered to design appropriate
angular velocity inputs to solve the leaderless attitude synchronization
problem with delayed communication and directed communication
topologies. However, the attitude dynamics have not been considered
and the input torque that drives this type of systems has not been
designed. In addition, all the aforementioned papers rely on the
assumption that the angular velocities are available for feedback.

The main contribution of this paper is to propose new quaternion-
based attitude synchronization schemes for a group of rigid bodies
(or spacecraft) in the presence of communication delays. In particular,
we consider the case where the angular velocities of the rigid bodies
are not available for feedback. As mentioned earlier, some solutions
to this problem exist in the case of no communication delays. How-
ever, it is generally difficult to study the effects of delayed commu-
nication on these schemes, using Lyapunov-Krasovskii functionals for
example. To solve this problem, we propose a virtual systems approach
that handles communication delays with the missing angular velocities
of rigid bodies. Using this approach, we present first a unified scheme
that solves the leaderless and leader follower attitude synchronization
problems in the presence of time-varying communication delays. We
derive sufficient conditions on the communication delays and the con-
troller gains such that the control objectives are attained under a fixed
and undirected communication topology. Then, we present a solution
to the leaderless problem in the case of constant communication delays
and directed communication topologies. In each of the above cases, the
extension of the proposed schemes to the full state information case is
explained. To the best of our knowledge, there is no complete solution
to the leaderless attitude synchronization problem with delayed com-
munication in the full state information case, and the leader follower
problem has not been addressed in this case. Moreover, we will show
that the proposed schemes can be slightly modified to solve the co-
operative attitude tracking problem. This extension complements the
available literature by providing angular velocity-free solutions to this
problem in the case of directed communication topologies.

II. PRELIMINARIES

Throughout the paper, we omit the arguments of time-dependent sig-
nals, (e.g., �� � �����), except for those which are time-delayed
(e.g., ����� ����). In addition, the argument of the signals inside the
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integrals is omitted, which is assumed to be equal to the variable on the
differential, unless otherwise stated (e.g. �

�
������

�

�
��������).

A. System Model

Consider a group of �-rigid bodies, where the equations of motion
of the ��� rigid body are given by

��� �
�

�
���������� �� ����� � ���� � ��������� ���� (1)

for � � � �� ��� 	 	 	 � ��, where ���� �
� is the angular velocity of

the ��� rigid body expressed in the body-fixed frame, ��, �� � ���

is a constant symmetric positive definite inertia matrix of the ��� rigid
body with respect to ��, and the vector ���� is the external torque input
expressed in ��. The unit-quaternion �� � ���� � ���

�

is composed
of a vector part �� � � and a scalar part �� � , and represents the
orientation of the ��� rigid body. The elements of the unit-quaternion
�� satisfy the unity constraint: ��� 
 ��� �� � �. The matrix����� �
��� is given by

����� �
�� �� 
 �����

����
(2)

and satisfies: �����
������ � ��, where �� is the 3-by-3 identity

matrix, and ���� is the skew-symmetric matrix such that ������� �

�� ��� for any vectors �� � � and �� � �, where ‘�’ denotes the
vector cross product. The orthogonal rotation matrix����� � �	���

related to the unit-quaternion��, that brings the inertial frame into the
��� body frame, can be obtained through the Rodriguez formula as:
����� � ���� � �

�
� ����� 
 ����

�
� � ��������. The time-derivative

of the rotation matrix ����� is given as: ������ � �������������.
The multiplication between two unit-quaternion,�� � ���� � ���

�

and
�� � ���� � ���

�

, is defined by the following operation: �� 	�� �

������ 
 ���� 
 ��������
�� ���� � �

�
� ���

�

. The inverse or conju-
gate of the unit-quaternion�� is defined by,���� � ����� � ���

�

, with
the quaternion identity given by �� �� ���� � ��

�

, where �� � �

is the vector of zero elements. Note that due to the redundancy in the
unit-quaternion representation,
�� represents the same physical ori-
entation. For more properties of the unit-quaternion representation of
the attitude, the reader is referred to [21].

B. Problem Statement

To achieve attitude synchronization, rigid bodies in the team must
exchange some of their states information. We assume that the infor-
mation flow between members of the team is fixed and is represented
by a weighted graph � � �� � � ��, where � is the set of nodes, or
vertices, describing the set of vehicles in the team, � � � � � is
the set of pairs of nodes, called edges, and  � �
��  is a weighted
adjacency matrix. An edge ��� �� � � indicates that the ��� rigid body
receives information from the ��� rigid body, which is designated as
its neighbor. The weighted adjacency matrix of a weighted graph is
defined such that 
�� � � if and only if ��� �� � � and 
�� � � if and
only if ��� �� � � . If the interconnection between rigid bodies is bidi-
rectional, then � is undirected, the pairs of nodes in � are unordered,
��� �� � � � ��� �� � � , and  is symmetric, i.e., 
�� � 
��. In the
case of unidirectional communication topology, � is a directed graph,
� contains ordered pairs, and is not necessarily symmetric. An undi-
rected graph is said to be connected if there is an undirected path be-
tween any two distinct nodes of the graph. Similarly, a directed graph
is said to be strongly connected if there exists a directed path between

any two distinct nodes [22]. We also assume that each rigid body can
sense its states with no delays, and the communication between the
��� and ��� rigid bodies, with ��� �� � � , is delayed by ��� , with ���
not necessarily equal to ���. With the above assumptions, our objective
is to design control laws for each rigid body without angular velocity
measurements in the presence of communication delays, such that the
following problems are solved:

• Leaderless synchronization problem 	�
. When no desired atti-
tude is assigned to the team, all rigid bodies are required to syn-
chronize their attitudes to the same attitude, such that ���� � ��,
and �� � �� , for all �� � � � .

• Leader-follower problem	�
. Given a constant desired attitude,
represented by the unit-quaternion�� �� ���� � ���

�

, available to
a single rigid body in the team acting as a leader. All rigid bodies
are required to synchronize their attitudes to the desired attitude,
i.e., ���� � �� and �� � ��, for all � � � .

C. Virtual Systems-Based Approach

In this subsection, we present an approach to the attitude synchro-
nization problem that can handle communication delays and removes
the requirement of angular velocity measurements. This approach is
based on virtual systems. Let us associate to each rigid body the fol-
lowing virtual system

��	 �
�

�
� ��	 ����	 (3)

for � � � , where �	 � ���	 � �	 �
�

is the unit-quaternion repre-
senting the attitude of the virtual system (3), with �	 ��� can be ini-
tialized arbitrarily, and ���	 is the virtual angular velocity input of the
virtual system, which will be designed later. The matrix ���	 � can
be obtained similar to (2) as: ���	 � �


 � ���� �

��
. We let the

discrepancy between the attitude of the ��� rigid body and its corre-
sponding virtual system be represented by the unit-quaternion ��

� ��

���� � ��� �
�

, which is defined as: ��
� � ���	 	��, and satisfies the

unit-quaternion dynamics

���
� �

�

�
� ���

� ����
�
� � ����

� � ���� �� ���
� ����	 (4)

where ����
� � can be obtained similar to (2), and ����

� � is
the rotational matrix related to ��

� and is given as ����
� � �

��������	 ��, [21]. The main idea in this approach is to design the
input torque of each rigid body, ����, without angular velocity measure-
ments such that the states of each rigid body converge asymptotically
to the states of its corresponding virtual system. Then, our control
objectives will be achieved if one determines an appropriate input of
each virtual system (3) such that all virtual systems synchronize their
attitudes in the presence of communication delays.

III. ATTITUDE SYNCHRONIZATION WITHOUT ANGULAR

VELOCITY MEASUREMENTS

First, we consider the design of the input torque for each rigid body.
Based on the auxiliary systems approach introduced in [23], we pro-
pose the following input torque in (1)

���� � �� � ����	 � ���	 ���
� �� 
�� �

�
� � 
�� ��

�
� (5)

for � � � , where ��� ����	 � ���	 ���
� � �

��� ����
� � ����	 
������

� ����	 ��� ����
� ����	 �, 
�� and


�� are strictly positive scalar gains, ��� is the vector part of the
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unit-quaternion ��
� defined in (4), and ���� is the vector part of the

unit-quaternion ���
� �� ����� � ���� �

�

defined as

���
� � �

��

� ���
� � ��� �

�

�
��������� (6)

where�� is a unit-quaternion that can be initialized arbitrarily,�����

is given similar to (2), and ���� �
� is an input to be determined. We

can verify that ���
� satisfies the following unit-quaternion dynamics

���
�

� �
�

�
�� ���

� �����
�
� � �����

� � ����
� ��� ���

� ����� (7)

with �� ���
� � being defined similar to (2). The aim from the above de-

sign of the input torque is to drive the states of each rigid body to
the states of its corresponding virtual system, i.e., ���� � ���� and
�� � �� , and equivalently ����

� � �� and ��
� � ��� for � � � .

It should be noted that the torque input (5) is given in terms of the vir-
tual states, i.e.,�� ,���� and ����� , and the absolute attitudes of the rigid
bodies, and does not depend on the angular velocity of the rigid bodies.
In view of this, the remaining part of the design is to determine an ap-
propriate virtual angular velocity and its time derivative, i.e., ���� and
����� , such that our control objectives are achieved in the presence of
communication delays.

A. Control Scheme I

Consider the case where the interconnection graph between neigh-
boring rigid bodies is bidirectional, represented by the undirected
graph �, and is subject to time-varying communication delays. To
achieve attitude synchronization based on the virtual systems intro-
duced above, communicating rigid bodies must transmit the attitudes
of their corresponding virtual systems. Since the communication
between rigid bodies is delayed, we let the relative attitude between
the ��� and ��� virtual systems be represented by the unit-quaternion
	�� �� �	��� � 	�� �

�

, defined as

	�� � �
��

� ��� ������� 	 (8)

In addition, in the case where the constant desired attitude, represented
by��, is available to a single rigid body in the team, case of the���,
the attitude error between the desired attitude and the virtual system
associated to the leader rigid body is represented by the unit-quaternion
��� �� ����� � ��� �

�

, defined as: ��� � ���� � �� , satisfying the
unit-quaternion dynamics

���� �
�

�
�� ��� ����� (9)

with�� ��� � being defined similar to (2), and the subscript “
” is used
to designate the leader. With the above definitions, we propose the fol-
lowing design of the virtual angular velocity:

����� � ��	� ���� � �		� �




���

���	�� (10)

for � � � , where ���� �
� can be selected arbitrarily, 	�� is the vector
part of the unit-quaternion 	�� defined in (8), 		� � ��� ��� , for � � 
,
and 		� � 
, for � �� 
, ��� is the vector part of the unit-quaternion
��� defined in (9), with the subscript “
” being used to designate the
leader. The scalar gains ���  
, �	�  
 for � � � , and ��� 	 
 is
the ��� ���� entry of the adjacency matrix of the weighted undirected
graph �. The scalar � is selected as: � � 
 for the �
� and � � �

for the ���. Under the assumption that neighboring rigid bodies can

communicate the attitude of their corresponding virtual systems, i.e.,
�� , the following result holds:

Theorem 1: Consider system (1) with the torque input law (5) with
(3) and (10). Let the time-varying communication delays be bounded
such that ��� 
 � for ��� �� � � , where � is a positive constant, and let
the controller gains satisfy: �� �� �	� �




���
�����������������  
,

for some �  
. Let the vector ���� in (6) be given as: ���� � ����
�
� ,

with �� a strictly positive scalar gain. If the undirected communication
graph is a tree1, then all the signals are globally bounded and the �
�
and the ��� are solved by setting � � 
, 1 respectively. Moreover,
if there exists a time ��  
 such that �� ���  
 (or �� ��� � 
)
for � 	 ��, then the above results hold for any connected undirected
communication graph.

Proof: See Appendix A.
Remark 1: Note that the above attitude synchronization scheme

can be extended to the case where the angular velocities are avail-
able for feedback. In this case, the virtual systems are not required
and we can show, following similar steps as in the proof of Theorem
1, that the �
� and the ��� will be solved under the same condi-
tions reported in Theorem 1 if the following control input is imple-
mented: � � ��		� � �	� ���� �




���
���	��� , where the control gains

are defined as in Theorem 1, 	��� is the vector part of the unit-quater-
nion 	��� � ���� �� � ���� � ��, and 		� � ��� ���, for � � 
, and
		� � 
, for � �� 
, with ��� being the vector part of the unit-quaternion
��� � �

��

� � ��.

B. Control Scheme II

Note that in the above control scheme the communication graph is
restricted to be an undirected tree. It is clear that this restriction is due to
the nonlinear expression of the relative attitudes in (8) and the proposed
design of the virtual angular velocity in (10). To relax the condition
on the communication graph, we present in this subsection a different
design of the virtual angular velocity for each rigid body.

We assume that the communication delays are constant and the in-
terconnection between rigid bodies is unidirectional and is represented
by the directed graph �. To solve the �
� in this case, we propose the
following design of the virtual angular velocity in (3) and (5)

���� � �




���

��� �� � �� ��� ���� (11)

for � � � , where ��� 	 
 is the ��� ���� entry of the adjacency matrix
of the directed communication graph �. It is easy to verify that

����� � �




���

��� ��� � ��� ��� ���� (12)

with ��� � �������� �� � 
��� ������ . Under the assumption that
neighboring rigid bodies can communicate the states of their corre-
sponding virtual systems, i.e.,�� and ���� , the following result holds:

Theorem 2: Consider system (1) with the control law (5) with (3)
and (11), (12). Let the vector ���� in (6) be given as in Theorem 1. If
the directed communication graph is strongly connected, then all the
signals are globally bounded and the �
� is solved in the presence of
arbitrary constant communication delays.

Proof: See Appendix B.
Remark 2: It should be noted that the above control scheme can be

extended to the full state information case in a similar manner described
in Remark 1. In addition, the input torque (5) with (11) and (12) con-
sists of pure unit-quaternion terms and the inertia matrix of the rigid

1An undirected graph is a tree if it is connected and acyclic, [22].
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body. As a result, a natural saturation is achieved for the control effort
as follows: ������ � ��� �������� ����� ���� , with �� and �� can be ob-
tained respectively from (11) and (12) as: ����� � � �� �� � �

���
��� ,

and � ����� � � �� �� �	������ .

C. Extension

We show in the following that the attitude synchronization scheme
in Theorem 2 can be modified to solve the cooperative attitude tracking
control problem ������. In this case, a time-varying desired trajec-
tory, ���� ����� ������, is available to all rigid bodies in the team, and it
is required that all rigid bodies synchronize their attitudes to the de-
sired attitude, while minimizing the relative attitudes between rigid
bodies during the transient in the presence of communication delays,
i.e., �� � �� and ���� � ����. To solve this problem, we define the
attitude tracking error between each virtual system and the desired at-
titude as: 
�� �� �
��� � 
�� �

�

� �
��

� ��� , which is governed by

the dynamics �
�� � �	����� 
�� �
���� , with 
���� � ���� ��� 
�� �����

and �� 
�� � can be obtained similar to (2). With these definitions, we
propose the following virtual angular velocity in (1) and (5) in the case
of constant communication delays

���� � �� 
�� ����� � ��� 
�� �

�

���

��� 
�� � 
�� ��� 	��� (13)

where ��� 
 � and ��� are defined as in Theorem 2. The time derivative
of ����� can be explicitly computed as

����� �
�

��
�� 
�� ����� ����

�
�� �

�

���

��� �
�� �
�
�� ���	��� (14)

with ��� 
�� � � �	�
���� ��� 
�� �, and �
�� is given above. Under the
assumption that ���� and ����� are bounded, and neighboring rigid bodies
can communicate the states of their corresponding virtual systems, i.e.,

�� and 
���� , the following result holds:

Theorem 3: Consider system (1) with the control law (5), (3) and
(13), (14). Let the vector ���� in (6) be given as in Theorem 1. If the di-
rected communication graph is strongly connected, then all the signals
are globally bounded and the ���� is solved in the presence of ar-
bitrary constant communication delays.

Proof: The proof follows similar steps as the proof of Theorem 2
and is omitted due to space limitations.

Remark 3: The control scheme in Theorem 3 can be a priori
bounded as: ������ � ��� ����� � ���� � � ��� � ��� , with ��� and ��� are
obtained respectively as: ����� � � ��� �� ������� � , � ����� � � ��� ��

� ������ � ������� � �	����� , with � � ��� � � �

���
��� . Also, the

extension of this control law to the full state information case follows
the same lines in Remark 1.

Remark 4: It is worth pointing out that the attitude synchronization
scheme in Theorem 1 can also be extended to solve the���� in the
case of undirected communication topologies subject to time-varying
communication delays. In this case, the relative attitude between virtual
systems, given in (8), should be redefined as: ��� � 
���� ��� 	����

�� , and the virtual angular velocity, given in (10), should be modi-
fied as: ����� � ���� 
�� � �	� 
���� � �

���
������ � �� 
�� � ����� �

	�
���� ��� 
�� �����, with the control gains defined as in Theorem 1,
��� 
 �, and 
�� and 
���� are defined as in Theorem 3. Following sim-
ilar steps as in the proof of Theorem 1, with the assumption that���� and
����� are bounded, we can show that the����will be solved under any
undirected communication graph with similar conditions on the control
gains and the delays upper bound given in Theorem 1.

IV. CONCLUSION

We addressed the attitude synchronization problem for a group of
rigid bodies without angular velocity measurements and in the presence
of communication delays. To solve this problem, we proposed a virtual
systems-based approach that reduces the problem to a separate design
of a tracking control law, without angular velocity measurements, and
a synchronization algorithm with communication delays using the in-
ternally synthesized virtual states. To the best of our knowledge, the
synchronization problem in the presence of communication delays has
never been considered in the partial state information case, even for
multi-agent systems modeled as linear double integrators.

Based on this approach, we proposed in Theorem 1 a solution to
the 
	� and the 
�� problems in the presence of time-varying
communication delays. We have shown that attitude synchronization
is achieved under a sufficient condition that can be satisfied with an
appropriate choice of the control gains and the reasonable assumption
that the upper bound of the communication delays is known. Also,
the undirected communication graph is restricted to be a tree. With a
different design of the virtual systems inputs, Theorem 2 presents a
solution to the 
	� under a strongly connected directed communica-
tion graph in the presence of arbitrary constant communication delays.
This removes the restrictions obtained in Theorem 1 in this case,
and considers a more general communication topology between rigid
bodies. The extension of this result to the case of the 
��, as well as
the case of time-varying communication delays is not straightforward
and will be examined in our future work.

As mentioned earlier, very few papers have considered the attitude
synchronization problem with delayed communication in the full state
information case. The authors in [20] have addressed the 
	� with
constant communication delays in the full state information case. In
this work, only the attitude kinematics have been considered to design
a desired angular velocity that achieves attitude synchronization under
strongly connected directed graphs. In addition, the result of this paper
relies on the assumption that the rotation matrix of each rigid body is
always positive definite. Besides the non requirement of angular ve-
locity measurements, the result of Theorem 2 provides an input torque
design that solves this problem with no assumptions on the attitudes of
the rigid bodies in the team.

In [16]–[19], the attitude dynamics have been considered to design
attitude synchronization schemes with delayed communication. In
these papers, only the ���� under undirected communication
topologies have been addressed. The definition of the error variables
in these works and the Lyapunov-Krasovskii functionals used in
the analysis make their extension to solve the 
	� and the 
��
in the full state information case not trivial. Theorem 1 provides
solutions to these problems and removes the requirements of angular
velocity measurements. In addition, we have shown that our approach
can be modified to solve the ���� in the presence of constant
(time-varying) communication delays under directed (undirected)
communication graphs. Furthermore, the proposed attitude synchro-
nization schemes can be extended in a straightforward manner to the
full state information case.

Moreover, the result of Theorem 1 carries an additional feature,
which consists in the fact that the time-varying communication delays
are only assumed to be bounded. Also, the control schemes in Theorem
2 and Theorem 3 are guaranteed to be a priori bounded. This enables
the designer to select appropriate control gains to account for input
saturations. The extension of this work to the case of dynamically
switching topologies is a challenging problem and will be the focus
of our future work.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 9, SEPTEMBER 2012 2409

APPENDIX A
PROOF OF THEOREM 1

To prepare the proof of the theorem, we derive first the closed loop
dynamics of the system and define some variables and results required
in the proof. Consider the time-derivative of the angular velocity error
����
� , which can be written from (4) as: �����

� � ����� � ����
� � ����� �

������
� �����

� ����� . Using the attitude dynamics (1) and (4), and after
some algebraic manipulations, we can write

�� �����
� �����������

�
� ��� �����

��� ���
� ����� ���� � ����� � ���� ���

� �

� ��� ��� ���
� ����� ��� �� ���

� ����� � �� �����
� (15)

with ��� ����� � ���� ���
� � is defined after (5). Since �� � ��� � �,

we can verify that ��� ������
� ����� � � ������

� ����� ��� �

is skew symmetric, and therefore, we obtain: ����
� �� �����

� �

����
� ����� ���� ����� � ���� ���

� ��.
Also, for analysis purposes, we let the discrepancy between the atti-

tudes of the ��� and ��� virtual systems, in the case of no communica-
tion delays, be represented by the unit-quaternion

�� �� �
�

� � ��
�

� �
��

� ��� (16)

which satisfies the unit-quaternion dynamics: ��� �

�	�
����� ����� , with ���� � ���� � ���� ����� ,
���� ���� � can be obtained similar to (2), and
���� � � ���� ����� ��. It should be noted that ��

and ��� , given respectively in (16) and (8), represent two
different attitude errors. However, by exploiting the definition of
the unit-quaternion multiplication and the attitude dynamics (1),
we can show the result of the following lemma, which is proved in
Appendix C.

Lemma 1: Consider the relative attitudes defined in (16) and (8).
Then, the following relation holds for any strictly positive constant �:

���� � �� ������ � � ���� ��� �
	��
�

�

���

���� ��� 
��

Now, consider the Lyapunov-Krasovskii functional candidate;  �

� � �, with

��

	

���

	



����
� �� ����

� � 
�
� �	� ��� � � 
��� �	� ���� � �

��
��� �	� ��� � �

	

���

	



����� ���� �

	

���

��� 	� ��

�

	

���

	

���

���	

�

�

��

�

���

���� ��� ��� ���
�
�

where � � �, 	�� � 	 , with 	 being a positive constant, ��� is the scalar
part of ��� defined in (9), �� is the scalar part of�� defined in (16),
��� is the scalar part of��

� defined in (4), and ���� is the scalar part of ���
�

defined in (6). Note that 
�	��� � � ���� �� � �	� �� �
�
�, and

similar relations hold for the elements of ��� , ��
� and ���

� . The time
derivative of � evaluated along the dynamics (15), using (4), (5) and
(7), is obtained as

�� � �

	

���

��� ����
�
� ���� (17)

where we have used the expression of ���� given in the theorem and the
relation �� ���

� ���
�
� � ���� . The time derivative of � evaluated along

(10) gives

������ ��
�

� ���� �

	

���

����� ��������� ���� �

	

���

������

�

	

���

	

���

���
	



�
�

� ���� �
	

�
	 ���� ��� �

�

���

���� ��� 
� �

Since the communication graph is undirected, we know that
��� � ���, and using the definition of ���� we can show that,
[6]: 	�
 	

���

	

���
������

�

� �� � 	

���

	

���
������

�

� �� . Using
the result in Lemma 1, and the relations: 	

���
����� ������� �

���� ��
�

� ���� , 	��
�

���
���� ��� 
� � 	

�

���
���� ��� 
�, and

���� ��� � �	������� ���� ������ ����� ��	������� ���� , we
obtain

� � �

	

���

������
�

� ���� �

	

���

��� ����
�
� ���� (18)

where ��� is given in the theorem. Therefore, � is negative semi-defi-
nite, and we conclude that ���� , ���� � �� � ��, and ����

� � ��. Note
that ��� , ��� , ��

� and ���
� are naturally bounded by the definition of

the unit-quaternion. Also, we conclude from (4) and (10) respectively
that ����� ����� � ��. Furthermore, we can see from (7) that �����

� � ��,
which leads us to conclude that ���

�

� � ��. As a result, we conclude
that ���� � 	� and ���� � 	� for � � � , and consequently, ���� � 	�

and ���
� � 	�� for � � � .

Exploiting the above results, we can verify from (15) that �����
� � ��,

and consequently we know from the first time-derivative of (7) that
�����
�

� � ��. This implies that ���
�

� � ��, and we conclude that ���
�

� �

	� by Barbălat Lemma. As a result, we conclude from the first rela-
tion in (7) that �����

� � 	�, which leads us to conclude from (7) that
����
� � 	�, for � � � . Moreover, we can see from the first time-deriva-

tive of (15), with (5), that �����
� � �� since ����� � �����

� � ��. Invoking
Barbălat Lemma we conclude that �����

� � 	� and (15), with (5), reduces
to �
� �

�
� � 	� for � � � , which indicates that��

� � 	�� for � � � .
In addition, we can verify from (4) that ���� � 	�. Therefore, we con-
clude that each rigid body synchronizes its attitude to the attitude of its
corresponding virtual system.

Using similar relations as in Appendix C, we have: ��� �

�� � ����� ���� �� � 	��� � �� �. Therefore, (10) can
be rewritten as: ����� � ����� � ��� ���� � 	

���
����� �

	

���
����

���� �
�

���
��� 
�. Since ���� � 	�, we can verify

from (3) that ��� � 	� for � � � . This with the fact that 	�� is
bounded leads us to conclude that: �

���
��� 
� � 	�. In addition,

we know that �� and ��� (in the case of � � 	) are uniformly
continuous since we have shown that ���� � �� for � � � . There-
fore, invoking the extended Barbălat Lemma2 (which can be proved
following similar arguments as in the proof of Barbălat Lemma in [24]
for example), we can conclude that ����� � 	�, and hence we know
from (10) and the above results that

���� �

	

���

����� � 	�� ��� � � � � (19)

2Extended Barbălat Lemma: Let ���� denote a solution to the differential
equation; �� � ���������, with ���� a uniformly continuous function. Assume
that ��� ���� � � and ��� ���� � 	, with � a constant value.
Then, ��� ����� � 	.
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For the ���, � � � and (19) reduces to

�

���

����� � ��� ��� � � � (20)

and we can conclude using the result of Lemma 1 in [6] that �� � ��

if the communication graph is a tree. As a result, we know that�� �

��� for all �� � � � , and therefore, all virtual systems synchronize
their attitudes to the same constant final attitude. Since we have already
shown that the attitude of each rigid body converges asymptotically to
the attitude of its corresponding virtual system, we conclude that the
��� is solved.

In the case where � � �, ���, we consider the set of equations
(19), and take the sum of all equations over � � � to obtain: ��� ��� �

�

���

�

���
����� � ��. Using the symmetry property of the undi-

rected communication graph, and the relation �� � ��� , one can
easily verify that �

���

�

���
����� � ��. As a result, we conclude

that ��� � ��, and (19) reduces to (20). Therefore, similarly to the
��� case, we exploit the result of Lemma 1 in [6] to conclude that
�� � ��� for all �� � � � if the communication graph is a tree.
Since we have already shown that ��� � ��� , we conclude that all
virtual systems synchronize their attitudes to the desired attitude ��.
Consequently, since each rigid body synchronizes its attitude to the at-
titude of its corresponding virtual system, we conclude that the ���
is solved.

To prove the last part of the theorem, and following similar steps as
in [5], we can verify that (20) is equivalent to: �

���

�

���
����� 	��

�� 
 � �. Note that this relation holds at the limit, and therefore, it
is clear that if there exists a time after which �� � � (or �� � �) for
� � � , then the only solution to (20) is �� � � and �� � ��.
Therefore, following similar analysis as above, we can conclude that
the ��� and ��� are solved for any connected undirected commu-
nication graph.

APPENDIX B
PROOF OF THEOREM 2

First, since the directed communication graph � is strongly con-
nected, there exists a vector 	 �� ��		�� � � � � 	�
 �

�, with 	� � �
such that 	�� � �, where � �� �
�� � �

��� is the Laplacian ma-
trix of the communication graph � defined as: 
�� � �

���
��� and


�� � ���� , [20].
Consider the following Lyapunov-Krasovskii functional:� � ���

��, with �� is given in the proof of Theorem 1 and

�� �

�

���

�	�	�� �� 
 �
�

�

�

���

�

���

	����

	

	�


�
�

� �� �

with 	� � � being defined as above. The time derivative of�� evaluated
along (3) with (11) gives
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���
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Since the directed communication graph is assumed to be strongly con-
nected, we can show that �

���

�

���
	�	�����
	�

�
� �� ��

�
� �� 
 �

	���
	���� �, with � �� 	��� �� � � � � ���� �� 

�

. As a result, we
obtain

��� � �
�

�

�

���

�

���

	���� �� � �� 	�� ���

�

� (21)

Therefore, the time derivative of � evaluated along the dynamics (15)
and (3), in view of (17) and (21), is negative semi-definite, and hence
we conclude that ����

� � �� and ���� � 	�� � �� 	� � ���

 � �� �

��. Note that �� and ���
� are naturally bounded by definition of the

unit-quaternion. In addition, we can verify from (7), and the fact that
���� � ��, that ���

�

� � �� since �����
� � ��. Also, it should be noted from

(11) that ���� � ��, which leads us to conclude from (3) that ��� �

��. As a result, we conclude that ���� � ��, for � � � , and 	�� �

�� 	�� ���

� ��, for 	�� �
 � 	 . Consequently, we have ���� � ��,
���
� � ��� , ���� � ��, and ��� � �� for � � � . Moreover, by

noting that 	�� � �� 	�� ���

 � 	�� � �� �
	

	�

��� �
, we

know that 	�� � �� 
 � �� for �� � � � , since the communication
graph is strongly connected. This leads us to conclude that all virtual
systems synchronize their attitudes to the same constant final attitude.

Exploiting the above results, and since ���� and ����� are bounded,
we can show following the same steps as in the proof of Theorem 1
that �����

� � ��, ����
� � ��, and �����

� � �� for � � � . This leads
us to conclude that ���� � �� and ��

� � ��� , from (4) and (15)
respectively. Therefore, we conclude that each rigid body synchronizes
its attitude to the attitude of its corresponding virtual system. Since
we have shown that all virtual systems synchronize their attitudes, we
conclude that the ��� is solved.

APPENDIX C
PROOF OF LEMMA 1

Using the definition of the quaternion multiplication and the
relative attitude in (16) with the expression of 		�� 
, we have:
�� � �� �� � 	�� 
� � �	�� 

�� � �		�� 
��� , where
we have used the relation �	�� 
� � ��	�� 
. Similarly, from (8)
we have ��� � �		�� 
��� 	� � ���
. Therefore, using the fact
that ����� 		�� 
� � � ���� , one can show that ����� 	��� � �� 
 �

������ 		�� 
�	�� 	� � ���
 � �� 
� � ����
	

	�

��� �.

Using Young’s inequality, we can show that: � ����
	

	�

��� � 
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��� �
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	�

��� �
, for ��� � �.

Without loss of generality, we take ��� � �, for �� � � � . Also, Jensen’s
inequality leads us to write: 	

	

	�

��� �
�	

	

	�

��� �
 


���
	

	�

���� ��� �. Finally, the result of the lemma is obtained by

combining the above relations.

REFERENCES

[1] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of space-
craft formation flying guidance and control (part II): Control,” in Proc.
Amer. Control Conf., Boston, MA, 2004, pp. 2976–2985.

[2] H. Bai, M. Arcak, and J. T. Wen, “Rigid body attitude coordination
without inertial frame information,” Automatica, vol. 44, no. 12, pp.
3170–3175, 2008.

[3] W. Ren, “Distributed cooperative attitude synchronization and tracking
for multiple rigid bodies,” IEEE Trans. Control Syst. Technol., vol. 18,
no. 2, pp. 383–392, Mar. 2010.

[4] J. Lawton and R. W. Beard, “Synchronized multiple spacecraft rota-
tions,” Automatica, vol. 38, no. 8, pp. 1359–1364, 2002.

[5] A. Abdessameud and A. Tayebi, “Attitude synchronization of a space-
craft formation without velocity measurement,” in Proc. IEEE Conf.
Decision Control, 2008, pp. 3719–3724.

[6] A. Abdessameud and A. Tayebi, “Attitude synchronization of a group
of spacecraft without velocity measurement,” IEEE Trans. Autom. Con-
trol, vol. 54, no. 11, pp. 2642–2648, Nov. 2009.



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 57, NO. 9, SEPTEMBER 2012 2411

[7] A. Abdessameud and A. Tayebi, “On the coordinated attitude align-
ment of a group of spacecraft without velocity measurements,” in Proc.
IEEE Conf. Decision Control, 2009, pp. 1476–1481.

[8] U. Münz, A. Papachristodoulou, and F. Allgöwer, “Delay-dependent
rendezvous and flocking of large scale multi-agent systems with com-
munication delays,” in Proc. IEEE Conf. Decision Control, 2008, pp.
2038–2043.

[9] Y. Hong-Yong, Z. Xun-Lin, and Z. Si-Ying, “Consensus of second-
order delayed multi-agent systems with leader-following,” Eur. J. Con-
trol, vol. 15, pp. 1–15, 2010.

[10] Z. Meng, W. Yu, and W. Ren, “Discussion on: Consensus of second-
order delayed multi-agent systems with leader-following,” Eur. J. Con-
trol, vol. 2, pp. 200–205, 2010.

[11] I. G. Polushin, A. Tayebi, and H. J. Marquez, “Control schemes for
stable teleoperation with communication delay based on IOS small gain
theorem,” Automatica, vol. 42, pp. 905–915, 2006.

[12] N. Chopra, M. W. Spong, and R. Lozano, “Synchronization of bi-
lateral teleoperators with time delay,” Automatica, vol. 44, no. 8, pp.
2142–2148, 2008.

[13] S.-J. Chung and J. J. E. Slotine, “Cooperative robot control and con-
current synchronization of Lagrangian systems,” IEEE Trans. Robotics,
vol. 25, no. 3, pp. 686–700, 2009.

[14] E. Nuño, R. Ortega, L. Basañez, and D. Hill, “Synchronization of net-
works of nonidentical Euler-Lagrange systems with uncertain parame-
ters and communication delays,” IEEE Trans. Autom. Control, vol. 56,
no. 4, pp. 935–941, Apr. 2011.

[15] A. Abdessameud and A. Tayebi, “Formation control of VTOL Un-
manned Aerial Vehicles with communication delays,” Automatica, vol.
47, pp. 2383–2394, 2011.

[16] S.-J. Chung, U. Ahsu, and J. J. E. Slotine, “Application of synchro-
nization to formation flying spacecraft: Lagrangian approach,” J. Guid.,
Control Dynam., vol. 32, no. 2, pp. 512–526, 2009.

[17] J. Erdong, J. Xiaoleib, and S. Zhaoweia, “Robust decentralized attitude
coordination control of spacecraft formation,” Syst. Control Lett., vol.
57, pp. 567–577, 2008.

[18] J. Erdong and S. Zhaowei, “Robust attitude synchronization controllers
design for spacecraft formation,” IET Control Theory Appl., vol. 3, no.
3, pp. 325–339, 2009.

[19] Z. Meng, Z. You, G. Li, and C. Fan, “Cooperative attitude control of
multiple rigid bodies with multiple time-varying delays and dynami-
cally changing topologies,” Math. Problems Eng. pp. 1–19, 2010 [On-
line]. Available: http://www.hindawi.com/journals/mpe/2010/621594/

[20] Y. Igarashi, T. Hatanaka, M. Fujita, and M. W. Spong, “Passivity-based
attitude synchronization in SE(3),” IEEE Trans. Control Syst. Technol.,
vol. 17, no. 5, pp. 1119–1134, Sep. 2009.

[21] M. D. Shuster, “A survey of attitude representations,” J. Astronaut. Sci.,
vol. 41, no. 4, pp. 439–517, 1993.

[22] D. Jungnickel, Graphs, Networks and Algorithms, Algorithms and
Computation in Mathematics, 2nd ed. New York: Springer, 2005,
vol. 5.

[23] A. Tayebi, “Unit quaternion based output feedback for the attitude
tracking problem,” IEEE Trans. Autom. Control, vol. 53, no. 6, pp.
1516–1520, Jun. 2008.

[24] H. K. Khalil, Nonlinear systems, Third edition ed. Englewood Cliffs,
NJ: Prentice-Hall, 2002.

Unscented Kalman Filter: Aspects and
Adaptive Setting of Scaling Parameter

Jindřich Duník, Miroslav Šimandl, and Ondřej Straka

Abstract—This technical note deals with the unscented Kalman filter
for state estimation of nonlinear stochastic dynamic systems with a special
focus on the scaling parameter of the filter. Its standard choice is analyzed
and its impact on the estimation quality is discussed. On the basis of
the analysis, a novel method for adaptive setting of the parameter in
the unscented Kalman filter is proposed. The results are illustrated in a
numerical example.

Index Terms—Bayesian methods, nonlinear filters, state estimation, sto-
chastic systems.

I. INTRODUCTION

The problem of nonlinear recursive state estimation of discrete-time
stochastic dynamic systems from noisy measured data has been a sub-
ject of considerable research interest for the last several decades. In this
technical note, the discrete-time nonlinear stochastic system

���� � ������ ���� � � �� �� �� � � � (1)

�� ������� � ��� � � �� �� �� � � � (2)

is considered, where the vectors �� � � and �� � � represent
the immeasurable state of the system and measurement at time instant
�, respectively, �� 	 � � � , �� 	 � � � are known vector
functions, and �� �

� , �� � � are independent state and mea-
surement white noises. The probability density functions (pdfs) of the
noises are supposed to be Gaussian with zero means and known covari-
ance matrices�� and�� , i.e., �� ���� � ���� 	 	� ������ and
�� ���� � ���� 	 	� ������, respectively. The initial state �� is
supposed to have Gaussian distribution �� ���� � ���� 	 
���
��
and is independent of the noises.

The general solution to the estimation problem is given by the
Bayesian recursive relations (BRRs) for computation of probability
density functions (pdfs) of the state conditioned by the measurements
[1]. These pdfs provide a full description of the estimated state. The
BRRs are assumed in the following form:

������
�� �

������
������������

����������
(3)

��������
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