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Observer-based Iterative Learning Control for a Class  to avoid any confusion between the time variablend the iteration

of Time-Varying Nonlinear Systems variablek, we rewrite system (1) at the iteratiénas follows:
Abdelhamid Tayebi and Jian-Xin Xu @ (t) = Aw(t) + B (21 (1), 1) wi(t) + & (wr(t). ue(t), 1)
ur(t) = Cag(t). 2

Abstract—in this brief, we propose an observer-based iterative leaming ~ NOW, the control problem can be formulated as follows. Consider

control (ILC) scheme for the tracking problem of a class of time-varying  (2) and suppose that the desired trajectory is differentiable and given
nonlinear systems. First, a state observer is derived for the system under by y(,(t) over the time interva[O, T], Our objective is to design an
consideration, and sufficient conditions for the boundedness and the con- jierative control law,, (1), such that the output, () converges to the
vergence to zero of the estimation error are given. Thereafter, an iterative desired out Hf It 0.T henk ’

learning rule—based on the proposed state observer—ensuring the bound- esired ou pui’_d( ), forallt € [0, T], whenk — o0 .

edness of the tracking error is derived. Moreover, it is shown that if the For the design of our controller, the following assumptions are
initial state variables are known, it is possible to obtain a perfect conver- needed.
gence to zero, over a finite tracking horizon, when the number of iterations Al)

tends to infinity. By associating a state observer with the ILC scheme it is The admissible range for the control inpug is given by

possible to avoid the use of state and output time-derivative measurements [lurll € tmax, Whe_rEuu{ax. is a known value obtained from
which are generally necessary in contraction mapping based ILC design the system’s physical limitations.
for nonlinear systems without zero relative degree. A2)  There exists a bounded control law(¢), over[0,T], i.e.,
[lwdl] < Umax, such thatys(t) = Cwxq(t) andzy(t) =
I. INTRODUCTION AND PROBLEM FORMULATION Awy(t) + B(wa(t), t)ua(t) + o(xa(t), ua(t), t).

A3) The matrix B is bounded and satisfies the Lipschitz

Iterative learning control (ILC) has gained a large amount of interest condition with respect ta: over the time interva(0, T

in the recent few yearsin fact, several contributions have been made, (e, |B(.)| < B.. and|B(x1,t) — Blas,t)]| <
since the work of [2], toward improving ILC performance and relaxing Kg|lr1 — x|, for any (z1,72) € R"™™, where B,,
ILC design constraints. It is well known that, the use of the output and K are constant positive parameters). The function
time derivative and the knowledge of the state variables are two impor- satisfies the Lipschitz condition with respectt@ndu over
tant issues in ILC design for continuous-time nonlinear systems (see, the time interval0, T] (i.e.,||¢(z1, u1, 1) — d(xa, us, 1)]| <
for example, [1], [3]-[5], [9], [10]). In this brief, we propose an ob- Ky .||z — z2||+Kpo||lur —us|| forany(u, us) € R™*™
server-based ILC scheme for a class of time-varying nonlinear systems and(x1,x2) € R™*", whereK, . and K4, are constant
with relative degree of one. First, an asymptotically stable observer is positive parameters.

derived for the system under consideration. Thereafter, an ILC algo-A4) rank(CB(-,-)) = m.
rithm, using only the estimated states, is derived to ensure the learnind5)  The resetting condition is satisfied at each iteration, i.e.,
convergence. The proposed observer-based ILC scheme allows one to r,(0) = 24(0), wherez4(0) is the initial state corre-
avoid the use of state and output time-derivative measurements which sponding to the desired trajectory.
are generally necessary in contraction mapping based ILC design foAssumption A1), which is not very restrictive from a practical point
nonlinear systems without zero relative degree. of view, is introduced for a technical reason guaranteeing the observer
The system under consideration is given by stability. AssumptionA2) defines all feasible trajectories that could be
tracked with the admissible inputs such as definedAih)( The Lip-
. , schitz conditions in assumptioAg) are classical in observers design
(t) = Aw(t) + B («(t). ) u(t) + 6 (x(t), u(t). 1) and ILC design for nonlinear systems. They allow to avoid finite es-
y(t) = Ca(t) (1) cape-time phenomena. The boundednesB(©f.) in (A3) is needed
to establish the ILC convergence. This condition is realistic since ILC
wherez € R", u € R™, andy € R represent, respectively, the statdPerates generally over a finite_time i_nterval. Assumptien)(@s a
vector, the control input, and the system output. MatridesB and standard assumption in ILC design which guarantees the existence of

C are with appropriate dimensions;is a vector-valued function and the learning gain. Finally, AssumptioAg), which is also classical in
t € [0,T] is the time ILC design, allows to achieve perfect tracking. This assumption can be

Suppose that (1) operates repeatedly over a finite-time inter\;raefded agalnst_ nonper_fect tracking’, i.e., convergence of_the trackl_ng
ror to a certain domain around zero depending on the size of the ini-

[0, T]. To distinguish between the signals involved in (1), at each

. . . . i . tial error.
operation or iteration, we introduce an additional subsériph order . . .
P o Throughout the brief, we will use the following normigd|| =

S 120 )=y Imij|} for a given matrixM = [m;;] € R™*", and

1<i<m .
VI = 2% | v | for a given vectod” = [v1,...., v,.]" . We will
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whereL is the observer gain to be designed Iaér,é_B(:Ek(t)./ t)yand wherez, = x4 — 4% andz, is the state vector generated by the control
d126(ik (1), ur(t).1). The estimation error dynamics is then given bynputu,. According to assumptioA2 and the definition ofix.11 in (9),

. R one can conclude thfti;. < ||7&+1]|. Using the previous fact and
e = (A = LC)en + (Br — Bu)un + o1 — o 4) i || < 1ol g p

where 6ké$l,~ - Tk, Bk:éB(l‘k(t),t) and (ﬁ]‘:é(;')(;l'k(t),’ul,f(t),t).
Using the following Lyapunov function candidate:

V = el Pey, (5)
whereP is a symmetric positive definite matrix, we obtain
V=T (P(A —LC)+ (A - LC)TP) ek

+2¢[ P ((Bi = Bijui+ ox = 1) (6)

According to assumptiornsl andA3, the second term of the right-han
side of the previous equation might be bounded as follows:

[2ei P (B = Bryue+ (0 - 6|
< 2llew 1P (11Bs = Bellwms + 6w — il
< 2er PP st + o)

< 29le 1P
< ygezPPeA» + efek )

where,y = (Kptmax + Kg,2).
HenceV < e} Qey, with

Q=PA-LC)+(A-—LC)'P+~+*PP+1. (8)

According to [8], one has the following Lemma.
Lemma 1: If (A,C) is observable and if. is chosen such thatd —
LC) stable and
min omin(A — LC — jwl) > v
wERT
wheresmin () denote the smallest singular value(ef, then the ob-
servation erroe;, is bounded and converges asymptotically to Zero.
Proof: See [8].
Now, let us consider the following iterative learning controller:

V1 (B) = ui(t) + Gi(t) (9a(t) — C Az (1)
—CB (24(t), t) up(t) — Co (2x(t), ur(t), 1))
Upt1 () =sat (Vi1 () 9)
wheregq(t) is the time derivative of.:(t), andz; is given by the state

observer (3). The initial control input is such thiato () ||cc < Umax-
For a vectorl/ = [ui,...,un]" € R™, the saturation function is

defined as
sat(U) = [sat(u1),...,sat(u.,)]"
with
w;, if |u,'| < u;
sat(u;) = w;, if  wu;>u;
—U;, if u, < —w
fori € {1,....m}, with [|[[@1,....,Tm]7 || = tmax.

Let us denote the control error by, = g — uy ando, = ug — vi.
Hence
Vgt =Ud — Vg1 = Ug — (Vg1 — Uk)

=ay — Gi (g0 — CAZp — CB(&1)ur — Co(2k, ur))

=ay — Gy (CAzg + CB(zq)ug + Co(xa,ug)
—CA?%, — CB(2r)up — Co(2g, ur))

=(I — GxCB(ik)) i, — GpCA¥y
— G, C (B(xgq) — B(3k)) ug

—GrC(d(wa,uq) — ¢k, ur)) (10)

taking the norm of (10), in view 0A2 andA3, we obtain
g1l < (I = GeCB(E)| + Ky ullGLCI) [l

+ollGLCll |7l (11
wherea = ||A|| + Kg||udl|s + K¢,.. Now, using system (2) and the
state observer (3), one has
Tu(t) = 76(0) + /Ot (A%, 4+ B(xq)ug — B(@g)ug

—i—q’)(:ﬁd, ud) — @(i’];,ﬂ}‘») — LCG]‘-,) dr

c1which, according tA3, leads to

ot

||5A,||§||;ik:(0)||+/
0

wheresy = K¢ o + ||B(2k, t)||oc = Ko,u + Bm andgs = ||LC|.
Applying the Bellman-Gronwall Lemma to (12) we obtain

(allarll+5:

il +Ballenl)dr  (12)

I <o Ol e+ [ Ghlaali+pallenlhe™ . (13)
Now, from (13) and (11), gne has
i 1 (1= GoC B 14+ Ko |G CID g+ | GiC|

[ Galaslisllenly D ralGiClliz O 04

Multiplying the previous inequality by=**, A > «, and applying
the A\-norm, we obtain

llarsalla < (1 = GeOB(ar)ll o, + KoullGrClloc) llain]la
+ sup {allGiCllllan )] " }
t€[0.1]

1
+ sup {G:IIGkCII/ e (Billiell + Beller)))
t€[0,7] 0

Xe(af)‘)(tff)dr}

< (Il — G«CB(#¢)

+ Ko ullGeClloo) [k |5

lle

ot .
+ sup {aHG’ACH/ ,316(07)\)(t77)dT} [|@s]| A
t€[0,1] 0
t
+ sup {n||GkC||/ ,32(3(”_’\)(1_7)%'} [lex|lx
t€[0,7T] 0
+ sup {allGiCll[lan )] " } (15)
te[0,1]
which leads to
lae+1llx < (p1 + p2)llanlls + ps (16)
where
p1 = lI = G(H)CB (24 (t), )|l o
+ Ko |G (DCl (7)
a3 (a—N)T .
P2 =" (1 e ) G ()Cl. (18)
and
B2 pa -
ps = 2 leells + @ lGOCIL I3 (O]l (19)

If the control gain is such thfiiG+. (t) C||  is bounded, itis clear that
there exists a sufficiently large makingp- arbitrarily small. Thus, if
p1 < 1, there exists\ such thap + p2» < 1. Hence

klim [|ar|lx <€ (20)
with
€ = min {Qumax. p—“‘} .
1—p1—p2
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Now, let us evaluate the upper bound of the tracking error. In fact,

we have
by () = b2 (0) + /t (Adzy + B(zg)uqg
—B(l’k)u(i: + ¢(@a, wa) — d(wk, ur)) dr
which leads to
52(D < (1525 (0)]] + / (a5 + Gl dr - (22)

wherebéx,. = x4 — x. Applying the Bellman-Gronwall Lemma, we
obtain

t
(1) < 152 (0)]| ™" + / ullie() e dr. (23)
J0

(1)

Multiplying the previous inequality by !, A > «, and applying
the A-norm, we obtain

t
s (1)l < sup { / ﬁm<“—”<*—’>dr}||ak||x
t€[0,7T] 0
+ sup

{Izr oy e}
t€[0,1]

o (1 - c(“—W)

< lakllx + N6z (O)]]. (24)
(A=)
Now, using (20) and\5, one can conclude that
; o (1 _ 6(aﬂ\)l’)
L lya(t) — yr (@), < ”O”WE (25)

If the condition inLemma 1is fulfilled, then [Jex||» is bounded.
Hence, for a sufficiently largd, p3 — «||Gr(t)C||o||Zx(0)]] when
k — oc. Moreover, if#,(0) = 0 thenps — 0 and so does, which
implies that the tracking error converges to zero when oc.

Now, one can summarize the previous development in the following

theorem.
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Fig. 1. Sup norm of the tracking error versus the number of iterations.

gives the following symmetric positive definite matrix:
P < 23.9302 —20.0153) .

—20.0153 174.6246
Considering the following reference trajectary(t) = 0.05¢>(1 —t),
t € [0,1], and using the control law (9) with7.(¢)
1/(0.05 4+ 0.05¢~ "), and the state observer (3), with zero initial
conditions, we obtain the result shown in Fig. 1.

IV. CONCLUDING REMARKS

An observer-based iterative learning controller is proposed for a

Theorem 1: Consider (2) with the iterative learning controller (9), : > ¢ el S
wherez is given by the state observer (3). Assume that the conditionsGgss of time-varying nonlinear systems. Sufficient conditions for
Lemma 1 are satisfied and let assumptions (A1-A5) be fulfilled. TheHle convergence of the observation error and the tracking error are

the following hold.
i) If p1 < 1, there exists\ > « such that

1 (1 - e(“’_X)T)

dim Jlya() = w0l < IO —y =

ii) If p1 < 1andz;(0) = x,(0),then||y.(t) —ye(#)]| is bounded
and tends to zero whéh— . O

€.

(26)

I1l. NUMERICAL EXAMPLE
Consider the following system:
@1 =a9 + ().167tsin(w1)
d2 =x1 + 0.1sin(x2) + (0.05 + (].()56715)’&
Yy = Za.
0 1

a=(" 1), c=py

The admissible control input is such that < 1. One can easily show
that K. = 0, Ky, = 0.1, B,, = 0.1 andKg = 0.1. Hence
v =0.2.TakingL = [L1 L»]T =[5 4], one can easily check that
A—LC'is stable andhincg+ omin(A—LC —jwl) = 0.7016 > 7.
Consequently, the Riccati equation

P(A-LC)+(A-LO)' P4+ +"PP+1=0Q

(" )

(27)
Thus

with
—-0.1
0

0
-0.1

Q

derived. The following points should be pointed out.

1) The time derivative of the regulated output and the state variables
are not needed as long as an adequate state observer can be de-
signed for the system under consideration.

2) In this brief, we tried to consider a wide class of nonlinear sys-
tems by allowingu;. to appear in the function in a nonaffine
manner. According to this fact, the sufficient conditipn <
1 appears to be somehow complicated than usual. However, if
uy appears just in an affine manner in the differential equation,
i.e., the argument,,, does not appear in the functief then
K4 .. = 0 and consequently the convergence condition reduces
top1 = ||I — Gr(t)CB(&r(t),t)||- < 1.Inthis case the exis-
tence ofG is guaranteed by assumptiéd.

3) Insome cases, the paramet@&an be large and this will make the

condition in Lemma1 difficult to satisfy. This problem is inherent

to observers design for nonlinear Lipschitz systems [6]. In [8],

the author proposes an algorithm searching for the observer gain

L and the maximum value ef namelyy, , for a given pairA,C).

The gainL obtained by this algorithm is locally optimum and

guarantees the observer stability for all value,déss tharny, .

The price to pay for the result developed in this brief is related to

the observer design, which is not an easy task for nonlinear un-

certain systems, and robust estimation techniques will be needed.

4)
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Il. PROBLEM FORMULATION AND PRELIMINARIES

trol given by
N
Ei(t) = Az(t) + Bu(t) + Y Dpu(t —hp), >0
m=1
Controllability of Linear Descriptor Systems +(0) =20
y P y u(t) =uo(t), t€[—hwn,0) (1)

ing Xi L Wi . . .
Guangming Xie and Long Wang wherez(t) € R" is the state vecton(t) € R? the input vector;

E, A ¢ R**", E is a singular matrixdet(sE — 4) # 0; B,
Abstract—This brief studies the controllability of linear descriptor sys- D1,---, Dy € R"*?;0 < hy < .-+ < hy < oo areN constant
tems with multiple time delays in control. Several controllability concepts  time delays; and (#) the initial control function.
are investigated. First, necessary and sufficient criteria for the controlla- Fordet(sE — A) # 0, there exist nonsingular matricd® Q) €

bility of the canonical system are established. Then, equivalent criteria for ., x» . . .
that of the general system are given. Finally, it is pointed out that the con- R » such that (1) can be transformed into an equivalent canonical

trollability is independent of the size of the time delays. system

Index Terms—Controllability, descriptor systems, singular systems, time N
delay. drl(t):Al;m(t)+Blu(t)+Z Dy mu(t—"hy,), t>0

m=1
N
|. INTRODUCTION A2is(t)=a2(t)+ Bou(t)+ Y Do pmu(t—hpm),  £20

In recent years, there has been increasing interest in the analysis and m=1
synthesis of descriptor systems, or singular systems, due to their sig- #1(0) =210
nificance both in theory and applications [2]—[13]. r2(0) =120

For a linear time-invariant descriptor system, there are several con- w(t)=uo(t), t € [~h,0) @)

trollability concepts with different meanings. For instance, the system

is calledcompletely controllable (C controllablé}], if one can reach wherex; € R, wo € R"2, ny 4+ no = n, QEP = diagl;, N),
any terminal state from any admissible initial state; the systemis callgdip = diag4:,I:), QB = [E})]y QD,, = [g;]
R controllable[4], if one can reach any terminal state in the reachablg _ 1.« N: I, A, € Rmxm, I, is a unit matrix;.;ig,
set from any admissible initial state; the system is cahepulse con- I, € ﬁnzx’nz, A, is a nilpotent matrix,l> is a unit matrix;
trollable (I controllable)[12], if for every initial condition there exist Bi, Dii € R"XP By, Do, € R2%". m = 1,--..N:
a smooth(impulse-free) contro(t) and a smooth state trajectoryt)  — dég det(sE — A). ’

In the remaining of the brief, we denof®, = [D11,---, D1 ],
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