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Observer-based Iterative Learning Control for a Class
of Time-Varying Nonlinear Systems

Abdelhamid Tayebi and Jian-Xin Xu

Abstract—In this brief, we propose an observer-based iterative learning
control (ILC) scheme for the tracking problem of a class of time-varying
nonlinear systems. First, a state observer is derived for the system under
consideration, and sufficient conditions for the boundedness and the con-
vergence to zero of the estimation error are given. Thereafter, an iterative
learning rule—based on the proposed state observer—ensuring the bound-
edness of the tracking error is derived. Moreover, it is shown that if the
initial state variables are known, it is possible to obtain a perfect conver-
gence to zero, over a finite tracking horizon, when the number of iterations
tends to infinity. By associating a state observer with the ILC scheme it is
possible to avoid the use of state and output time-derivative measurements
which are generally necessary in contraction mapping based ILC design
for nonlinear systems without zero relative degree.

I. INTRODUCTION AND PROBLEM FORMULATION

Iterative learning control (ILC) has gained a large amount of interest
in the recent few years.1 In fact, several contributions have been made,
since the work of [2], toward improving ILC performance and relaxing
ILC design constraints. It is well known that, the use of the output
time derivative and the knowledge of the state variables are two impor-
tant issues in ILC design for continuous-time nonlinear systems (see,
for example, [1], [3]–[5], [9], [10]). In this brief, we propose an ob-
server-based ILC scheme for a class of time-varying nonlinear systems
with relative degree of one. First, an asymptotically stable observer is
derived for the system under consideration. Thereafter, an ILC algo-
rithm, using only the estimated states, is derived to ensure the learning
convergence. The proposed observer-based ILC scheme allows one to
avoid the use of state and output time-derivative measurements which
are generally necessary in contraction mapping based ILC design for
nonlinear systems without zero relative degree.

The system under consideration is given by

_x(t) =Ax(t) +B (x(t); t)u(t) + � (x(t); u(t); t)

y(t) =Cx(t) (1)

wherex 2 Rn, u 2 Rm, andy 2 Rp represent, respectively, the state
vector, the control input, and the system output. MatricesA, B and
C are with appropriate dimensions,� is a vector-valued function and
t 2 [0; T ] is the time.

Suppose that (1) operates repeatedly over a finite-time interval
[0; T ]. To distinguish between the signals involved in (1), at each
operation or iteration, we introduce an additional subscriptk. In order
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1For general overview of existing ILC, the reader is referred to the survey
paper [7].

to avoid any confusion between the time variablet and the iteration
variablek, we rewrite system (1) at the iterationk as follows:

_xk(t) =Axk(t) +B (xk(t); t)uk(t) + � (xk(t); uk(t); t)

yk(t) =Cxk(t): (2)

Now, the control problem can be formulated as follows. Consider
(2) and suppose that the desired trajectory is differentiable and given
by yd(t) over the time interval[0; T ]. Our objective is to design an
iterative control lawuk(t), such that the outputyk(t) converges to the
desired outputyd(t), for all t 2 [0; T ], whenk ! 1.

For the design of our controller, the following assumptions are
needed.

A1) The admissible range for the control inputuk is given by
kukk � umax, whereumax is a known value obtained from
the system’s physical limitations.

A2) There exists a bounded control lawud(t), over [0; T ], i.e.,
kudk � umax, such thatyd(t) = Cxd(t) and _xd(t) =
Axd(t) + B(xd(t); t)ud(t) + �(xd(t); ud(t); t).

A3) The matrix B is bounded and satisfies the Lipschitz
condition with respect tox over the time interval[0; T ]
(i.e., kB(:; :)k � Bm and kB(x1; t) � B(x2; t)k �
KBkx1 � x2k, for any (x1; x2) 2 n�n, whereBm

andKB are constant positive parameters). The function�

satisfies the Lipschitz condition with respect tox andu over
the time interval[0; T ] (i.e.,k�(x1; u1; t)��(x2; u2; t)k �
K�;xkx1�x2k+K�;uku1�u2k for any(u1; u2) 2 m�m

and(x1; x2) 2 n�n, whereK�;x andK�;u are constant
positive parameters.

A4) rank(CB(�; �)) = m.
A5) The resetting condition is satisfied at each iteration, i.e.,

xk(0) = xd(0), wherexd(0) is the initial state corre-
sponding to the desired trajectory.

Assumption (A1), which is not very restrictive from a practical point
of view, is introduced for a technical reason guaranteeing the observer
stability. Assumption (A2) defines all feasible trajectories that could be
tracked with the admissible inputs such as defined in (A1). The Lip-
schitz conditions in assumption (A3) are classical in observers design
and ILC design for nonlinear systems. They allow to avoid finite es-
cape-time phenomena. The boundedness ofB(:; :) in (A3) is needed
to establish the ILC convergence. This condition is realistic since ILC
operates generally over a finite time interval. Assumption (A4) is a
standard assumption in ILC design which guarantees the existence of
the learning gain. Finally, Assumption (A5), which is also classical in
ILC design, allows to achieve perfect tracking. This assumption can be
traded against “nonperfect tracking”, i.e., convergence of the tracking
error to a certain domain around zero depending on the size of the ini-
tial error.

Throughout the brief, we will use the following norms:kMk =
max

1�i�m
f n

j=1
jmij jg for a given matrixM = [mij ] 2

m�n, and
kV k = max

1�i�m
j vi j for a given vectorV = [v1; . . . ; vm]T . We will

also use the Sup norm denoted byk� (t)k1 = sup
t2[0;T ]

k� (t)k, and the

�-norm denoted byk � (t)k� = sup
t2[0;T ]

fe��tk � (t)kg.

II. OBSERVER-BASED ILC DESIGN

In the sequel, the time argumentt will be omitted where there is no
matter to any confusion. Consider the following state observer:

_̂xk =Ax̂k + B̂kuk + �̂k + L (yk � ŷk)

ŷk =Cx̂k (3)
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whereL is the observer gain to be designed later,B̂k

�
=B(x̂k(t); t) and

�̂k
�
=�(x̂k(t); uk(t); t). The estimation error dynamics is then given by

_ek = (A � LC)ek + (Bk � B̂k)uk + �k � �̂k (4)

where ek
�
=xk � x̂k, Bk

�
=B(xk(t); t) and �k

�
=�(xk(t); uk(t); t).

Using the following Lyapunov function candidate:

V = e
T
k Pek (5)

whereP is a symmetric positive definite matrix, we obtain

_V = e
T
k P (A� LC) + (A� LC)TP ek

+2eTk P (Bk � B̂k)uk + �k � �̂k : (6)

According to assumptionsA1 andA3, the second term of the right-hand
side of the previous equation might be bounded as follows:

2eTk P (Bk � B̂k)uk + (�� �̂)

� 2kekkkPk kBk � B̂kkumax + k�k � �̂kk

� 2kekk
2kPk(KBumax +K�;x)

� 2
kekk
2kPk

� 

2
e
T
k PPek + e

T
k ek (7)

where,
 = (KBumax +K�;x).
Hence _V � eTkQek, with

Q = P (A� LC) + (A� LC)TP + 

2
PP + I: (8)

According to [8], one has the following Lemma.
Lemma 1: If (A,C) is observable and ifL is chosen such that(A�

LC) stable and

min
!2

�min(A� LC � j!I) > 


where�min(�) denote the smallest singular value of(�), then the ob-
servation errorek is bounded and converges asymptotically to zero.

Proof: See [8].
Now, let us consider the following iterative learning controller:

vk+1(t) =uk(t) +Gk(t) ( _yd(t)� CAx̂k(t)

�CB (x̂k(t); t)uk(t)� C� (x̂k(t); uk(t); t))

uk+1(t) = sat (vk+1(t)) (9)

where _yd(t) is the time derivative ofyd(t), andx̂k is given by the state
observer (3). The initial control input is such thatku0(t)k1 � umax.
For a vectorU = [u1; . . . ; um]T 2 m, the saturation function is
defined as

sat(U) = [sat(u1); . . . ; sat(um)]T

with

sat(ui) =

ui; if juij � ui

ui; if ui > ui

�ui; if ui < �ui

for i 2 f1; . . . ; mg, with k[u1; . . . ; um]T k = umax.
Let us denote the control error by~uk = ud�uk and~vk = ud� vk.

Hence

~vk+1 =ud � vk+1 = ~uk � (vk+1 � uk)

= ~uk �Gk ( _yd � CAx̂k � CB(x̂k)uk � C�(x̂k; uk))

= ~uk �Gk (CAxd + CB(xd)ud + C�(xd; ud)

�CAx̂k � CB(x̂k)uk � C�(x̂k; uk))

= (I �GkCB(x̂k)) ~uk �GkCA~xk

�GkC (B(xd)�B(x̂k))ud

�GkC (�(xd; ud)� �(x̂k; uk)) (10)

where~xk = xd� x̂k andxd is the state vector generated by the control
inputud. According to assumptionA2 and the definition ofuk+1 in (9),
one can conclude thatk~uk+1k � k~vk+1k. Using the previous fact and
taking the norm of (10), in view ofA2 andA3, we obtain

k~uk+1k � (kI �GkCB(x̂k)k+K�;ukGkCk)k~ukk

+�kGkCkk~xkk (11)

where� = kAk+KBkudk1+K�;x. Now, using system (2) and the
state observer (3), one has

~xk(t) = ~xk(0) +
t

0

(A~xk +B(xd)ud �B(x̂k)uk

+�(xd; ud)� �(x̂k; uk)� LCek)d�

which, according toA3, leads to

k~xkk�k~xk(0)k+
t

0

(�k~xkk+�1k~ukk+�2kekk)d� (12)

where�1 = K�;u + kB(x̂k; t)k1 = K�;u + Bm and�2 = kLCk.
Applying the Bellman-Gronwall Lemma to (12) we obtain

k~xkk�k~xk(0)ke
�t+

t

0

(�1k~ukk+�2kekk)e
�(t��)

d�: (13)

Now, from (13) and (11), one has

k~uk+1k�(kI�GkCB(x̂k)k+K�;ukGkCk)k~ukk+�kGkCk
t

0

(�1k~ukk+�2kekk)e
�(t��)

d�+�kGkCkk~xk(0)ke
�t
: (14)

Multiplying the previous inequality bye��t, � > �, and applying
the�-norm, we obtain

k~uk+1k�� kI �GkCB(x̂k)k1 +K�;ukGkCk1 k~ukk�

+ sup
t2[0;T ]

�kGkCkk~xk(0)ke
(���)t

+ sup
t2[0;T ]

�kGkCk
t

0

e
��� (�1k~ukk+ �2kekk))

�e(���)(t��)d�

� k1�GkCB(x̂k)k1 +K�;ukGkCk1 k~ukk�

+ sup
t2[0;T ]

�kGkCk
t

0

�1e
(���)(t��)

d� k~ukk�

+ sup
t2[0;T ]

�kGkCk
t

0

�2e
(���)(t��)

d� kekk�

+ sup
t2[0;T ]

�kGkCkk~xk(0)ke
(���)t (15)

which leads to

k~uk+1k� � (�1 + �2)k~ukk� + �3 (16)

where

�1 = kI �Gk(t)CB (x̂k(t); t)k1

+K�;u kGk(t)Ck1 (17)

�2 =
��1

�� �
1� e

(���)T kGk(t)Ck1 (18)

and

�3 =
�2�2

�1
kekk� + � kGk(t)Ck1 k~xk(0)k : (19)

If the control gain is such thatkGk(t)Ck1 is bounded, it is clear that
there exists a sufficiently large� making�2 arbitrarily small. Thus, if
�1 < 1, there exists� such that�1 + �2 < 1. Hence

lim
k!1

k~ukk� � � (20)

with

� = min 2umax;
�3

1� �1 � �2
:
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Now, let us evaluate the upper bound of the tracking error. In fact,
we have

�xk(t) = �xk(0) +
t

0

(A�xk +B(xd)ud

�B(xk)uk + �(xd; ud)� �(xk; uk))d� (21)

which leads to

k�xk(t)k � k�xk(0)k+
t

0

(� k�xk(�)k+ �1 k~uk(�)k)d� (22)

where�xk = xd � xk. Applying the Bellman-Gronwall Lemma, we
obtain

k�xk(t)k � k�xk(0)k e
�t +

t

0

�1 k~uk(�)k e
�(t��)d�: (23)

Multiplying the previous inequality bye��t, � > �, and applying
the�-norm, we obtain

k�xk(t)k� � sup
t2[0;T ]

t

0

�1e
(���)(t��)d� k~ukk�

+ sup
t2[0;T ]

k�xk(0)ke
(���)t

�
�1 1� e(���)T

(�� �)
k~ukk� + k�xk(0)k: (24)

Now, using (20) andA5, one can conclude that

lim
k!1

kyd(t)� yk(t)k� � kCk
�1 1� e(���)T

(�� �)
�: (25)

If the condition inLemma 1is fulfilled, then kekk� is bounded.
Hence, for a sufficiently large�, �3 ! �kGk(t)Ck1k~xk(0)k when
k ! 1. Moreover, if~xk(0) = 0 then�3 ! 0 and so does�, which
implies that the tracking error converges to zero whenk !1.

Now, one can summarize the previous development in the following
theorem.

Theorem 1: Consider (2) with the iterative learning controller (9),
wherex̂ is given by the state observer (3). Assume that the conditions in
Lemma 1 are satisfied and let assumptions (A1-A5) be fulfilled. Then,
the following hold.

i) If �1 < 1, there exists� > � such that

lim
k!1

kyd(t)� yk(t)k� � kCk
�1 1� e(���)T

(�� �)
�: (26)

ii) If �1 < 1 andx̂k(0) = xk(0), thenkyd(t)�yk(t)k� is bounded
and tends to zero whenk !1.

III. N UMERICAL EXAMPLE

Consider the following system:

_x1 =x2 + 0:1e�tsin(x1)

_x2 =x1 + 0:1sin(x2) + (0:05 + 0:05e�t)u

y =x2: (27)

Thus

A =
0 1

1 0
: C = [0 1]:

The admissible control input is such thatjuj � 1. One can easily show
thatK�;u = 0, K�;x = 0:1, Bm = 0:1 andKB = 0:1. Hence

 = 0:2. TakingL = [L1 L2 ]

T = [ 5 4 ]T , one can easily check that
A�LC is stable andmin!2 �min(A�LC�j!I) = 0:7016 > 
.
Consequently, the Riccati equation

P (A� LC) + (A� LC)TP + 
2PP + I = Q

with

Q =
�0:1 0

0 �0:1

Fig. 1. Sup norm of the tracking error versus the number of iterations.

gives the following symmetric positive definite matrix:

P =
23:9302 �20:0153

�20:0153 174:6246
:

Considering the following reference trajectoryyd(t) = 0:05t2(1� t),
t 2 [0; 1], and using the control law (9) withGk(t) =
1=(0:05+ 0:05e�t), and the state observer (3), with zero initial
conditions, we obtain the result shown in Fig. 1.

IV. CONCLUDING REMARKS

An observer-based iterative learning controller is proposed for a
class of time-varying nonlinear systems. Sufficient conditions for
the convergence of the observation error and the tracking error are
derived. The following points should be pointed out.

1) The time derivative of the regulated output and the state variables
are not needed as long as an adequate state observer can be de-
signed for the system under consideration.

2) In this brief, we tried to consider a wide class of nonlinear sys-
tems by allowinguk to appear in the function� in a nonaffine
manner. According to this fact, the sufficient condition�1 <
1 appears to be somehow complicated than usual. However, if
uk appears just in an affine manner in the differential equation,
i.e., the argumentuk does not appear in the function�, then
K�;u = 0 and consequently the convergence condition reduces
to �1 = kI �Gk(t)CB(x̂k(t); t)k1 < 1. In this case the exis-
tence ofGk is guaranteed by assumptionA4.

3) In some cases, the parameter
 can be large and this will make the
condition in Lemma1 difficult to satisfy. This problem is inherent
to observers design for nonlinear Lipschitz systems [6]. In [8],
the author proposes an algorithm searching for the observer gain
L and the maximum value of
, namely
1, for a given pair (A,C).
The gainL obtained by this algorithm is locally optimum and
guarantees the observer stability for all value of
 less than
1.

4) The price to pay for the result developed in this brief is related to
the observer design, which is not an easy task for nonlinear un-
certain systems, and robust estimation techniques will be needed.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their
valuable comments.



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 50, NO. 3, MARCH 2003 455

REFERENCES

[1] H. S. Ahn, C. H. Choi, and K. B Kim, “Iterative learning control for a
class of nonlinear systems,”Automatica, vol. 29, no. 6, pp. 1575–1578,
1993.

[2] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of
robots by learning,”J. Robot. Syst., vol. 1, pp. 123–140, 1984.

[3] Y.-Q. Chen, Z. Gong, and C. Wen, “Analysis of a high-order iterative
learning control algorithm for uncertain nonlinear systems with state
delays,”Automatica, vol. 34, no. 3, pp. 345–353, 1998.

[4] Y.-Q. Chen, C. Wen, Z. Gong, and M. Sun, “Iterative learning controller
with initial state learning,”IEEE Trans. Automat. Contr., vol. 44, pp.
371–376, Feb. 1999.

[5] T. Y. Kuc, J. S. Lee, and K. Nam, “An iterative learning control theory
for a class of nonlinear dynamic systems,”Automatica, vol. 28, no. 6,
pp. 1215–1221, 1992.

[6] E. A. Misawa and J. K. Hedrick, “Nonlinear observers: a state of the
art,” J. Dyn. Syst., Meas. Contr., vol. 111, pp. 344–352, 1989.

[7] K. L. Moore, “Iterative learning control: an expository overview,”Appl.
Comput. Contr. Signal Processing, Circuits, vol. 1, pp. 151–214, 1999.

[8] R. Rajamani, “Observers for Lipschitz nonlinear systems,”IEEE Trans.
Automat. Contr., vol. 43, pp. 397–401, Mar. 1998.

[9] J. X. Xu and Z. Qu, “Robust iterative learning control for a class of
nonlinear systems,”Automatica, vol. 34, pp. 983–988, 1998.

[10] J. X. Xu and B. Viswanathan, “Adaptive robust iterative learning control
with dead zone scheme,”Automatica, vol. 36, no. 1, pp. 91–99, 2000.

Controllability of Linear Descriptor Systems

Guangming Xie and Long Wang

Abstract—This brief studies the controllability of linear descriptor sys-
tems with multiple time delays in control. Several controllability concepts
are investigated. First, necessary and sufficient criteria for the controlla-
bility of the canonical system are established. Then, equivalent criteria for
that of the general system are given. Finally, it is pointed out that the con-
trollability is independent of the size of the time delays.

Index Terms—Controllability, descriptor systems, singular systems, time
delay.

I. INTRODUCTION

In recent years, there has been increasing interest in the analysis and
synthesis of descriptor systems, or singular systems, due to their sig-
nificance both in theory and applications [2]–[13].

For a linear time-invariant descriptor system, there are several con-
trollability concepts with different meanings. For instance, the system
is calledcompletely controllable (C controllable)[4], if one can reach
any terminal state from any admissible initial state; the system is called
R controllable[4], if one can reach any terminal state in the reachable
set from any admissible initial state; the system is calledimpulse con-
trollable (I controllable)[12], if for every initial condition there exist
a smooth(impulse-free) controlu(t) and a smooth state trajectoryx(t)
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solution; and the system is calledstrongly controllable (S controllable)
[2], if it is both R controllable and I controllable.

Wei and Song discussed the controllability of descriptor systems
with single time delay in control [13]. From the definition of the con-
trollability they give, we can find that it corresponds to the C control-
lability of descriptor systems without time delay. Some necessary and
sufficient conditions are also given in [13]. In this brief, we consider
the more general case where the system contains multiple time delays
in control. And we try to investigate all kinds of controllability of linear
descriptor systems. Thus, the results given in [13] will become special
cases of our results.

This brief is organized as follows. Section II formulates the problem
and presents the preliminary results. Section III discusses the concept
of reachability. Section IV discusses the controllability of the canonical
system. Section V discusses the controllability of the general descriptor
system. Finally, we provide the conclusion in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider a linear descriptor system with multiple time delays in con-
trol given by

E _x(t) =Ax(t) +Bu(t) +

N

m=1

Dmu(t� hm); t � 0

x(0) =x0

u(t) =u0(t); t 2 [�hN ; 0) (1)

wherex(t) 2 <n is the state vector,u(t) 2 <p the input vector;
E, A 2 <n�n, E is a singular matrix;det(sE � A) 6� 0; B,
D1; � � � ; DN 2 <n�p; 0 < h1 < � � � < hN < 1 areN constant
time delays; andu0(t) the initial control function.

For det(sE � A) 6� 0, there exist nonsingular matricesP , Q 2

<n�n, such that (1) can be transformed into an equivalent canonical
system

_x1(t)=A1x1(t)+B1u(t)+

N

m=1

D1;mu(t�hm); t � 0

A2 _x2(t)=x2(t)+B2u(t)+

N

m=1

D2;mu(t�hm); t � 0

x1(0)=x10

x2(0)=x20

u(t)=u0(t); t 2 [�hN ; 0) (2)

wherex1 2 <n , x2 2 <n , n1 + n2 = n, QEP = diag(I1; N),
QAP = diag(A1; I2), QB = B

B
, QDm = D

D
,

m = 1; � � � ; N ; I1, A1 2 <n �n , I1 is a unit matrix;A2,
I2 2 <n �n , A2 is a nilpotent matrix,I2 is a unit matrix;
B1, D1;m 2 <n �p, B2, D2;m 2 <n �p, m = 1; � � � ; N ;
n1 = deg det(sE � A).

In the remaining of the brief, we denoteD1 = [D1;1; � � � ; D1;N ],
D2 = [D2;1; � � � ; D2;N ] andD = [D1; � � � ; DN ]. LetL be the index
of E, then for (2), we haveAL�1

2
6= 0 andAL2 = 0. DenoteU the set

of functions piecewise-differentiableL�1 times. As usual, we assume
that the initial inputu0 2 U and all the control inputu 2 U .

B. Preliminaries

In this subsection, we give some mathematical definitions and
lemmas as the basic tools in the following discussion.
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