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Robust Iterative Learning Control Design: Application
to a Robot Manipulator

A. Tayebi, S. Abdul, M. B. Zaremba, and Y. Ye

Abstract—This paper deals with robust iterative learning control design
for uncertain single-input–single-output linear time-invariant systems. The
design procedure is based upon solving the robust performance condition
using the Youla parameterization and the µ-synthesis approachto obtain a
feedback controller. Thereafter, a convergent iterative learning law is ob-
tained by using the performance weighting function involved in the robust
performance condition. Experimental results, on a CRS465 robot manip-
ulator, are provided to illustrate the effectiveness of the proposed design
method.

Index Terms—Iterative learning control (ILC), robot manipulators, ro-
bust performance.

I. INTRODUCTION

For many mechanical components in mechatronic systems and
robotics, the motions are repeatable. Many industrial control appli-
cations, especially in robotics, use simple linear PID controllers that
achieve reasonable performance if the repeatable task is relatively sim-
ple. In some situations, e.g., when the reference trajectory contains
high-frequency components, it is difficult to achieve a good enough
tracking accuracy using standard PID controllers [9]. It is possible,
however, to compensate for effects that are difficult to compensate for
by classical control techniques, by including learning capabilities into
the system [2], [12], [20], [27]. One solution to this problem is to incor-
porate the repetition property of the desired task in the design by adding
a learning component to the PID controller that allows the controller to
learn from the tracking errors of the previous operations in order to im-
prove the tracking accuracy with every new operation. This technique
is referred to as iterative learning control (ILC), [5], [16], [26].

ILC is a well-established technique that presents itself as the most
suitable method to improve on repetitive tasks without excessive re-
quirements on sensor-feedback quality or control-loop bandwidth.
Specifically, ILC is a technique for improving tracking performance
of processes, machines, equipment, or systems that execute the same
trajectory, motion, or operation over and over, starting essentially from
the same initial conditions each time. In ILC, refinements are made
to the input signal after each trial until the desired performance level
is reached. This approach is particularly suitable for robot manipula-
tors due to the repeatable nature of the motion usually encountered
in robotics applications (see, for instance, [10], [14], [19], [23]–[25],
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Fig. 1. ILC scheme.

and [27]). ILC was initially developed as a feedforward action applied
directly to the open-loop system [2], [3], [6]. Several closed-loop ILC
schemes were later developed in order to benefit from the feedback
properties in the first iteration, e.g., [1], [7], [11], [15], and [22].

Most of the ILC approaches proposed in the literature focus on the
determination of the convergence conditions, which is a crucial part of
the design, but there is little work that deals with solving these condi-
tions to obtain the ILC filters especially under model uncertainties. The
H∞ and µ-synthesis approaches were used in [7] and [15] to design the
learning filters, under model uncertainties, assuming that the feedback
controller is already available. A two-step procedure based on the H∞
optimization was proposed in [1] to design the feedback and learning
controllers. However, as the authors pointed out in [1], this technique
cannot be used for unstable systems, and the convergence condition
can only be satisfied if there is no uncertainty.

The main advantage of designing the feedback and learning con-
trollers in two separate steps is obviously the increased number of
DOFs, which permits to assign the desired performance at the first
iteration through the feedback controller, and the performance of the
iterative process through the learning filters. The main practical draw-
back of this technique, besides the increased design complexity, is that
it leads generally to high-order ILC filters. In fact, a feedback con-
troller designed using robust control techniques, such as µ-synthesis,
is generally of a high order; hence, robust ILC design based on the
high-order feedback controller will lead to higher order ILC filters if
those filters exist. From a practical point of view, it is important to keep
the order of the feedback and learning filters as low as possible. One
potential solution is to design the feedback and learning filters simul-
taneously. In fact, in [22], it is shown that if the feedback controller is
designed to satisfy the robust performance condition, then the perfor-
mance weighting function can be used as a learning filter guaranteeing
the convergence of the iterative process. Hence, there is no need to
design the learning filter if a feedback controller can be designed to
satisfy the robust performance condition.

In this paper, using the Youla parameterization and the µ-synthesis
approach, we provide a robust ILC design procedure that guarantees
robust performance for the feedback system and the convergence of
the iterative process, for both stable and unstable uncertain linear time-
invariant (LTI) systems. Finally, our approach is validated experimen-
tally on a CRS465 robot manipulator, where we show how this approach
could be used in robotics applications to generate the learning com-
ponent to be added to the nominal potential difference (PD) control to
improve the tracking performance from operation to operation.

II. PRELIMINARIES AND PROBLEM FORMULATION

Let us consider the ILC scheme shown in Fig. 1, with the following
iterative rule:

Vk+1 (s) = W1 (s) (Vk (s) + Uk (s)) (1)
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where k denotes the iteration or operation number, and V1 (s) = 0. The
plant G is described in the following multiplicative uncertain form:

G = (1 + ∆W2 )Gn (2)

where Gn is the nominal plant model, W2 is a known stable trans-
fer function, and ∆ is an unknown stable transfer function satisfying
‖∆‖∞ ≤ 1. We assume that the reference signal yd (t) is bounded and
yk (0) = yd (0), and without any loss of generality, we consider that
yk (0) = yd (0) = 0.

It is shown in [22] that if the controller C(s) is designed such that
the robust performance condition

‖|W1S| + |W2T |‖∞ < 1 (3)

is satisfied, where S = 1/(1 + CGn ) is the sensitivity function, and
T = 1 − S is the complementary sensitivity function, then the tracking
error is bounded for all k ∈ N, and is uniformly L2 -convergent to

e∞(t) = lim
k→∞

ek (t) = L−1

(
1 − W1

1 − W1 + CGn (1 + ∆W2 )
Yd

)
(4)

which tends to 0 if W1 (s) tends to 1.
In this paper, we propose a robust ILC design procedure, based

on the Youla parameterization and the µ-synthesis approach, for both
stable and unstable uncertain single-input–single-output (SISO)–LTI
systems. We also show the effectiveness of the proposed approach by
implementing it on a CRS465 robot manipulator.

III. ROBUST ILC DESIGN VIA µ-SYNTHESIS

In order to handle both stable and unstable systems, we use the Youla
parameterization [28] for the feedback controller C(s) as

C(s) =
X(s) + N2 (s)Q(s)
Y (s) − N1 (s)Q(s)

(5)

where N1 (s)/N2 (s) is a coprime factorization of Gn (s), with N1 (s)
and N2 (s) being two stable rational transfer functions. The stable
rational transfer functions X(s) and Y (s) are solutions of the Bezout
identity

N1 (s)X(s) + N2 (s)Y (s) = 1. (6)

As shown in [8], [18], and [29], transfer functions N1 (s), N2 (s),
X(s), and Y (s) can be obtained using the following procedure.

1) Find a state-space realization {A, B, C, D} of Gn (s), i.e.,

Gn (s) = D + C(sI − A)−1B
�
=

[
A

C

∣∣∣∣∣
B

D

]
.

2) Find F such that A + BF is stable. Transfer functions N1 (s)
and N2 (s) are given by

N1 (s)
�
=

[
A + BF

C + DF

∣∣∣∣∣
B

D

]
, N2 (s)

�
=

[
A + BF

F

∣∣∣∣∣
B

1

]
.

3) Find H such that A + HC is stable. Transfer functions X(s)
and Y (s) are given by

X(s)
�
=

[
A + HF

F

∣∣∣∣∣
H

0

]

Y (s)
�
=

[
A + HF

F

∣∣∣∣∣
−B − HD

1

]
.

Note that for stable systems, one can take N1 = Gn , N2 = 1, X =
0, and Y = 1, which leads to the internal model parameterization [17],
namely C(s) = Q(s)/[1 − Gn (s)Q(s)], which is a special case of the
Youla parameterization.

We know that the robust performance condition (3) is equivalent to
the following condition [8]:∥∥∥ W1S

1 + ∆W2T

∥∥∥
∞

< 1, ‖W2T ‖∞ < 1.

Therefore, since the sensitivity and the complementary sensitivity
functions, with the Youla parameterization, are given, respectively,
by S = N2 (Y − N1Q) and T = 1 − S = N1 (X + N2Q), one can
conclude that if the following conditions:∥∥∥∥ W1N2 (Y − N1Q)

1+∆W2N1 (X+N2Q)

∥∥∥∥
∞

<1, ‖W2N1 (X+N2Q)‖∞ <1 (7)

are satisfied, then the ILC scheme in Fig. 1 guarantees the boundedness
of the tracking error, for all k ∈ N, and its uniform L2 -convergence
to the value given in (4), when k → ∞. Robust performance is also
guaranteed for the feedback system.

Now, in order to design Q satisfying the robust performance condi-
tion (7), we introduce the following generalized matrix1:

M1 =

(
−W2N1 (X + N2Q) W2N1 (X + N2Q)
−W1N2 (Y − N1Q) W1N2 (Y − N1Q)

)
(8)

which has the following upper linear fractional transformation (LFT):

Fu (M1 , ∆) =
W1N2 (Y − N1Q)

1 + ∆W2N1 (X + N2Q)
(9)

which is well posed if ‖W2N1 (X + N2Q)‖∞ < 1. The structured
singular value µ∆ (M1 ) is defined as

µ∆ (M1 ) =
1

min{σ(∆) : ∆ ∈ ∆p , det(I − M1∆) = 0}

unless no ∆ ∈ ∆p makes I − M1∆ singular, in which case µ∆ (M1 )
= 0.

The variable σ(∆) denotes the largest singular value of ∆, and

∆P =

{(
∆ 0
0 ∆f

)
: ∆ ∈ C, ∆f ∈ C

}
denotes a prescribed set of structured block diagonal matrices [29].

Now, one can state the following theorem.
Theorem 1: Consider the control scheme in Fig. 1 with the

controller C parameterized as in (5). If there exists Q satisfying
supω∈
µ∆ (M1 (jω)) < 1, then:

1) robust performance is guaranteed for the feedback system;
2) the tracking error is bounded for all k ∈ N and is uniformly

L2 -convergent to e∞(t) given in (4), when k tends to infinity.
Proof: Straightforward from [22, Th. 1] and [30, Th. 11.8]. �
Now, for given W1 , W2 , and Gn , one can use the µ-synthesis

procedure called D-K iteration [4], [29] to obtain Q(s) satisfying
supω∈
µ∆ (M1 (jω)) < 1. To this end, we introduce the following
matrix:

MQ =


 −W2N1X W2N1X

−W1N2Y W1N2Y

−N1 N1

∣∣∣∣∣∣
W2N2

−W1N2

0


 (10)

1For the sake of presentation simplicity, we omitted the details related to the
robust control theory such as LFT, structured singular values, and D-K iteration.
For more details, the reader may refer to [29].
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Fig. 2. Experimental setup for ILC implementation.

such that M1 = Fl (MQ , Q).
Remark 1: It is also possible to choose M1 and MQ as follows:

M1 =

(
−W2N1 (X + N2Q) −W2N2 (X + N2Q)
W1N1 (Y − N1Q) W1N2 (Y − N1Q)

)
(11)

which has the following upper LFT:

Fu (M1 , ∆) =
W1N2 (Y − N1Q)

1 + ∆W2N1 (X + N2Q)
(12)

and

MQ =


 −W2N1X W2N2X

−W1N1Y W1N2Y

−N1 −N2

∣∣∣∣∣∣
W2N2

W1N1

0


 (13)

such that M1 = Fl (MQ , Q).
Remark 2: Throughout the numerous tests we have performed, we

have noticed that the results obtained with the generalized plant MQ

given in (10) are relatively better than those obtained with the MQ in
(13). However, whenever Gn and W2 are strictly proper, the MQ in
(10) generally leads to a singular H∞ problem that cannot be handled
by the “dkit” command of the µ-synthesis toolbox [4]. To overcome
this problem, we rolled off the numerators of Gn and W2 to obtain
transfer functions with zero relative degree that approximate Gn and
W2 within a desired range of frequencies.

Remark 3: In the ideal case, i.e., W1 = 1, it is obvious that the
tracking error converges to 0 when k tends to infinity. However, physical
systems are usually strictly proper, and hence, the problem is often not
solvable with W1 = 1. As an alternative solution, one can take W1

close to 1 within the tracking bandwidth in order to minimize the
tracking error.

IV. EXPERIMENTAL RESULTS

Our design procedure has been tested on a 6-DOF robot manip-
ulator CRS465. The CRS465 is an open-chain articulated robot arm
with six revolute joints powered by six dc motors. The motors are
equipped with incremental encoders to measure the joint positions
as well as automatic brakes to prevent the collapse of the manipula-
tor configuration when the power supply to the motors is interrupted.
The robot comes with the CRS C500 controller, which contains six
independent PD controllers, one for each joint. The ILC strategy pro-
posed in this paper has been implemented using the Quanser open

architecture (OA) mode. In the OA mode, all signals are routed to
and from a Quanser-MultiQ data acquisition board as opposed to the
CRS controller. The Quanser-MultiQ data acquisition board is used
together with a Quanser WinCon software in order to generate real-
time code from the Simulink model. For the real-time implementation
of the control algorithm using the Quanser OA mode, WinCon soft-
ware is used together with MATLAB/Simulink/Realtime Workshop,
Control System Toolbox as well as Visual C++ Professional. Our
ILC scheme has been implemented, as shown in Fig. 2, for the first
three links of the robot manipulator. The first three links [J1(waist),
J2(shoulder), and J3(elbow)] are independently controlled by a PD
feedback control with the following gains Kp = diag{2.5, 2.5, 2.5}
and Kd = diag{0.05, 0.05, 0.05}. The closed-loop transfer function
(represented by the block “PD+Robot” in Fig. 2) of each link has been
identified using the system identification toolbox of MATLAB [13], as
follows: 



J1 : G1 (s) =
−0.2622s + 1624

s2 + 39.42s + 1761

J2 : G2 (s) =
−0.2101s + 1312

s2 + 35.15s + 1374

J3 : G3 (s) =
0.6385s + 1285

s2 + 35.74s + 1380
.

(14)

The filter W1 is selected close to 1 in order to minimize the tracking
error, while W2 is selected from a rough approximation of the relative
uncertainty at steady state, and the approximate frequency at which the
relative uncertainty reaches 100% [21]

W2 (s) =
τs + r0

(τ/r∞)s + 1
(15)

where 1/τ gives the approximate frequency at which relative uncer-
tainty reaches 100%, r0 the relative uncertainty at steady state, and r∞
the magnitude of weight at high frequency, typically a value greater
than 2.

Finally, using (10) with N1 = Gn , N2 = 1, X = 0, Y = 1, and

W1 (s) =
1

0.003s + 1
W2 (s) =

2 × 10−3s + 0.4
2 × 10−4s + 1

(16)

for link 1,

W1 (s) =
1

0.0033s + 1
W2 (s) =

2 × 10−3s + 0.5
2 × 10−4s + 1

(17)

for link 2, and

W1 (s) =
1

0.001s + 1
W2 (s) =

10−3s + 0.46
1.25 × 10−3s + 1

(18)

for link 3, and using the µ-synthesis toolbox [4], we obtain, after
model reduction, the following controllers for link 1, link 2, and link
3, respectively.

Link 1:

C(s) =
1.0657s2 + 3.0346 × 107s + 2.09301 × 108

s2 + 2.5045 × 105s + 4.4749 × 108 . (19)

Link 2:

C(s) =
−0.4550s2 + 9.6595 × 106s + 9.9943 × 107

s2 + 2.1621 × 105s + 2.5113 × 108 . (20)

Link 3:

C(s) =
6.6528 × 108s + 2.6408 × 1010

s2 + 1.3071 × 105s + 1.8263 × 1010 . (21)

Authorized licensed use limited to: Lakehead University. Downloaded on October 9, 2008 at 22:12 from IEEE Xplore.  Restrictions apply.



IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 13, NO. 5, OCTOBER 2008 611

Fig. 3. RMS norm of the tracking error (in degrees) versus iteration number
for the three links using (16)–(18) and the controllers (22)–(24).

Fig. 4. Reference trajectory and actual trajectories for joint 1 (in degrees)
versus time, using W1 (s) given in (16) and controller (22).

For the sake of implementation simplicity, we further reduced the
controllers designed earlier to obtain simple PD controllers C(s) =
0.0678s + 0.6548 for link 1, C(s) = 0.0385s + 0.3980 for link 2,
and C(s) = 0.0364s + 1.4459 for link 3. Finally, these controllers
have been implemented using a first-order low-pass filter (with a cutoff
frequency of 100 rad/s) with the derivative action as follows.

Link 1:

C(s) =
0.0678s

10−2s + 1
+ 0.6548. (22)

Link 2:

C(s) =
0.0385s

10−2s + 1
+ 0.3980. (23)

Link 3:

C(s) =
0.0364s

10−2s + 1
+ 1.4459. (24)

Using (16)–(18) and the controllers (22)–(24), the robust perfor-
mance condition is satisfied for ω < 55 rad/s and ω > 400 rad/s. Using
W1 (s) = 1 for the three links, and using the controllers (22)–(24), the
robust performance condition is satisfied for ω < 55 rad/s.

Fig. 5. Reference trajectory and actual trajectories for joint 2 (in degrees)
versus time, using W1 (s) given in (16) and the controller (22).

Fig. 6. Reference trajectory and actual trajectories for joint 3 (in degrees)
versus time, using W1 (s) given in (18) and the controller (24).

Fig. 7. RMS norm of the tracking error (in degrees) versus iteration number
for the three links using W1 (s) = 1 and the controllers (22)–(24).
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Fig. 8. Reference trajectory and actual trajectories for joint 1 (in degrees)
versus time, using W1 (s) = 1 and the controller (22).

Fig. 9. Reference trajectory and actual trajectories for joint 2 (in degrees)
versus time, using W1 (s) = 1 and the controller (22).

The desired trajectory (in degrees) for all the joints is shown in
Fig. 4, and is given by

yd (t) =
6∑

n =1

2400e−2(n−1)π [1 − cos(2(n − 1)πt)]. (25)

To avoid the problem of noise accumulation from iteration to itera-
tion, a cutoff realized by a zero-phase filter discrete Fourier transform
(DFT)/inverse DFT (IDFT) has been imposed on vk+1 before using
the signal in the next trial. The cutoff frequencies are 10 Hz for joint 1,
13 Hz for joint 2, and 15 Hz for joint 3. The experiment was conducted
with a sampling period of 1 ms. We performed 51 iterations over a time
interval of 1 s for each iteration. The rms norm of the tracking error (in
degrees) versus iteration number for the three links using (16)–(18) and
the controllers (22)–(24) is shown in Fig. 7. The reference trajectory
and the actual trajectories for joints 1, 2 and 3 (in degrees), at different
iterations, versus time, using W1 (s) given in (16)–(18) and the con-
trollers (22)–(24) are shown, respectively, in Figs. 4–6. The rms norm
of the tracking error (in degrees) versus iteration number for the three
links using W1 (s) = 1 and the controllers (22)–(24) is shown in Fig. 7.
The reference trajectory and the actual trajectories for joints 1, 2, and 3

Fig. 10. Reference trajectory and actual trajectories for joint 3 (in degrees)
versus time, using W1 (s) = 1 and the controller (24).

(in degrees), at different iterations, versus time, using W1 (s) = 1 and
the controllers (22)–(24) are shown, respectively, in Figs. 8–10. The
experimental results confirmed the theoretical results stating that the
best performance in terms of convergence is obtained with W1 close
to 1. From Fig. 7, one can see that the rms error has been, roughly,
reduced by a factor of 375 for the first link after 15 iterations, a factor
of 160 for the second link after 18 iterations, and a factor of 72 for the
third link after 6 iterations.

V. CONCLUSION

A robust ILC design procedure, based on the Youla parameterization
and the µ-synthesis approach, for both stable and unstable uncertain LTI
systems, has been proposed. Owing to the fact that the convergence of
the proposed ILC scheme is guaranteed under the robust performance
condition, we show that it is possible to design a single filter Q(s)
that ensures, simultaneously, robust performance for the feedback sys-
tem and the convergence of the iterative process. Since the best ILC
performance one can achieve is obtained with W1 = 1, one can take
W1 as close as possible to 1 within the tracking bandwidth and solve
the robust performance condition, using the wide range of tools from
the robust control theory, to obtain Q(s). One of the possible tools
is the µ-synthesis approach, which is used in this paper. It is worth
noting that our approach involves a certain tradeoff between the perfor-
mance of the feedback system at the first iteration and the performance
of the iterative process. In fact, the controller C(s) obtained with W1

close to 1 leads to the best ILC performance, but does not necessarily
lead to the best feedback performance at the first iteration.

In this paper, we dealt with continuous-time systems, but the pro-
posed design procedure is the same for discrete-time systems except
that the unit circle should be used rather than the imaginary axis for
norm computation (Matlab µ-analysis and synthesis toolbox deals with
both continuous-time and discrete-time systems).

Since our theoretical results do not take into account the measure-
ment noise and its accumulation from iteration to iteration, in our
experiment on a CRS465 robot manipulator, we had to clean up the
iterative signals at the end of each iteration before calculating the up-
dated control input for the next iteration. We used a zero-phase offline
filtering procedure (DFT/IDFT) so that no phase shift is introduced
on the filtered signals. The obtained experimental results are satisfac-
tory and conform to the theory, and show that the proposed control
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scheme—although designed for SISO-LTI systems—could handle, to
a certain extent, coupled multiple-input–multiple-output (MIMO) non-
linear systems such as robot manipulators.
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