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Abstract: Existing position controllers for VTOL UAVs require measurements of the system
attitude (orientation) for feedback. However, in practice the orientation cannot be measured
directly; it is rather obtained through the use of an attitude observer relying on a set of
inertial vector measurements. In this paper a new control strategy is proposed for VTOL-UAVs
which avoids the direct measurement of the system attitude (in terms of a rotation matrix,
unit-quaternion or other attitude parameterization). In the proposed controller inertial vector
measurements are used instead of the system attitude. This eliminates the need for an attitude
observer thereby reducing the overall complexity of implementing the closed loop system and
avoiding errors that are associated with the attitude observer.
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1. INTRODUCTION

The autonomous operation of vertical take-off and landing
(VTOL) aircraft has been a popular area of interest since
they are inherently suited for many applications such as
surveillance, search and rescue, structure inspection, de-
fence, etc., especially where human presence is difficult
and/or hazardous. As a result the research community has
seen substantial improvements in the design of controllers
for these types of vehicles (see, for instance, Hauser et al.
(1992), Frazzoli et al. (2000), Hamel et al. (2002), Aguiar
and Hespanha (2003), Pflimlin et al. (2007), Hua et al.
(2009), Abdessameud and Tayebi (2010) and ?). Unsur-
prisingly, a common characteristic of the existing position
controllers is they all require several system states to be ac-
curately known including the system position and velocity
(measured using a global positioning system (GPS)), the
body angular-velocity (measured using a gyroscope), and
the vehicle orientation or attitude. However, there does
not exist a sensor which directly measures the attitude of
a rigid body. To address this problem an attitude observer
is usually sought to recover the attitude of the vehicle.
Some manufacturers have developed a number of so-called
orientation sensors. However, these devices are still de-
pendant on some observer or other attitude estimation
scheme. Therefore, the orientation data that is provided to
the control scheme is an approximation due to the errors
associated with the attitude observers.

In light of this shortcoming, it is no surprise that the prob-
lem of attitude observation is very popular in the research
community, especially in the area of autonomous aircraft.
The attitude estimation problem has been addressed using
a number of different methods, including optimization,

� This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

Kalman filtering and other observers/filters developed us-
ing classic nonlinear control design methods. The goal of
these attitude observers is to recover the orientation of a
rigid body with respect to an inertial frame using a set
of inertial vectors which are measured in the body-fixed
frame. In many cases the body-referenced angular velocity
(measured using a gyroscope) is also required. The type of
attitude parameterizations used by the existing methods
varies, although in most cases a direct cosine (rotation)
matrix or unit-quaternion is used. In particular the unit-
quaternion is preferred since it is numerically more effi-
cient than rotation matrices, and is well defined over the
entire space, unlike Euler angle parameterization which
contains a well-known singularity. However, the quaternion
representation is an overparameterization of the real-space
which introduces some other difficulties. Since the map
from quaternion space to the real space is non-injective
(two-to-one), this introduces a topological obstruction to
achieving global asymptotic stability (for more details see
Bhat and Bernstein (2000) and Koditschek (1988)). As a
result, the term almost global is often used to characterize
equilibrium solutions when quaternion representation is
used.

In some cases, vector measurements are used to directly
calculate (reconstruct) the orientation of a rigid body
(without using a filter or observer), such as the TRIAD
algorithm proposed in Shuster and Oh (1979), or other
methods such as Reynolds (1998) and Metni et al. (2005).
In situations where the rigid-body is subjected to rota-
tional motion, the attitude reconstructions can be com-
bined with the system angular velocity vector in a filter,
which is commonly referred to as a complementary fil-
ter. Examples of such filters are found in Mahony et al.
(2005), Hamel and Mahony (2006), Tayebi et al. (2007)
and Mahony et al. (2008). In some cases, the attitude
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reconstruction algorithms have been removed and filters
have been designed directly from the vector measurements,
which have been discussed in Hamel and Mahony (2006),
Mahony et al. (2008) and Tayebi et al. (2010). Kalman
filter-based observers have also been proven to be popular
especially in attitude estimation of satellites. Examples of
Kalman filter based observers can be found in the survey
paper Crassidis et al. (2007).

The main concern we address in this paper is that the
two problems associated with the control of VTOL UAVs,
namely the attitude estimation and attitude control prob-
lems, have been addressed separately due to the complex-
ity of combining both tasks into a single control problem.
As a result, there is currently no guarantee for stability
(to our knowledge) for closed-loop systems using attitude
observers with a controller that assumes the orientation
is directly measured. In this paper we acknowledge the
fact that the system orientation is not known. Instead of
using the system orientation as feedback, we use the vector
measurements (which would normally be applied to the
attitude estimator) as additional inputs to the position
controller. Using the proposed controller, we show that for
an appropriate choice of control gains the system states
are uniformly bounded and converge to some predefined
trajectory for almost all initial conditions.

An important intermediate step in the control design is to
specify a desired system acceleration, which is derived to
force the system position and velocity errors to zero. Due
to the underactuated nature of this type of vehicle, the
acceleration of the system is dependant on the system atti-
tude and thrust. Consequently, it is necessary to obtain an
appropriate desired attitude and thrust which satisfies the
required system acceleration that forces the position and
velocity errors to zero. To calculate the value of the desired
system attitude, we use an attitude extraction algorithm
that has been previously used by ?. The remaining steps
of the control design is to obtain a value for the control
torque input (that is applied to the rotational dynamics
of the system) which drives the actual system attitude to
the desired value. During this process, we specify a virtual
control law for the desired system acceleration which is
bounded a priori. This is an attractive characteristic es-
pecially in the case where one of the vector measurements
is obtained using an accelerometer, which could otherwise
be affected by large demanded accelerations due to the
controller.

2. BACKGROUND

2.1 Attitude Representation

Let I denote an inertial frame of reference rigidly attached
to the earth (assumed flat), and B denote a frame of
reference rigidly attached to the aircraft center of gravity
(COG) in North-East-Down coordinates. To describe the
rotation from I → B we use the quaternion Q = (η, q),
η ∈ R, q ∈ R3, where Q belongs to the set of unit
quaternion Q ∈ Q := {Q ∈ S3, ‖Q‖ = 1}, where S
denotes a three-dimensional sphere. For more details on
the unit-quaternion (in addition to other forms of attitude
representation) the reader is referred to Shuster (1993),
Murray et al. (1994), and Hughes (1986). The unit norm

constraint of the quaternion implies η2 + qTq = 1. The
rotation I → B can also be described using a direct cosine
(rotation) matrix R(η, q) ∈ SO(3) where SO(3) is the
special-orthogonal group SO(3) := {R ∈ R3×3, det R =
1, RRT = RT R = I3×3}. The rotation matrix R(η, q)
corresponding to the unit quaternion Q = (η, q) can
be determined using a particular form of the Rodrigues
rotation formula given by

R(η, q) = I3×3 + 2S(q)2 − 2ηS(q), (1)
where S(·) is the skew-symmetric matrix

S(u) =

[ 0 −u3 u2

u3 0 −u1

−u2 u1 0

]
(2)

and u = [u1, u2, u3]
T. The set Q forms a group with

the quaternion product operation, denoted by �, with
the quaternion inverse defined by Q−1 = (η,−q) and
identity-quaternion Q = (1,0). Given Q, P ∈ Q where
P = (p0, p) the quaternion product is defined by Q �
P =

(
p0η − qT p, ηp + p0q + S(q)p

)
.

2.2 Attitude Dynamics

Let ω denote the body-referenced angular velocity of the
frame B with respect to I (expressed in B). The body refer-
enced angular velocity is used to obtain the time derivative
of the quaternion Q using the well-known relationship

Q̇ =
1
2
Q � (0, ω) =

1
2

[
−qT

ηI3×3 + S(q)

]
ω. (3)

Similarly, an expression for the time-derivative of the rota-
tion matrix R(η, q) is given by Ṙ (η, q) = −S (ω)R (η, q) .

2.3 Bounded Functions

Let h(·) : R3 → R3 denote a bounded, twice-differentiable
function and let φh(u) := ∂

∂uh(u) and fφ(u, v) :=
∂
∂uφh(u)v ∀u, v ∈ R3, which satisfy the following prop-
erties:

uTh(u) > 0 ∀u ∈ R3, ‖u‖ ∈ (0,∞),
0 ≤ ‖h(u)‖ < 1
0 < ‖φh(u)‖ ≤ 1

‖fφ(u, v)‖ ≤ cf‖v‖

}
∀u ∈ R3, ‖u‖ ∈ [0,∞),

(4)

where cf is a positive constant. One function which sat-
isfies these conditions is given by h(u) =

(
1 + uTu

)−1
u

which further yields

φh(u) =
(
1 + uTu

)−3/2 (
I3×3 − S(u)2

)
, (5)

fφ(u, v) =
(
1 + uTu

)−5/2 (
3

(
S(u)2 − I3×3

)
vuT

+
(
1 + uTu

)
(2S(u)S(v) − S(v)S(u))

)
, (6)

from which one can find the bound cf = 4/
√

3.

2.4 System Model

Let p, v ∈ R3 denote the position and velocity, respectively,
of the vehicle COG expressed in the inertial frame I.
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Let the unit quaternion Q = (η, q) ∈ Q represent the
rotation between the frame I and B. Let R = R(η, q) ∈
SO(3) denote the rotation matrix corresponding to the
quaternion Q. The vehicle rotational inertia tensor is
denoted by Ib ∈ R3×3 which is expressed in the body
frame B. Using the framework outlined in section 2.2 we
consider the following well-known model for a VTOL UAV
(?, Abdessameud and Tayebi (2010), Pflimlin et al. (2007))

ṗ = v,
v̇ = µ, µ = gẑ − utR

Tẑ,

Q̇ =
1
2

[
−qT

ηI3×3 + S(q)

]
ω

Ibω̇ = −S(ω)Ibω + τ

(7)

where ut = T/m, T is the system thrust, m is the system
mass, ẑ = col [0, 0, 1], g is the gravitational acceleration
and τ ∈ R3 is the torque that is applied to the rotational
dynamics of the system. The control input of the system
is defined as u = [ut, τ ]T. The system output is defined
as y = [p, v, ω, b1, b2, · · · , bn]T where bi = Rri, and ri ∈
R3, i = 1, 2, · · · , n are a set of known vectors expressed in
the inertial frame I. Note that the system attitude Q, R
is no longer assumed to be a known output of the system.

3. PROBLEM FORMULATION

Let pd(t) denote a time-varying desired reference trajec-
tory. We place the following two assumptions regarding
the trajectory pd and the inertial vectors ri:
Assumption 1. The reference trajectory pd(t) and it’s first
four derivatives are bounded. Furthermore, there exists a
positive constant δpz such that‖ẑTp̈d‖ < δpz < g.
Assumption 2. There are at least two non-collinear vectors
ri which are known and constant in the inertial frame I.

The reference trajectory is used to define the following
error signals

ep = p − pd, ev = v − ṗd. (8)

Our main objective is to define a control input u such that
the states (ep, ev, ω) are bounded and ep, ev → 0 as t → ∞.
In light of (7), the error dynamics are governed by

ėp = ev, ėv = µ − p̈d. (9)

Due to the underactuated nature of the system, we are
forced to control the system position and velocity using the
signal µ. Therefore, we define µd as a virtual control law
that asymptotically stabilizes the translational dynamics
and define the error eµ = µ − µd where now we consider
the additional challenge of forcing eµ → 0 and therefore
µ → µd. Given the desired acceleration µd, we wish
to specify a desired attitude Rd, Qd and thrust ut, that
forces the position and velocity errors to zero. Section
3.1 describes an attitude extraction algorithm that has
been previously proposed in ?, which we use to specify a
desired attitude Qd based on the desired acceleration µd.
Subsequently, the remaining steps of the control design is
to define the control torque input τ which forces Q → Qd

and therefore µ → µd, thereby forcing the position and
velocity errors to zero.

3.1 Attitude Extraction

Given µd we wish to find the value of attitude Rd and
system thrust ut that satisfies

gẑ − utR
T
d ẑ = µd. (10)

A solution to this problem, which has been proposed in ?,
is provided as follows: Given µd where µd /∈ L,

L := {µd ∈ R3; µd = col[0, 0, µd3]; µd3 ∈ [g,∞)}, (11)

then a value of the thrust ut and attitude Qd = (ηd, qd)
which satisfies (10) is given by

ut = ‖µd − gẑ‖, (12)

ηd =
(

1
2

(
1 +

g − ẑTµd

‖µd − gẑ‖
))1/2

, (13)

qd =
1

2‖µd − gẑ| ηd
S(µd)ẑ. (14)

The extracted attitude Qd has the time derivative

Q̇d =
1
2

[
−qT

d
ηdI3×3 + S(qd)

]
ωd, (15)

where the desired angular velocity ωd is given by
ωd = M(µd)µ̇d, (16)

where M(µd) =
( − 4S(µd)ẑẑT + 4η2

dutS(ẑ) + 2S(µd)
−2ẑTµdS(ẑ)

)
S (µd − gẑ)2 /(4η2

du4
t ).

4. CONTROL DESIGN

The first step in the control design is to specify the
virtual control law µd that asymptotically stabilizes the
translational dynamics, which we choose to be

µd = p̈d − Γv (kph(ep) + kvh(ev)) , (17)

where Γv = ΓT
v > 0, kp, kv > 0 and h(·) is the bounded

function defined in (2.3). Provided that the acceleration
of the reference trajectory is bounded, (17) is bounded a
priori. To avoid the singularity (11) we must also ensure
that ‖ẑTµd‖ < g. In light of Assumption 1, to avoid the
singularity (11) we can place the following restriction

δpz + (kp + kv) ‖ẑTΓv‖ < g, (18)

which ensures a solution for the thrust ut and desired
attitude Rd exists, as given by (12)-(14). In light of (7), (8)
and (17) the dynamics of the position and velocity error
are given by

ėp = ev, ėv = −kpΓvh (ep) − kvΓvh (ev) + eµ. (19)

Using the extraction method provided in section 3.1 and
the value of µd from (17) we obtain the required system
thrust ut and the desired attitude Qd. Since Assumption
(1) is satisfied, there exists a positive constant δp such
that ‖p̈d‖ < δp. Furthermore, (12) and (18) ensures that
the thrust is positive and bounded such that

0 < ct < ut < c̄t, (20)

where c̄t = g + δp + (kp + kv) ‖Γv‖ and ct = g − δpz −
(kp + kv) ‖ẑTΓv‖. Also, due to the lower bound of the
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thrust specified by (20), in ? the authors show that the
matrix M(µd) (which is used to calculate the desired
angular velocity ωd from (16)) has an upper-bound defined
by

‖M(µd)‖ ≤
√

2/ct. (21)

Using the desired quaternion Qd obtained using (13)-(14)
we obtain the corresponding desired rotation matrix from
(1) which we denote as Rd = R(ηd, qd). Using the rotation
matrix Rd and the n known inertial vectors ri we define
the desired vector measurements as

bd
i = Rdri i = 1, 2, · · · , n. (22)

The attitude error, or the error between the actual and
desired orientation, is defined using the unit-quaternion
Qe = (ηe, qe) and rotation matrix Re by Qe = Q � Q−1

d

and Re = RT
d R, which have the time derivatives

Q̇e =
1
2

[
−qT

e
ηeI3×3 + S(qe)

]
ωe, Ṙe = −S(ωe)Re,

ωe = RT
d (ω − ωd) ,

(23)

where ωd = M(µd)µ̇d is obtained using (16) and differenti-
ating (17) (which is not exactly known since it depends on
the system attitude (Q, R)). At this stage in the procedure,
our objective is to force the actual system attitude to the
desired attitude R → Rd using ω, which is equivalent to
Re → I3×3 or Qe → (±1, 0). However, since ω is a state
we define the virtual control law ω̄ that forces R → Rd

and define the error eω = ω − ω̄ where we choose ω̄ to be

ω̄ = M(µd)fµd
+

∑n
i=1 γiS(bd

i )bi, (24)

where fµd
= p

(3)
d + kpkvΓvφh(ev)Γvh(ep) − kpΓvφh(ep)ev.

The time derivative of ω̄ is given by ˙̄ω = fω̄ + gω̄eµ where

fω̄ = Z (µd, fµd
)
(
fµd

+ k2
vΓvφh(ev)Γvh(ev)

)
+ M (µd)

(
p
(4)
d + kpkvΓvφh(ev)Γvφh(ep)ev

− kpkvΓvfφ (ev, Γvh(ep)) Γv (kph(ep) + kvh(ev))
− kpΓvfφ (ep, ev) ev + k2

pΓvφh(ep)Γvh(ep)

+ kpkvΓvφh(ep)Γvh(ev)
)

+
(∑n

i=1 γiS
(
bd
i

)
S (bi)

)
ω

− (∑n
i=1 γiS (bi)S

(
bd
i

)) (
M (µd) fµd

+ k2
vM (µd) Γvφh(ev)Γvh(ev)

)
,

(25)

gω̄ = −kvZ (µd, fµd
) Γvφh(ev) − kpM (µd) Γvφh(ep)

+kpkvM (µd) Γvfφ (ev, Γvh(ep))
+kv

(∑n
i=1 γiS (bi)S

(
bd
i

))
M (µd) Γvφh(ev),

(26)

Z (µd, v) = γm

(
µT

dvS(ẑ) + S(ẑ)µdv
T

−ẑTvS(ẑ)
(
2µdµ

T
d/ut + (g + 2ut) I3×3 − 2gµdẑ

T/ut

)
+S(ẑ)vẑT

(
2utI3×3 + (µd − gẑ) (µd − gẑ)T /ut

+µd (µd − gẑ)T /ut

) − 2S(ẑ)v (µd − gẑ)T

+S(v)µd (µd − gẑ)T /ut + utS(v)
)

−γ2
M

(
S(ẑ)µdµ

T
d + (g + 2ut)S(µd)ẑẑT

−utS(µd) +
(
ẑTµdut − 2η2

du2
t

)
S(ẑ)

)
v
(
− u2

t ẑ
T

+3ut (µd − gẑ)T − 2ẑT (µd − gẑ) (µd − gẑ)T
)
,

(27)

where γM = u−2
t

(
ut + ẑT (g − µd)

)−1
. Finally, the pro-

posed control torque input is defined as
τ = S(ω)Ibω + Ibfω̄ − Kωeω (28)

where Kω = KT
ω > 0.

4.1 Main Result

Theorem 1. Consider the system defined by (7) where
Assumptions 1 and 2 are satisfied, the system thrust ut

is defined by (12) using the virtual control law (17) under
the restriction (18), and the torque control input τ is
defined by (28), then for any initial condition ηe(t0) 	= 0 1

there exists gains γ̄i (ηe(t0)), i = 1, 2, · · · , n, such that
for γi > γ̄i the system states ep, ev, eω are bounded and
limt→∞ [ep(t), ev(t), eω(t)] = 0.

Proof. Consider the following Lyapunov function candi-
date

V = kp

(√
1 + ‖ep‖2 − 1

)
+

1
2
eT

v Γ−1
v ev + γq

(
1 − η2

e

)
+

1
2
eT

ωIbeω.

(29)

From (23) and using the properties S(Rdri) = RdS(ri)RT
d ,

S(qe)2 = qeq
T
e −qT

e qeI3×3 and qT
e S(ri)qe = 0 one can obtain

the following time derivative for the attitude error

η̇e = ηeq
T
e Wqe +

k2
v

2
qT
e RT

d M(µd)Γvφh(ev)Γvh(ev)

− 1
2
qT
e RT

d eω − kv

2
qT
e RT

d M(µd)Γvφh(ev)eµ, (30)

where W = −∑n
i=1 γiS(ri)2. Note that due to Assump-

tion 2, the matrix W is positive definite and the eigenval-
ues of W can be arbitrarily increased using the gains γi.
In light of (7), (19), (25), (26), (28) and (30) the time-
derivative of (29) is given by

V̇ = −kve
T
v h(ev) − 2γqη

2
eqT

e Wqe − eT
ωKωeω + eT

v Γ−1
v eµ

− eT
ωIbgω̄eµ + γqkvηeq

T
e RT

d M(µd)Γvφh(ev)eµ

+ γqηeq
T
e RT

d eω − γqk
2
vηeq

T
e RT

d M(µd)Γvφh(ev)Γvh(ev).
(31)

Due to (1), (7) and (10) the error signal eµ = µ−µd can be
expressed in terms of the vector part of the error quater-
nion, qe, since eµ = 2ut (ηeI3×3 − S (qe))S

(
RTẑ

)
qe.

Therefore, due to (20) the signal eµ is bounded by
‖eµ‖ ≤ 2c̄t‖qe‖. (32)

We now focus our attention on the bound of gω̄. Due to
the bound of the thrust (20), and the bound of µd due
to (18) there exists a positive constant cZ such that the
matrix Z(µd, v) is bounded by

‖Z (µd, v) ‖ ≤ cZ‖v‖. (33)

Consequently, due to Assumption 1, (4), (21), (33) and the
fact that ‖ev‖‖φh(ev)‖ ≤ 1, there exists a positive constant
cg such that the matrix gω̄ is bounded by

‖gω̄‖ ≤ cg. (34)
1 This condition can be easily satisfied if the system is at rest at the
time t0, i.e. R(t0) = I3×3, since in this case q = 03×1, η = ±1, and
therefore ηe = ±ηd. In this case, from (13) one can see that for any
value of µd, inf |ηe(t0)| = inf |ηd(t0)| = 1/

√
2 > 0.
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Using this result in addition to (4), (21), (33), and (32)
one can find ‖ev‖2 ≤ 2λmin

(
Γ−1

v

)−1
V (t), in addition to

the following inequalities
eT

v Γ−1
v eµ ≤ eT

v ev/(2ε1) + 2ε1c̄
2
t‖Γ−1

v ‖2qT
e qe, (35)

γqηeq
T
e RT

d eω ≤ γqε2η
2
eqT

e qe/2 + γqe
T
ωeω/(2ε2), (36)

γqk
2
vηeq

T
e RT

d M(µd)Γvφh(ev)Γvh(ev)
≤ γqk

2
vc4

Γε3η
2
eqT

e qe/c2
t + γqk

2
veT

v h(ev)/(2ε3),
(37)

eT
ωIbgω̄eµ ≤ 2c2

g c̄
2
t ‖Ib‖2eT

ωeω/ε4 + ε4q
T
e qe/2, (38)

γqkvηeq
T
e RT

d M(µd)Γvφh(ev)eµ

≤ 2
√

2γqkv c̄tcΓ|ηe|qT
e qe/ct,

(39)

where ε1,2,3,4 > 0, λmin (·) denotes the smallest eigenvalue
of (·) and cΓ = ‖Γv‖. Consequently, the expression for V̇
can be rewritten as
V̇ ≤ −eT

ωeω

(
λmin (Kω) − γq/(2ε2) − 2c2

g c̄
2
t‖Ib‖2/ε4

)
−eT

v h(ev)
(

kv − 1
2ε1

√
2V (t)/λmin(Γ−1

v ) + 1 − γqk
2
v

2ε3

)

−2γqη
2
eqT

e qe

(
λmin (W ) − 1

η2
e

ε1c̄
2
t

γq
λmax

(
Γ−1

v

)2 − ε2
4

−k2
vc

4
Γε3

2c2
t

− 1
|ηe|

√
2kv c̄tcΓ

ct

− 1
η2

e

ε4
4γq

)
.

(40)

In order to dominate some of the unwanted terms in (40)
using the matrix W (and therefore ensure that V̇ < 0),
we must show that a lower bound η�

e := inf |ηe(t)| > 0
exists. To further investigate this bound on ηe, we exclude
the initial condition ηe(t0) = 0, and consider the function
J = η2

e/2. In light of (30), the time derivative of J is given
by

J̇ =
η2

e

2

(
2qT

e Wqe +
k2

v

ηe
qT
e RT

d M(µd)Γvφh(ev)Γvh(ev)

− 1
ηe

qT
e RT

d eω − kv

ηe
qT
e RT

d M(µd)Γvφh(ev)eµ

)
. (41)

Using Young’s inequality, in addition to the fact that
qT
e qe = 1− η2

e in addition to eT
ωeω ≤ 2V̄ (t)/λmin(Ib) where

V̄ (t) = kp(
√

1 + ‖ep‖2 − 1) + 1
2eT

v Γ−1
v ev + γq + 1

2eT
ωIbeω,

we find J̇ is bounded by

J̇ ≥ η2
e

(
1 − η2

e

) (
λw − ρ/η2

e − σ(t)/(1 − η2
e)

)
, (42)

ρ =
1
4

+
k2

vc4
Γ

2c2
t

+
√

2kv c̄tcΓ

ct

, σ(t) =
V̄ (t)

2λmin (Ib)
+

k2
v

4
,

where λw = λmin (W ). Using (42) we wish to identify the
region where J̇ > 0 and therefore |ηe| is increasing. To find
this region we consider a solution of inf J̇ = 0 at the time t
given by λw = ρ/η2

e +σ(t)/(1−η2
e). Multiplying this result

by η2
e and 1 − η2

e we obtain

−λwη4
e + (λw + ρ − σ(t)) η2

e − ρ = 0. (43)

Let α(t) = (λw + ρ − σ(t))2 − 4ρλw. If α < 0, (43) has
complex roots and therefore the lower bound for J̇ is
negative. Since we can find α(t) = λw (λw − 2 (ρ + σ(t)))+
(σ(t) − ρ)2, a simple, albeit conservative requirement to
force α(t) to be positive is to take λw > 2 (ρ + σ(t)). As

a result the solution to (43) has two real positive roots
defined by

η̄2
e(t) =

(
λw + ρ − σ(t) +

√
α(t)

)
/(2λw), (44)

η2
e
(t) =

(
λw + ρ − σ(t) −

√
α(t)

)
/(2λw). (45)

We define the open set D := (η
e
, η̄e) (where we exclude

the negative solutions for η
e

and η̄e). Note that for any
|ηe(t)| ∈ D the value of J̇ is positive, and therefore |ηe(t)|
is increasing. Note the set D is time varying due to the
value of σ(t). However, if σ(t) is a decreasing function and
we choose

λw > 2 (ρ + σ(t0)) , (46)

we now will show that the lower limit η
e

is decreasing,
and the upper limit η̄e is increasing with respect to t. To
prove this relationship we consider the following partial
derivative

∂

∂σ(t)
η̄2

e =
(
−1 −

√
(α(t) + 4ρλw) /α(t)

)
/(2λw).

(47)
If σ(t) is decreasing, then α(t) is increasing and therefore
(47) is well-defined and negative. The partial derivative of
the lower limit is given by

∂

∂σ(t)
η2

e
=

(
−1 +

√
(α(t) + 4ρλw)/α(t)

)
/(2λw), (48)

which is always positive. Therefore, if σ(t) is decreas-
ing the value of η2

e
is decreasing, the value of η̄2

e is
increasing and the set D approaches D → (0, 1). The
gain λw = λmin (W ) = λmin

(−∑n
i=1 γiS(ri)2

)
can be

arbitrarily enlarged using the gains γi to ensure (46) is
satisfied and therefore the domain D exists. Therefore,
since limλw→∞ η2

e
= 0, there exists a value W̄1 such that

for all λmin (W ) > λmin

(
W̄1

)
, 0 < η

e
(t0) < |ηe (t0) |, where

we exclude the negative solution for η
e
(t0). Consequently,

if σ(t) is a decreasing function the minimum possible value
for η∗

e = inf |ηe(t)| is given by η∗
e = min {|ηe(t0)|, η̄e(t0)} ,

where we exclude the negative solution for η̄e(t0). The final
step of the proof is to show that V (t) and therefore σ(t)
are decreasing functions. If we recall the value of V̇ from
(40), one can see that there exist values ε̄1 and ε̄3 such
that for ε1 > ε̄1 and ε3 > ε̄3, the following inequality is
satisfied

kv >

√
2V (t0)/λmin(Γ−1

v ) + 1/(2ε1) + γqk
2
v/(2ε3), (49)

for any kv > 0. Furthermore, there exist values ε̄2 and ε̄4
such that for ε2 > ε̄2, ε4 > ε̄4

λmin (Kω) > γq/(2ε2) + 2c2
g c̄

2
t‖Ib‖2/ε4, (50)

for any Kω = KT
ω > 0. Also, there exists a gain W̄2 such

that for λmin (W ) > λmin

(
W̄2

)

λmin (W ) >
1

(η∗
e)2

ε1c̄
2
t

γq
λmax

(
Γ−1

v

)2
+

ε2
4

+
k2

vc4
Γε3

2c2
t

+
1
η∗

e

√
2kv c̄tcΓ

ct

+
1

(η∗
e )2

ε4
4γq

. (51)

Preprints of the 18th IFAC World Congress
Milano (Italy) August 28 - September 2, 2011

2618



There are two conditions for the gain W , where the mini-
mum bound W1 ensures that η

e
≤ |ηe (t0) |, and the minu-

mum bound W2 which ensures that (51) is satisfied. There
exists gains γ̄i, i = 1, 2, · · · , n, such that for all γi > γ̄i

λmin (W ) > max
{
λmin

(
W̄1

)
, λmin

(
W̄2

)}
, which satisfies

both requirements. Therefore, under this condition from
(40) one can see that V̇ (t0) ≤ 0, which implies that for
sufficiently small δ, V (t0 + δ) ≤ V (t0), σ (t0 + δ) ≤ σ (t0)
and |ηe (t0 + δ) | ≥ η∗

e . Since V (t0 + δ) ≤ V (t0), σ(t0 +
δ) ≤ σ(t0) and ηe(t0 + δ) ≥ η∗

e , the inequalities (49)-(51)
remain satisfied, which implies V̇ (t0+δ) ≤ 0. Therefore, by
induction the value of V̇ is guaranteed to be non-positive
for all t > t0 and

V̇ ≤−δve
T
v h(ev) − 2δqη

2
eqT

e qe − δωeT
ωeω, (52)

δv = kv − 1
2ε1

√
2λmin

(
Γ−1

v

)−1
V (t0) + 1 − γqk

2
v

2ε3
, (53)

δω = λmin (Kω) − γq/(2ε2) − 2c2
g c̄

2
t ‖Ib‖2/ε4, (54)

δq = λmin (W ) − 1
(η∗

e )2
ε1c̄

2
t

γq
λmax

(
Γ−1

v

)2 − ε2
4

−k2
vc

4
Γε3

2c2
t

− 1
|η∗

e |

√
2kv c̄tcΓ

ct

− 1
(η∗

e)2
ε4
4γq

. (55)

Since V̈ is bounded due to Assumption 1, Barbalat’s
Lemma implies that [ev, qe, eω] → 0, and since ėv → 0,
ep → 0.

5. CONCLUSION

Existing controllers for the autonomous operation of
VTOL UAVs require that the vehicles attitude or ori-
entation be directly measured to be applied to the feed-
back loop. This requirement is usually not satisfied since
an attitude observer or other estimation scheme is often
implemented to recover the systems attitude based on a
set of vector measurements. Since the attitude estimation
and control problems are viewed separately, there are no
guarantee for stability when the two systems are used to-
gether. To address this problem, a new position controller
has been developed which uses the vector measurements
directly, rather than assuming the vehicles orientation is
measured, with accompanying proofs for stability. As an
added benefit, implementation of the proposed controller
would not require the use of an attitude observer, thus
reducing the overall complexity of the closed-loop system.
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