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Abstract: In this paper, we investigate the LQR-like optimal control problem on the special
orthogonal group SO(3). Using the dynamic programming approach, we derive a Hamilton-
Jacobi-Bellman equation in the general case where a generic distance on SO(3) is used in the
cost functional. We show that the geodesic distance on SO(3) yields results analogous to the
well known results for linear systems. Static and dynamic Riccati-like equations for both infinite
and finite time-horizon optimal control problems are obtained.
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1. INTRODUCTION

For linear systems, the problem of finding an optimal
control input u minimizing a quadratic cost functional

J(t0, x0, u) =

∫ ∞
t0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt, (1)

subject to the dynamic constraint

ẋ(t) = Ax(t) +Bu(t), x(0) = x0 ∈ Rn,

is referred to as the linear-quadratic regulator (LQR). This
is a fundamental problem in control theory and its solution
is a linear state feedback u = −Kx where K = R−1BTP ,
with P being a symmetric positive definite matrix solution
of the algebraic Riccati equation [Kwakernaak and Sivan,
1972].

In this work we introduce an analogous LQR-like problem
on the Lie group SO(3). To our best knowledge, the only
paper that appears to tackle this problem is Saccon et al.
[2010], where a solution to the optimal kinematic control
problem on SO(3) is derived in the infinite time-horizon
case with scalar penalties in the cost. Unfortunately, the
use of the Euclidean distance on SO(3) as a measure of
the energy of the state has considerably limited the results
obtained in Saccon et al. [2010].
In the present work, we show that the geodesic distance
on SO(3) associated to the natural Riemanian metric
structure on SO(3) yields some interesting results that are
analogous to those of linear systems. Static and dynamic
Ricatti-like equations for the infinite and finite time-
horizon cost functional with scalar and matrix penalties
are obtained.

This paper is organized as follows. We start in section
II with some mathematical tools and preliminaries that
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will be used throughout this paper. In section III, the
kinematic optimal control on the Lie group SO(3) is
formulated and a sufficient optimality condition is derived
using the dynamic programming approach. This sufficient
condition is given in terms of a Hamilton-Jacobi-Bellman
(HJB) equation on SO(3) using a generic state energy
function. The solution to this problem given in Saccon
et al. [2010] is briefly reviewed and the shortcomings of
using the Euclidean distance are discussed. In section IV,
we show that the LQR-like problem on SO(3) can be
naturally solved when considering the geodesic distance
on SO(3). We show that the unique solution to the
HJB equation is a quadratic function that has the same
structure as the distance used in the cost functional. As in
the LQR solution for linear systems, the optimal feedback
is explicitly given as a function of the solution of an
algebraic or dynamic Riccati equation depending on the
type of the problem under consideration (infinite or finite
time-horizon).

2. MATHEMATICAL PRELIMINARIES

2.1 Notations

The sets of real and nonnegative real are denoted as R and
R+, respectively. Rn denotes the n-dimensional Euclidean
space. Given two matrices A,B ∈ Rm×n, their Euclidean
inner product is defined as 〈〈A,B〉〉 = tr(ATB), where
(·)T denotes the transpose of (·). The Frobenius norm of a

matrix A ∈ Rn×m is ||A|| =
√
〈〈A,A〉〉. Given a manifold

M , a tangent vector at x is γ′(0) for some smooth path
γ : R → M such that γ(0) = x. The tangent space to M
at x is the set of all tangent vectors at x, denoted TxM .
The disjoint union of all tangent spaces forms the tangent
bundle TM . Let M and N be two smooth manifolds and
let f : M → N be a differentiable map. The tangent map
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(differential) of f at a point x ∈ M is the map [Darryl
D. Holm and Stoica, 2009]

Df(x) : TxM → Tf(x)N

ξ 7→ Df(x) · ξ :=
d (f ◦ γ(τ))

dτ

∣∣∣∣
τ=0

,

where γ(τ) is a path in M such that γ(0) = x and
d γ(τ)/dτ |τ=0 = ξ. Let f : M → R be a differentiable
real-valued function. Let 〈 , 〉x : TxM × TxM → R be
a Riemannian metric on M . The gradient of f , denoted
∇f(x) ∈ TxM , relative to the Riemannian metric 〈 , 〉x is
uniquely defined by

Df(x) · ξ = 〈∇f(x), ξ〉x for all ξ ∈ TxM.

2.2 The special orthogonal group of rotations SO(3)

Consider the general linear group GL(3). A square matrix
R ∈ GL(3) is called a rotation matrix if R belongs to the
special orthogonal group SO(3) ⊂ GL(3) where

SO(3) := {R ∈ R3×3| det(R) = 1, RRT = I},
and I = I3×3 is the three-dimensional identity matrix. The
Lie algebra of SO(3), denoted by so(3), is the vector space
of 3-by-3 skew-symmetric matrices

so(3) =
{

Ω ∈ R3×3 | ΩT = −Ω
}
.

The group SO(3) has a compact manifold structure where
its tangent spaces are identified by

TRSO(3) := {RΩ | Ω ∈ so(3)} .
The Euclidean inner product on R3×3, when restricted to
the Lie-algebra of skew symmetric matrices, defines the
following left-invariant Riemannian metric on SO(3)

〈RΩ1, RΩ2〉R := 〈〈Ω1,Ω2〉〉, (2)

for all R ∈ SO(3) and Ω1,Ω2 ∈ so(3). Let × denote the
vector cross-product on R3 and define the map [ . ]× :
R3 → so(3); ω 7→ [ω]× such that

[ω]×u = ω × u, for all ω, u ∈ R3.

Let vex : so(3) → R3 denotes the inverse isomorphism of
the map [ . ]×, such that vex([ω]×) = ω, for all ω ∈ R3 and
[vex(Ω)]× = Ω, for all Ω ∈ so(3). The adjoint operator on
so(3) corresponding to Ω1 ∈ so(3) is defined by

adΩ1Ω2 = [Ω1,Ω2], Ω2 ∈ so(3),

where [Ω1,Ω2] denotes the Lie bracket operator (matrix
commutator) given by

[Ω1,Ω2] = Ω1Ω2 − Ω2Ω1.

Let Pa(A) denote the projection of a square matrix A ∈
R3×3 on the Lie algebra so(3) of skew symmetric matrices
given by

Pa(A) :=
1

2
(A−AT ).

For a given symmetric positive definite matrix K = KT >
0, we define the positive definite symmetric operator ΣK :
so(3)→ so(3) [Bloch et al., 2008]

ΣK(Ω) = ΩK +KΩ, Ω ∈ so(3).

Lemma 1. The operator ΣK is an isomorphism and admits
an inverse map Σ−1

K : so(3)→ so(3) given by

Σ−1
K (.) = Σσ(ρ(K)−1)(.),

where

σ(A) :=
1

2
tr(A)I −A, ρ(A) = tr(A)I −A,

and ρ(A)−1 is the inverse matrix of ρ(A).

We associate to the operator ΣK(.) the quadratic function
ΨK : so(3)→ R+ such that

ΨK(Ω) :=
1

2
〈〈Ω,ΣK(Ω)〉〉. (3)

The vector space so(3) allows to represent elements of
SO(3) via an exponential map [Bullo and Lewis, 2005]

e[a]× =

 I, a = 0

I +
sin(||a||)
||a||

[a]× +
1− cos(||a||)
||a||2

[a]2× a 6= 0

(4)
Equation (4) is referred to as Rodrigues Formula. The
exponential map is a diffeomorphism between Πso(3) =

{[a]× ∈ so(3) | a ∈ R3, ||a|| < π} and ΠSO(3) = {R ∈
SO(3) | tr(R) 6= −1}. The inverse map log : ΠSO(3) →
Πso(3) is given by

log(R) =

 03×3 R = I
θ(R)

2 sin(θ(R))
(R−RT ) R 6= I

where θ : ΠSO(3) → [0, π) is defined by

θ(R) = arccos

(
tr(R)− 1

2

)
. (5)

3. KINEMATIC OPTIMAL CONTROL ON SO(3)

A generic kinematic optimal control problem on the Lie
group SO(3) can be formulated as follows. Given initial
data (t0, R0), we consider the optimization problem

min
Ω∈so(3)

J(t0, R0,Ω) := min
Ω∈so(3)

∫ tf

t0

e−γtC(R(t),Ω(t))dt

+e−γtfψ(R(tf )),
(6)

subject to Ṙ(t) = R(t)Ω(t), where C(R(t),Ω(t)) is an in-
cremental cost, ψ(R(tf )) is a terminal cost and γ > 0 cor-
responds to a discount factor. In particular, for a quadratic
optimal control problem on SO(3) the incremental cost
takes the form

C(R,Ω) =
1

2
d2
SO(3)(I,R) + ΨL(Ω),

where dSO(3)(I,R) is some given distance on SO(3), and
L is a symmetric positive definite weighting matrix.

3.1 Hamilton-Jacobi-Bellman equation on SO(3)

In this section we derive sufficient optimality conditions
using the dynamic programming approach. The following
value function

V (t0, R0) := inf
Ω∈so(3)

J(t0, R0,Ω),

is the unique viscosity solution to the Hamilton-Jacobi-
Bellman (HJB) equation [Bressan, 2003]

∂V

∂t
− γV +H(R,∇V ) = 0, (7)

with terminal condition

V (tf , R) = ψ(R), R ∈ SO(3),

and Hamiltonian function

H(R,P ) := min
Ω∈so(3)

{
1

2
d2
SO(3)(I, R) + ΨL(Ω) + 〈P,RΩ〉R

}
. (8)
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Lemma 2. The optimal control Ω∗ ∈ so(3) which mini-
mizes (8) is given by

Ω∗ = −Σ−1
L (Pa(RTP )) ∈ so(3), (9)

with Hamiltonian function

H(R,P ) =
1

2
d2
SO(3)(I,R) − Ψσ(ρ(L)−1)

(
Pa(RTP )

)
.

Proof. The control input Ω ∈ so(3) is subject to the
constraint Ω + ΩT = 0. Thus, we must perform the
following minimization

min
Ω

(
1

2
d2
SO(3)(I,R) + ΨL(Ω) + 〈P,RΩ〉R+

1

2
〈〈Λ,ΩT + Ω〉〉

)
, (10)

where Λ = ΛT is a Lagrange multiplier. The necessary
condition for the optimization of equation (10) gives

RTP + ΣL(Ω) + Λ = 0. (11)

Since ΣL(Ω) ∈ so(3), the above condition implies that the
term (RTP + Λ) must be an element of the Lie algebra
so(3), i.e., (RTP + Λ) ∈ so(3) or

(RTP + Λ)T + (RTP + Λ) = 0.

We can uniquely solve for Λ to obtain

Λ = −1

2
(RTP + PTR).

Substituting this expression in equation (11), yields (9).

Using the result of Lemma 2 in equation (7) leads to

∂V

∂t
− γV −Ψσ(ρ(L)−1)

(
RT∇V

)
+

1

2
d2
SO(3)(I,R) = 0.

(12)
Note that a solution to the above general PDE is unique,
thus if one could find a value function V that verifies this
PDE, the optimal control law is directly determined by (9)
setting P = ∇V .

An attempt to solve this problem using the Euclidean
distance on SO(3) appeared in Saccon et al. [2010]. The
weighted Euclidean distance on SO(3) is defined by

1

2
d2
SO(3)(I,R) =

1

2
||I −R||2 = tr(I −R).

In Saccon et al. [2010] the authors gave an “explicit”
solution in the particular case of an infinite time-horizon
with scalar penalty L = αI3×3. The solution to the optimal
control problem was given by the feedback law

Ω∗ = − 2√
α

Pa(R)√
1 + tr(R)

,

and the value function

V (R) = 4
√
α(2−

√
1 + tr(R)), (13)

which corresponds to the continuous (but non differen-
tiable) viscosity solution of the HJB equation.

In the well known LQR problem on Rn (1), the solution
to the HJB equation is the quadratic value function
V := xTKx, where K is solution of a Riccati equation.
Unfortunately, using the Euclidean distance on SO(3),
the value function given in (13) does not have the same
quadratic form as the cost ||I − R||2 (not an Euclidean
distance), which shows the difficulty of solving the HJB

equation using this type of distance for the general case
of finite horizon problems, and/or arbitrary weighting
matrices.

4. OPTIMAL SOLUTION USING THE GEODESIC
DISTANCE ON SO(3)

A more geometrically meaningful metric on SO(3) is
known as the geodesic distance. It is defined as the length
of the shortest path between two elements of the Lie group
SO(3). For two elements R1, R2 ∈ SO(3), the geodesic
distance is given by [Huynh, 2009]

d(R1, R2) = || log(RT2 R1)||.
Using this metric, we can solve the following quadratic
optimal control problems on SO(3) where Riccati-like
equations are derived to show the analogy with the linear
case.

4.1 Infinite horizon optimal control problem on SO(3) with
a discount rate

Consider the following optimal control problem on SO(3)

min
Ω∈so(3)

J(Ω) := min
Ω∈so(3)

1

2

∫ ∞
0

{
|| log(R)||2 + α||Ω||2

}
e−γtdt

(14)

subject to Ṙ = RΩ.

Proposition 1. The feedback law that minimizes the value
of the cost J(Ω) is

Ω∗ = − k

2α
log(R),

where the scalar gain k is given by

k = −αγ +
√

(αγ)2 + 2α.

Proof. The time-invariant value function V (R) must
satisfy the following Hamilton-Jacobi equation

−γV (R) +H(R,∇V (R)) = 0,

with terminal condition

lim
t→∞

V (R) = 0,

and Hamiltonian function

H(R,P ) := min
Ω∈so(3)

{
1

2
|| log(R)||2 +

α

2
||Ω||2 + 〈P,RΩ〉R

}
.

A natural guess of the value function is

V (R) :=
k

2
|| log(R)||2. (15)

To calculate the gradient of this function, we use the
following result [Bullo and Lewis, 2005]

d

dt
(log(R)) = B+Ω, (16)

where the operator B+ is defined as

B+ := idso(3) +
1

2
adlog(R) +

1− y(θ)

θ2
ad2

log(R),

where θ is given by (5) and y(θ) = (θ/2) cot(θ/2). The
map idso(3) represents the identity map on the Lie algebra

so(3) and ad2
log(R) := adlog(R)◦adlog(R). For the subsequent

development, we define also the operator

B− := idso(3) −
1

2
adlog(R) +

1− α(θ)

θ2
ad2

log(R).
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The time derivative of (15) is

V̇ = k〈〈 d
dt

(log(R)), log(R)〉〉 = k〈〈B+Ω, log(R)〉〉

= k〈〈Ω,B− log(R)〉〉.
where we have used the fact that

〈〈adlog(R)Ω, log(R)〉〉 = −〈〈Ω, adlog(R) log(R)〉〉
〈〈ad2

log(R)Ω, log(R)〉〉 = 〈〈Ω, ad2
log(R) log(R)〉〉.

However, since adlog(R) log(R) = 0, one has B− log(R) =
log(R). Therefore,

V̇ = k〈〈Ω, log(R)〉〉. (17)

Using the fact that

V̇ = 〈Ṙ,∇V 〉R = 〈RΩ,∇V 〉R = 〈〈Ω, RT∇V 〉〉,
one has

∇V = kR log(R). (18)

Consequently, using the result of Lemma 2 , the corre-
sponding HJB equation, reads

−γk
2
|| log(R)||2 − k2

4α
|| log(R)||2 +

1

2
|| log(R)||2 = 0,

which implies

−γk − k2

2α
+ 1 = 0. (19)

The above algebraic Riccati equation can be explicitly
solved for the positive scalar k to obtain

k = −αγ +
√

(αγ)2 + 2α.

Using the result of Lemma 2, we have

Ω∗ = − k

2α
log(R).

Remark 1. A solution to this infinite horizon optimal
control problem with a “discount rate” was not possible
to obtain using the traditional Euclidean distance, since it
is not obvious to get an algebraic Riccati equation as in
(19).

4.2 Finite time horizon optimal control problem on SO(3)

Consider the following optimal control problem:

min
Ω∈so(3)

J(t0, R0,Ω) :=

min
Ω∈so(3)

1

2

∫ tf

t0

{
|| log(R)||2 + α||Ω||2

}
dt+

kf
2
|| log(R(tf ))||2

subject to Ṙ = RΩ.

Proposition 2. The feedback law that minimizes the value
of the cost J(t0, R0,Ω) is

Ω∗(t, R) = −k(t)

2α
log(R), (20)

where the time varying scalar gain k(t) is given by{
k̇(t)− k(t)2

2α
+ 1 = 0

k(tf ) = kf
(21)

4.3 Arbitrary weighting matrices

Consider the general finite time-horizon optimal control
problem on SO(3) with arbitrary positive definite weight-
ing matrices

min
Ω∈so(3)

J(t0, R0,Ω) :=

min
Ω∈so(3)

∫ tf

t0

e−γt {ΨM (log(R)) + ΨL(Ω)} dt

+e−γtf ΨF (log(R(tf )))

(22)

subject to Ṙ = RΩ. A solution to this problem for small
rotations is stated in the following theorem.

Theorem 1. For small rotations around R = I, the solu-
tion to the optimal control problem (22) on SO(3) is given
by

Ω∗ = −Σ−1
L ΣK(log(R)),

where the positive definite matrix K is solution of the
following dynamic Riccati equation{

ρ(K̇)− γρ(K)− ρ(K)ρ(L)−1ρ(K) + ρ(M) = 0
K(tf ) = F

where the map ρ(.) is defined as

ρ(A) := tr(A)I −A, ∀A ∈ R3×3.

4.4 Inverse optimal control problem

The inverse optimal control approach consists in the
design of control laws that are optimal with respect to
a meaningful cost functional without solving a Hamilton-
Jacobi equation [Freeman and Kokotovic, 1996, Sepulchre
et al., 1997]. We briefly formulate the inverse optimality
control problem on the Lie group SO(3). Let W be a
positive definite potential function on SO(3), then we have

Ẇ = 〈∇W,RΩ〉R = 〈〈RT∇W,Ω〉〉. (23)

If we design a kinematic state feedback control law as

Ω := κ(R) = −Σ−1
L

(
RT∇W

)
, (24)

for some positive definite matrix L ∈ R3×3, we guarantee
that Ẇ ≤ 0. Generally, it is shown that Ẇ → 0 and R→ I
(almost globally) as t goes to infinity.
We have the following result.

Proposition 3. The control law

Ω = −βΣ−1
L

(
RT∇W

)
, β > 0

is optimal with respect to the cost

J =

∫ ∞
0

C(R,Ω)dt,

where C(R,Ω) = β2Ψσ(ρ(L))−1

(
RT∇W

)
+ ΨL(Ω).

In particular, let us consider the geodesic potential func-
tion on SO(3)

W =
1

2
|| log(R)||2,

whose gradient is given by

∇W = R log(R).

Consequently, taking the kinematic control law as

Ω = −Σ−1
L (log(R))) = −ΣM (log(R))) , (25)

where M = σ(ρ(L)−1), yields

Ẇ = −ΨM (log(R)) ≤ −2λMminW,

where λMmin is the smallest eigenvalue of the positive
definite matrix ρ(M) = ρ(L)−1. Clearly, one can conclude
that the feedback law (25) exponentially stabilizes the
system at R = I from all initial conditions with tr(R) 6=
−1.
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Proposition 3 suggests that the control law

Ω = −βΣM (log(R)),

is optimal with respect to the cost

J =

∫ ∞
0

{
β2ΨM (log(R)) + ΨL(Ω)

}
dt.

Note that this optimal solution is global in contrast to the
local solution of the precedent section.

5. CONCLUSION

The optimal kinematic control problem on the Lie group
SO(3) has been investigated. A solution to this problem
has been carried out using a natural geodesic distance
on SO(3). An interesting analogy of the obtained optimal
solution on SO(3) with the well known results for linear
systems has been established, where the optimal kinematic
control law is a state feedback (using the exponential
coordinates) with a gain depending on the solution of a
Riccati-like equation.
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