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for linear systems
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SUMMARY

In this paper, we propose a model reference adaptive control (MRAC) strategy for continuous-time single-
input single-output (SISO) linear time-invariant (LTI) systems with unknown parameters, performing
repetitive tasks. This is achieved through the introduction of a discrete-type parametric adaptation law in
the ‘iteration domain’, which is directly obtained from the continuous-time parametric adaptation law used
in standard MRAC schemes. In fact, at the first iteration, we apply a standard MRAC to the system under
consideration, while for the subsequent iterations, the parameters are appropriately updated along the
iteration-axis, in order to enhance the tracking performance from iteration to iteration. This approach is
referred to as the model reference adaptive iterative learning control (MRAILC). In the case of systems
with relative degree one, we obtain a pointwise convergence of the tracking error to zero, over the whole
finite time interval, when the number of iterations tends to infinity. In the general case, i.e. systems with
arbitrary relative degree, we show that the tracking error converges to a prescribed small domain around
zero, over the whole finite time interval, when the number of iterations tends to infinity. It is worth noting
that this approach allows: (1) to extend existing MRAC schemes, in a straightforward manner, to repetitive
systems; (2) to avoid the use of the output time derivatives, which are generally required in traditional
iterative learning control (ILC) strategies dealing with systems with high relative degree; (3) to handle
systems with multiple tracking objectives (i.e. the desired trajectory can be iteration-varying). Finally,
simulation results are carried out to support the theoretical development. Copyright # 2006 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Adaptive control is one of the most popular control techniques that has been fascinating the
automatic control community for several years [1, 2]. In the standard adaptive control

*Correspondence to: A. Tayebi, Department of Electrical Engineering, Lakehead University, Thunder Bay, Ont.,
Canada P7B 5E1.
yE-mail: tayebi@ieee.org

Contract/grant sponsor: Natural Sciences and Engineering Research Council of Canada

Copyright # 2006 John Wiley & Sons, Ltd.



framework, the parametric adaptation rule is generally an integration along the time-axis, which
is commonly designed using the Lyapunov method in order to achieve asymptotic tracking.
Hence, the tracking objective is achieved along an infinite time interval, and a transient tracking
error will always be present. Model reference adaptive control (MRAC) is among the famous
adaptive techniques that have been around for more than three decades. The major problem
that one can attribute to this technique is the bad transient performance. To overcome this
drawback, other alternatives, such as the backstepping approach [3], have been proposed in the
literature. However, the benefit brought by those techniques in terms of transient improvement,
is often eclipsed by the control law implementation complexity. On the other hand, in practical
applications, the designed controller can be applied more than once to the plant under
consideration, over a finite time interval. In this case, one can benefit from the information
collected at the previous operations in order to enhance the transient performance for the
subsequent operations. This technique is known as ILC [4]. Most of the existing ILC schemes in
the literature are based upon the contraction mapping technique and require a certain a priori
knowledge of the system parameters, the use of the time-weighted norm in the convergence
proofs as well as the use of the output time derivatives for systems with high relative degree [5–
7]. Recently, a growing interest has been directed towards the energy-based approach which
takes its essence from the Lyapunov theory [8–13]. This approach uses an elegant and powerful
framework for stability and convergence analysis which has shown a real effectiveness in
handling systems with time-varying parameters and multiple tracking objectives (i.e. the desired
trajectory can be modified from iteration to iteration). On the other hand, in Reference [14], an
adaptive approach to ILC has been proposed, where the iterative parametric adjustment is
performed on the initial conditions of the continuous-time integral-type adaptation law. In
other words, a standard adaptive controller is used and the parameter estimates are initialized
with their final values obtained at the preceding iteration. Therefore, this technique inherits the
limitations associated to standard adaptive control such as the requirement of the unknown
system parameters to be constant.

In this paper,z we provide an extension of standard MRAC schemes to single-input single-
output linear time-invariant systems performing repetitive tasks. The proposed model reference
adaptive iterative learning control strategy achieves a global asymptotic tracking along the time
horizon at the first iteration, and a pointwise convergence of the tracking error to zero (in the
case of systems with relative degree one) or to a prescribed small domain around zero (for
systems with higher relative degree), over the whole finite time interval, when the number of
iterations tends to infinity. In fact, at the first iteration, we use a continuous-time integral-type
parametric adaptation law, while for the subsequent iterations, we use a discrete-type
parametric adaptation law along the iteration-axis. The proof of convergence is based upon
the use of a Lyapunov-like sequence which is shown to be monotonically decreasing along the
iterative process. Basically, the role of the discrete-type parametric adaptation law is to refine
the transient response from iteration to iteration in order to achieve an accurate tracking over a
finite time interval. In contrast to existing contraction mapping-based ILC schemes, the
proposed control strategy does not require the use of the output time derivatives for systems
with a high relative degree, and is able to handle varying tracking objectives throughout the
iterative process. Finally, it is worth noting that in the recent paper [16], an elegant output-based

zA preliminary version of this work has been presented in Reference [15].
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adaptive ILC has been proposed for uncertain linear systems using the MRAC approach.
However, the main difference between our approach and the one proposed in Reference [16] is
related to the following facts: (1) We extend the well-known SPR-Lyapunov approach, used in
adaptive control, for repetitive systems; (2) The main objective of our paper is to show that it is
possible to extend, in a straightforward manner, standard MRAC schemes to repetitive systems;
therefore, for the sake of presentation simplicity, we considered the MRAC versions proposed
in References [1, 2] in their ‘simplest form’. Nevertheless, the proposed framework can be easily
generalized to more complex MRAC schemes dealing with the issues of robustness,
disturbances, measurement noise, etc. (3) In Reference [10], the parameter estimates at the
first iteration are arbitrarily set, while in our approach, they are obtained using a continuous-
time integral-type parametric adaptation rule, and hence a certain level of performance is
achieved already at the first iteration; (4) The bounds of the system parameters involved in the
projection mechanism used in Reference [16] are not required in our approach.

2. PROBLEM FORMULATION

In this paper we consider SISO-LTI systems described by

ykðtÞ ¼ GpðsÞ½ukðtÞ� ¼ kp
ZpðsÞ
RpðsÞ

½ukðtÞ� ð1Þ

and operated repeatedly over a finite time interval ½0;T �: The non-negative integer k 2 Zþ
denotes the iteration or trial number. The desired trajectory ydðtÞ is given by a reference model
as follows:

ydðtÞ ¼ GmðsÞ½rf ðtÞ� ¼ km
ZmðsÞ
RmðsÞ

½rf ðtÞ� ð2Þ

where rf ðtÞ is a bounded reference input.
Assuming that the system parameters are unknown (except the sign of the high-frequency-

gain kp), our objective is to design an adaptive iterative learning controller guaranteeing the
boundedness of the tracking error 8t 2 ½0;T � and 8k 2 Zþ; and its convergence to a small
neighbourhood of zero, over the whole finite time interval ½0;T �; when k tends to infinity. To this
end, we will assume that ydð0Þ ¼ ykð0Þ and without any loss of generality we will assume that
ydð0Þ ¼ ykð0Þ ¼ 0: Throughout this paper, we will use the Lpe norm defined as follows:

jjxðtÞjjpe¼
4

R t
0 jjxðtÞjj

p dt
� �1=p

if p 2 ½0;1Þ

sup04t4t jjxðtÞjj if p ¼ 1

8<
:

where jjxjj denotes any norm of x; and t belongs to the finite interval ½0;T �:We say that x 2Lpe

when jjxjjpe exists (i.e. when jjxjjpe is finite). We will also make the following classical assumptions
related to the MRAC technique:

(B1) Zp is a monic Hurwitz polynomial of degree mp:
(B2) An upper bound n of the degree np of RpðsÞ is available.
(B3) The relative degree r ¼ np �mp of Gp is known.
(B4) The sign of the high frequency gain kp is known.
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(B5) Zm and Rm are monic Hurwitz polynomial of degree mm and nm; respectively, with
nm4n:

(B6) The relative degree rm ¼ nm �mm of Gm is the same as that of Gp:

Note that the minimum-phase requirement on the plant stated in assumption (B1) is not
necessary in our developments since our ILC operates over a finite-time interval. Therefore, the
boundedness of the states is guaranteed over any finite time interval since a finite escape-time is
not possible for the class of linear systems considered here.

3. PRELIMINARIES

Let us define LðsÞ ¼ L0ðsÞZmðsÞ; which is a monic Hurwitz polynomial of degree n� 1: Define
also aðsÞ as follows:

aðsÞ ¼
½sn�2; sn�1; . . . ; s; 1�T for n52

0 for n ¼ 1

(

As shown in References [1, 2], there exists a set of parameters cn0 2 R; yn3 2 R; yn1 2 Rn�1 and
yn2 2 Rn�1 such that the following control law:

uk ¼ ynTOk

where

yn ¼ ½ynT1 ; y
nT
2 ; y

n

3 ; c
nT
0 �; Ok ¼ ½wT

1;k;w
T
2;k; yk; rf �

T; w1;k ¼
aðsÞ
LðsÞ
½uk� and w2;k ¼

aðsÞ
LðsÞ
½yk�

leads to

yk ¼ GmðsÞ½rf � ¼ km
Zm

Rm
½rf �

The parameters can be obtained from the following relationships:

cn0 ¼
km

kp

ðL� ynT1 aÞRp � kpZpðy
nT
2 aþ yn3LÞ ¼ ZpL0Rm

The signals w1;k and w2;k are the outputs of the following systems:

’w1;k ¼ Fw1;k þ guk w1;kð0Þ ¼ 0

’w2;k ¼ Fw2;k þ gyk w2;kð0Þ ¼ 0 ð3Þ

where ðF; gÞ is a state-space realization of aðsÞ=LðsÞ:
The state-space representation of the overall closed-loop system is given by the following non-

minimal realization:

’Yc;k ¼ AcYc;k þ Bcc
n

0rf

yk ¼ CcYc;k ð4Þ
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with Yc;k ¼ ½xTk ;w
T
1;k;w

T
2;k�

T 2 Rnpþ2n�2; where xk denotes the state vector associated with system
(1), and

Ac ¼

Aþ Byn3C BynT1 BynT2

gyn3C F þ gynT1 gynT2

gC 0 F

2
664

3
775; Bc ¼

B

g

0

2
664

3
775; Cc ¼ ½C; 0; 0� ð5Þ

Hence, the transfer function from rf to yk is given by

yk

rf
¼ GmðsÞ ¼ CcðsI � AcÞ

�1Bcc
n

0

Therefore, the reference model can also be described by

’Ym ¼ AcYm þ Bcc
n

0rf

yd ¼ CcYm

Note that Ac is a stable matrix, since detðsI � AcÞ ¼ LðsÞZpðsÞL0ðsÞRmðsÞ:
Let ek ¼ Yc;k � Ym be the state error and e1;k ¼ yk � yd be the output tracking error. It

follows that

’ek ¼ Acek

e1;k ¼ Ccek ð6Þ

which shows that the tracking error converges exponentially to zero.
Since the system parameters are unknown, the vector yn cannot be obtained and hence, the

control law ukðtÞ ¼ ynTOkðtÞ cannot be applied. In this case, the MRAC technique consists of
applying a control law of the form ukðtÞ ¼ yTk ðtÞOkðtÞ; where ykðtÞ is generated by an appropriate
adaptive law.

In our approach, at the first iteration, i.e. for k ¼ 0; the vector y0ðtÞ is generated by a
continuous-time integral-type adaptive law as in the usual MRAC framework, whereas for
k51; the vector ykðtÞ is generated by a discrete integral-type adaptive law (iterative law along
the iteration-axis).

4. MRAILC FOR SYSTEMS WITH RELATIVE DEGREE ONE

The following lemma is instrumental in our MRAILC design for systems with relative degree
one.

4.1. Iterative-SPR-Lyapunov lemma

In this section, we propose an extended version of the positive real (SPR)-Lyapunov approach
[1, 17].

Lemma 1
Let the signals %ekðtÞ and gCT

k ðtÞvkðtÞ be related by a strictly positive real (SPR) transfer function
HðsÞ as follows:

%ekðtÞ ¼ HðsÞ½gCT
k ðtÞvkðtÞ� ð7Þ
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where t belongs to the finite time interval ½0;T �; %ekðtÞ 2 R; g is an unknown constant with known
sign, vkðtÞ 2 Rm is a measurable vector. The vector CkðtÞ 2 Rm is generated by

CkðtÞ ¼ Ck�1ðtÞ � GvkðtÞ%ekðtÞ sgnðgÞ for k51 ð8Þ

and

’C0ðtÞ ¼ �Gv0ðtÞ%e0ðtÞ sgnðgÞ ð9Þ

where G 2 Rm�m is a symmetric positive definite matrix. Then

* The state vector %Xk 2L1e; %ekðtÞ 2L1e and CkðtÞ 2L2e; for all k 2 Zþ:
* limk!1 %ekðtÞ ¼ 0; for all t 2 ½0;T �:

Proof
Let the state-space representation of (7) be

’%Xk ¼ %A %Xkþ %BðgCT
k ðtÞvkðtÞÞ; %Xkð0Þ ¼ 0

%ek ¼ %C %Xk

ð10Þ

Since HðsÞ is SPR then, from Meyer–Kalman–Yakubovich (MKY) lemma [1, 17], for any given
symmetric positive definite matrix L there exist a symmetric positive definite matrix P; a vector q
and a strictly positive scalar n such that

%ATPþP %A ¼ �qqT � nL

P %B ¼ %CT
ð11Þ

Now, let us consider the following Lyapunov-like functional candidate:

Wkð %Xk;CkÞ ¼ Vkð %XkÞ þ
jgj
2

Z t

0

CT
k ðtÞG

�1CkðtÞ dt ð12Þ

with

Vkð %XkÞ ¼ 1
2
%XT
kP %Xk ð13Þ

which can be written, in view of (10) and (11), as follows:

Vkð %XkðtÞÞ ¼Vkð %Xkð0ÞÞ þ
Z t

0

’Vkð %XkðtÞÞ dt

¼Vkð %Xkð0ÞÞ �
1

2

Z t

0

ð %XT
k ðqq

T þ nLÞ %Xk � 2 %XT
kP %BðgCT

k ðtÞvkÞÞ dt

¼ �
1

2

Z t

0

ð %XT
k ðqq

T þ nLÞ %Xk � 2%ekðgCT
k ðtÞvkÞÞ dt ð14Þ

Now, the difference of the Lyapunov-like functional (12) is given by

DWk ¼Wk �Wk�1 ¼ Vk � Vk�1 �
jgj
2

Z t

0

ð %CT
kG
�1 %Ck � 2 %CT

kG
�1CkÞ dt ð15Þ
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where %Ck ¼ Ck �Ck�1: Now, in view of (8) and (14), Equation (15) leads to

DWk ¼ �Vk�1 �
jgj
2

Z t

0

%CT
kG
�1 %Ck dt�

1

2

Z t

0

%XT
k ðqq

T þ nLÞ %Xk dt40 ð16Þ

Hence WkðtÞ is non-increasing and consequently %XkðtÞ;
R t
0 C

T
k ðtÞG

�1CkðtÞ dt and %ekðtÞ are
bounded if W0ðtÞ is bounded.

Now, to prove the boundedness of W0ðtÞ let us consider the following Lyapunov function:

S0ð %X0;C0Þ ¼
1

2
%XT
0P %X0 þ

jgj
2
CT

0G
�1C0 ð17Þ

whose time derivative in view of (9), (10) and (11) is given by

’S0 ¼ �1
2
%XT
0 ðqq

T þ nLÞ %X0 ð18Þ

which means that %X0ðtÞ and C0ðtÞ are globally bounded. Hence, W0ðtÞ is bounded over the finite
time interval ½0;T �:

To show the convergence of %ekðtÞ to zero when k tends to infinity, let us rewrite Wk as follows:

Wk ¼W0 þ
Xj¼k
j¼1

DWj4W0 �
Xj¼k
j¼1

Vj�1

4W0 �
1

2

Xj¼k
j¼1

%XT
j�1P %Xj�1

which leads to

Xj¼k
j¼1

%XT
j�1ðtÞP %Xj�1ðtÞ42ðW0ðtÞ �WkðtÞÞ42W0ðtÞ ð19Þ

Since W0ðtÞ and %XkðtÞ are bounded for all k 2 Zþ and t 2 ½0;T �; one can conclude that limk!1
%XkðtÞ ¼ 0 and consequently limk!1 %ekðtÞ ¼ 0; 8t 2 ½0;T �: &

Remark 1
Note that by virtue of Barbalat lemma, and under the assumption that v0ðtÞ is bounded for all
t 2 Rþ; one can easily show that limt!1 %e0ðtÞ ¼ 0:

Remark 2
If vkðtÞ 2L1e for any finite non-negative integer k; one can show thatCkðtÞ 2L1e for any finite
non-negative integer k:

4.2. MRAILC design

For systems with relative degree r ¼ 1; the design of an MRAILC is straightforward from
Lemma1 as stated in the following theorem.

Theorem 1
Assume that (B1–B6) are satisfied and GmðsÞ is SPR. Consider system (1), with a relative degree
r ¼ 1; under the following control law:

ukðtÞ ¼ yTk ðtÞOkðtÞ for k50 ð20Þ
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where at the first iteration, i.e. k ¼ 0; the parametric adaption law is given by

’y0ðtÞ ¼ �GO0ðtÞe1;0ðtÞ sgnðrnÞ ð21Þ

and for k51; the parametric adaption law is given by

ykðtÞ ¼ yk�1ðtÞ � GOkðtÞe1;kðtÞ sgnðrnÞ ð22Þ

where rn ¼ kp=km and G 2 R2n�2n is a symmetric positive definite matrix. Then,

* The state vector Yc;k 2L1e; e1;kðtÞ ¼ ðykðtÞ � yd ðtÞÞ 2L1e and ykðtÞ 2L2e; for all k 2 Zþ:
* limk!1 e1;kðtÞ ¼ 0; for all t 2 ½0;T �:

Proof
Since (6) is obtained with ukðtÞ ¼ ynTOkðtÞ; one has

’ek ¼Acek þ Bcðuk � ynTOkÞ

e1;k ¼ Ccek

ð23Þ

which under the control law (20) becomes

’ek ¼Acek þ Bc
*yTkOk

e1;k ¼ Ccek

ð24Þ

with *ykðtÞ ¼ ykðtÞ � yn: Since CcðsI � AcÞ
�1Bcc

n
0 ¼ GmðsÞ; system (24) leads to

e1;k ¼ GmðsÞ½rn *yTk ðtÞOkðtÞ� ð25Þ

where rn ¼ 1=cn0 : Finally, under the adaptive laws (21) and (22), the result follows directly from
Lemma 1. &

Remark 3
Since rf ; e1;k;Yc;k 2L1e 8k 2 Zþ; one can conclude that Ok 2L1e 8k 2 Zþ: Hence, one can
show that ykðtÞ 2L1e for any finite non-negative integer k: Consequently, ukðtÞ 2L1e for any
finite non-negative integer k:

Remark 4
Note that, for k ¼ 0; the control scheme proposed in Theorem 1 is nothing else but
a standard MRAC. It turns out that the second term of the right-hand side of the
discrete-type adaptation law (22) is similar to the right-hand side of the continuous-time
adaptation law (21). This is due to the fact that the Lyapunov function (17) used to
design the standard MRAC is extended to the repetitive case by substituting the quadratic
term on the parametric error by its integral. For systems with a relative degree r > 1
direct application of the Iterative-SPR-Lyapunov lemma is not possible. Nevertheless, it is
possible to obtain MRAILC schemes, in a straightforward manner, from the standard
MRAC algorithms dealing with higher relative degrees (see, for instance, References [1, 2]
and references therein), by associating to each continuous-time integral-type adaption
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law a discrete integral-type adaption law with saturation, along the iteration-axis as shown in
the next section.

5. MRAILC FOR SYSTEMS WITH RELATIVE DEGREE r51

In this section, we propose a MRAILC scheme for systems with an arbitrary relative degree
r51: Our result is based on the extension of the MRAC schemes proposed in References [1, 2].

Theorem 2
Assume that (B1–B6) are satisfied. Consider system (1), with a relative degree r51; under the
following control law over ½0;T �:

ukðtÞ ¼ yTk ðtÞOkðtÞ for k50 ð26Þ

where at the first iteration, i.e. k ¼ 0; we use

’y0ðtÞ ¼ �Ge0ðtÞf0ðtÞ sgnðr
nÞ ð27Þ

’r0ðtÞ ¼ ge0ðtÞx0ðtÞ ð28Þ

and for k51; we use

ykðtÞ ¼
yk�1ðtÞ � GekðtÞfkðtÞ sgnðr

nÞ if supt2½0;T � jek�1ðtÞj > s

yk�1ðTÞ otherwise

(
ð29Þ

rkðtÞ ¼
rk�1ðtÞ þ gekðtÞxkðtÞ if supt2½0;T � jek�1ðtÞj > s

rk�1ðTÞ otherwise

(
ð30Þ

where rn ¼ kp=km; G 2 R2n�2n is a symmetric positive definite matrix and g is a positive
parameter. The signals fk; ek and xk are evaluated for all k 2 Zþ as follows:

ek ¼
e1;k � #e1;k

m2
k

#e1;k ¼ rkxk

xk ¼ %uk � yTkfk

fk ¼ GmðsÞ½Ok�

%uk ¼ GmðsÞ½uk�

m2
k ¼

1þ %u2k þ fT
kfk or 1þ %fT

k
%fk for k ¼ 0

k for k51

(
ð31Þ

where k is a positive parameter, %fk ¼ GmðsÞ½ %Ok�; with %Ok ¼ ½wT
1;k;w

T
2;k; yk�

T:
Then, all signals are bounded 8k 2 Zþ; 8t 2 ½0;T �; and limk!1 je1;kðtÞj4ks; 8t 2 ½0;T �:
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Proof
First, let us assume that supt2½0;T � jek�1ðtÞj > s and let us consider the following Lyapunov-like
function for k51:

Wk ¼
1

2g
*r2k þ

jrnj
2

*yTkG
�1 *yk ð32Þ

where *rk ¼ rk � rn and *yk ¼ yk � yn: Using (26) and (29)–(31), and the fact that e1;k ¼
rnGm½*yTkOk� ¼ rnð%uk � ynTk fkÞ; we have

DWkðtÞ ¼WkðtÞ �Wk�1ðtÞ ¼ �
1

2g
%r2k �

jrnj
2

%yTkG
�1 %yk þ

1

g
%rk *rk þ jrnj%yTkG

�1 *yk

¼ �
1

2g
%r2kðtÞ �

jrnj
2

%ykðtÞ
TG�1 %ykðtÞ �m2

ke
2
kðtÞ40 ð33Þ

with %rkðtÞ ¼ rkðtÞ � rk�1ðtÞ and %ykðtÞ ¼ ykðtÞ � yk�1ðtÞ: Note that m2
k ¼ k > 0 since k51: It is

clear that WkðtÞ is non-increasing, and hence bounded if W0ðtÞ is bounded over ½0;T �: Since, for
k ¼ 0; all signals are bounded,} one can conclude that W0ðtÞ is bounded for all t 2 ½0;T �; and
hence WkðtÞ is bounded 8k 2 Zþ; 8t 2 ½0;T �: This implies that rk; yk 2L1e; 8k 2 Zþ; 8t 2 ½0;T �:

Now, one can show that

Wk ¼W0 þ
Xk
j¼1

DWj

¼W0 �
1

2g

Xk
j¼1

%r2j �
jrnj
2

Xk
j¼1

%yTj G
�1 %yj �

Xk
j¼1

ke2j ð34Þ

thus,

1

2g

Xk
j¼1

%r2j þ
jrnj
2

Xk
j¼1

%yTj G
�1 %yj þ

Xk
j¼1

ke2j ¼W0 �Wk4W0 ð35Þ

Therefore, one can conclude that %rk; %yk; ek 2L1e; which in view of (29) and (30), imply that
fk; xk 2L1e for all k 2 Zþ; and hence %uk; #e1;k; e1;k 2L1e for all k 2 Zþ: Hence, yk 2L1e for all
k 2 Zþ since yd ðtÞ is bounded. Considering system (3) under the control law (26), and keeping in
mind that yk; yk 2L1e for all k 2 Zþ; it is clear that o1;k;o2;k 2L1e for all k 2 Zþ since there is
no finite escape-time for the solutions of the linear time-varying system (3) and (26). Since rf ðtÞ is
bounded, it is clear that Ok 2L1e; and hence uk 2L1e: Consequently, one can conclude that
all signals are bounded 8k 2 Zþ; 8t 2 ½0;T �:

One can also conclude from (35) that

lim
k!1

%rkðtÞ ¼ lim
k!1

%ykðtÞ ¼ lim
k!1

ekðtÞ ¼ 0 ð36Þ

for all t 2 ½0;T �: Since the previous development is valid for supt2½0;T � jek�1ðtÞj > s; (36) is not true.
In fact, one can only conclude that limk!1 jekðtÞj4s; 8t 2 ½0;T �: Once supt2½0;T � jekðtÞj4s;
according to (29), ykðtÞ becomes constant, and hence from (31), %uk ¼ yTkfk and hence xk ¼ 0
which implies that limk!1je1;kðtÞj4ks; 8t 2 ½0;T �: &

}For k ¼ 0 the control scheme (26)–(28) is nothing else but the classical MRAC, and hence the proof of boundedness of
all signals is shown in References [1, 2].
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Remark 5
Note that, for k ¼ 0; the control scheme proposed in Theorem 2 reduces to the standard MRAC
schemes proposed in References [1, 2]. In fact, m2

0 ¼ 1þ %u20 þ fT
0f0 has been used in Reference

[1] and m2
0 ¼ 1þ %fT

0
%f0 has been used in Reference [2].

Remark 6
It is worth noting that the saturation used for yk is required for a technical reason in
the proof. It allows to ensure that ykðtÞ becomes constant when the augmented tracking error ek
is sufficiently small. In this case, the augmented tracking error becomes the real tracking error
e1;k since xkðtÞ ¼ 0: On the other hand, the saturation used for rk is not necessary. In fact, we
stop the learning for rk because it has no effect on the system behaviour once yk is constant.

Remark 7
Although not explicitly mentioned in our theorems, the proposed MRAILC schemes
are able to handle iteration-varying desired trajectories. In other words, the learning
process remains effective even if the desired trajectory (or the reference model) is changing
from iteration to iteration. This is one important advantage of this Lyapunov-based framework
with respect to the traditional contraction mapping-based frameworks (see, for instance,
Reference [13]).

6. SIMULATION RESULTS

In this section, we consider three examples.

Example 1

GpðsÞ ¼
sþ 1

s2 � 10sþ 1
; GmðsÞ ¼

1

sþ 1

with rf ðtÞ being a unit step input. The auxiliary variables w1;k and w2;k are given by

w1;k ¼
1

sþ 10
½uk�; w2;k ¼

1

sþ 10
½yk�

The matrix G is chosen as a G ¼ 10I4�4: The time interval is taken as ½0; 8s� and the initial
conditions for the adaptive law at the first iteration are chosen to be zero.

Figure 1 shows the evolution of the Sup-norm of the tracking error with respect to the
iteration number. Figure 2 shows the performance of the standard MRAC. Figure 3 shows the
transient performance improvement over the iterations.

Example 2

GpðsÞ ¼
2sþ 5

s3 þ 6s2 þ 7s� 4
; GmðsÞ ¼

2sþ 5

s3 þ 6s2 þ 11sþ 6

with rf ðtÞ being a unit step input. The auxiliary variables w1;k and w2;k are given by

w1;k ¼
s

2s2 þ 15sþ 25
;

1

2s2 þ 15sþ 25

� �T

½uk�; w2;k ¼
s

2s2 þ 15sþ 25
;

1

2s2 þ 15sþ 25

� �T

½yk�
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k ¼ 0:1; G ¼ 10I6�6; g ¼ 0:1 and s ¼ 0:05: The time interval is taken as ½0; 8s� and the initial
conditions for the adaptive law at the first iteration are chosen to be zero. At the first iteration,
i.e. for k ¼ 0; we use m2

0 ¼ 1þ %u20 þ fT
0f0:

Figure 4 shows the evolution of the Sup-norm of the tracking error with respect to the
iteration number using Theorem 2.
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Figure 1. Example 1: supt2½0;8� jyd ðtÞ � ykðtÞj with respect to the iteration number k:
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Figure 2. Example 1: Reference trajectory and system output with the MRAC (i.e. k ¼ 0).
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Example 3
In this example, we show the effectiveness of our algorithms when the desired trajectory is
iteration-varying. To this end, we consider the system of Example 1 with the following iteration-
varying reference model:

Gm;kðsÞ ¼
kþ 1

sþ 1
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Figure 3. Example 1: Reference trajectory and system output at the 20th iteration.
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Figure 4. Example 2: supt2½0;8� jyd ðtÞ � ykðtÞj with respect to the iteration number k:

MODEL REFERENCE ADAPTIVE ITERATIVE LEARNING CONTROL 487

Copyright # 2006 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2006; 20:475–489

DOI: 10.1002/acs



with k 2 f0; 1; . . . ; 19g: The auxiliary variables w1;k; w2;k and the control gains are taken as in
Example 1. The time interval is taken as ½0; 8s� and the initial conditions for the adaptive law at
the first iteration are chosen to be zero. Figure 5 shows the evolution of the Sup-norm
percentage of the tracking error with respect to the iteration number.

7. CONCLUSION

In this paper, we proposed a straightforward extension of standard MRAC schemes to linear
repetitive systems in order to improve the transient tracking performance through iterative
learning. In fact, this was made possible through the introduction of a parametric adaptation
law along the iteration-axis, obtained directly from the continuous-time parametric adaptation
law used in standard MRAC schemes. In the proposed approach, at the first iteration, i.e. for
k ¼ 0; we apply a standard MRAC scheme. Thereafter, i.e. for k51; the parameter estimates are
iteratively updated in order to refine the output response and enhance the tracking performance
from iteration to iteration. The proposed MRAILC scheme achieves a pointwise convergence of
the tracking error to zero (in the case of systems with relative degree one), or to a prescribed
small domain around zero (for systems with higher relative degree), over the whole finite time
interval, when the number of iterations tends to infinity. In contrast to existing contraction
mapping-based ILC schemes, the proposed control strategy does not require the use of the
output time derivatives and can handle systems with multiple tracking objectives (i.e. the desired
trajectory can be modified from iteration to iteration).

ACKNOWLEDGEMENTS

The author would like to acknowledge the support of the Natural Sciences and Engineering Research
Council (NSERC) of Canada. He would like also to thank the anonymous reviewers and the Associate
Editor Prof. Krstic for his help and efficiency in handling the paper.

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

10
0/

k 
 s

up
t |

y d
-y

k|
 (

%
)

Iteration number
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