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Abstract— The paper addresses the cooperative attitude syn-
chronization problem of multiple rigid bodies in the pres-
ence of communication delays and without angular velocity
measurements. First, we present a solution to the leaderless
and leader-follower problems in the case of time-varying
communication delays and undirected communication topology.
Next, we present an attitude synchronization scheme for the
leaderless problem, under a directed graph topology, in the
presence of constant communication delays. To demonstrate
the effectiveness of the proposed control schemes, simulation
results of a scenario of four rigid bodies are provided.

I. INTRODUCTION

We consider the cooperative attitude synchronization prob-

lem of multiple rigid bodies. The objective is to drive a team

of rigid bodies to synchronize their orientations (attitudes) to

the same final orientation. This problem has recently gained

an increased interest in applications related to spacecraft

formations. Several attitude synchronization schemes have

been reported in the literature, see for example [1]-[4] in the

full state information case, and [5]-[7], in the case where the

angular velocities are not available for feedback. In these

papers, the interconnection topology plays a central role,

however, communication delays that are inherently present

in transmission systems have not been considered.

The effects of communication delays in linear multi-agent

systems, described by second-order dynamics, have been

extensively studied in [8]-[10] to cite a few, and sufficient

stability conditions have been derived. The communication

delays in nonlinear systems have also been considered in bi-

lateral teleoperation [11]-[12], the synchronization of Euler-

Lagrange systems [13]-[14] and the formation control of a

class of unmanned aerial vehicles [15]. However, due to the

complexity of the attitude dynamics, it is not straightforward

to extend the results of the above papers to the attitude

synchronization problem. This is the reason behind the

existence of only few papers dealing with this problem in

the available literature.

Using the Modified Rodriguez parameters (MRP) and

the Lagrangian formulation for the attitude dynamics, the

authors in [16] proposed a solution to the spacecraft attitude

synchronization problem in the presence of constant commu-

nication delays. To avoid the inherent singularity of the MRP

representation, the globally non-singular unit-quaternion rep-

resentation has been considered in [17]-[18] and attitude
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synchronization schemes have been proposed in the presence

of time-varying communication delays. The proposed control

schemes in the above papers rely on some synchronization

variables defined in terms of both attitude and angular veloc-

ity tracking errors. More recently, a different analysis method

has been considered in [19], where the relative attitudes are

defined using linear differences between individual attitudes

given in terms of unit-quaternion. It is worth mentioning that

in [16]-[19], only the cooperative attitude tracking problem

has been considered, where a common desired attitude trajec-

tory is required to be available to each spacecraft in the team.

Moreover, the communication topology between spacecraft

in the team is assumed to be undirected. In [20], the attitude

kinematics of rigid bodies have been considered to design

appropriate angular velocity inputs to solve the leaderless at-

titude synchronization problem with delayed communication

and directed communication topology. However, the attitude

dynamics have not been considered and the input torque that

drives this type of systems has not been designed. In addition,

all the aforementioned papers rely on the assumption that the

angular velocities are available for feedback.

The main contribution of this paper is to propose new

quaternion-based attitude synchronization schemes for a

group of rigid bodies (or spacecraft) without angular velocity

measurements and in the presence of communication delays.

As mentioned earlier, some solutions to this problem exist

in the case of no communication delays. However, it is

generally difficult to study the effects of communication

delays in the partial state feedback case, using Lyapunov-

Krasovskii functionals for example. To overcome this diffi-

culty, we propose an approach that handles, simultaneously,

the communication delays and the lack of angular velocity

measurements. Using this approach, we present first a unified

scheme that solves the leaderless and leader follower attitude

synchronization problems in the presence of time-varying

communication delays. We derive sufficient conditions on the

communication delays and the controller gains such that the

control objectives are attained under a fixed and undirected

communication topology. Then, we present a solution to the

leaderless problem in the case of constant communication

delays and directed communication topology. To the best of

our knowledge, the above problems in the presence of com-

munication delays have never been addressed in the partial

state feedback case. In addition, only the leaderless attitude

synchronization problem with delayed communication has

been partly solved in the full state feedback case.
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II. SYSTEM MODEL AND NOTATIONS

Consider a group of n-rigid bodies, where the equations

of motion of the ith rigid body are given by

Q̇i =
1

2
T(Qi)ωi, (1)

Ifiω̇i = Γi − S(ωi)Ifiωi, (2)

for i ∈ N , {1, ..., n}, where ωi ∈ R
3 is the angular

velocity of the ith rigid body expressed in the body-fixed

frame, Fi, Ifi ∈ R
3×3 is a constant symmetric positive

definite inertia matrix of the ith rigid body with respect to

Fi, and the vector Γi is the external torque input expressed

in Fi. The unit-quaternion Qi = (q⊤
i , ηi)

⊤ is composed of a

vector part qi ∈ R
3 and a scalar part ηi ∈ R, and represents

the orientation of the ith rigid body. The elements of the unit-

quaternion Qi satisfy the unity constraint: η2i + q⊤
i qi = 1.

The matrix T(Qi) ∈ R
4×3 satisfies: T(Qi)

⊤T(Qi) = I3,

and is given by

T(Qi) =

(

ηi I3 + S(qi)
−q⊤

i

)

, (3)

where the matrix S(x) is the skew-symmetric matrix such

that S(x1)x2 = x1 × x2 for any vectors x1 ∈ R
3 and

x2 ∈ R
3, where ‘×’ denotes the vector cross product. The

orthogonal rotation matrix R(Qi) ∈ SO(3) related to the

unit-quaternion Qi, that brings the inertial frame into the ith

body frame, can be obtained through the Rodriguez formula

as: R(Qi) = (η2i − q⊤

i qi)I3 + 2qiq
⊤

i − 2ηiS(qi), where

I3 is the 3-by-3 identity matrix. The time-derivative of the

rotation matrix R(Qi) is given as: Ṙ(Qi) = −S(ωi)R(Qi).
The multiplication between two unit-quaternion,

Qi = (q⊤

i , ηi)
⊤ and Qj = (q⊤

j , ηj)
⊤, is

defined by the following operation: Qi ⊙ Qj =
(

(ηiqj + ηjqi + S(qi)qj)
⊤ , ηiηj − q⊤

i qj

)⊤
. The inverse

or conjugate of the unit-quaternion Qi is defined by,

Q−1

i = (−q⊤

i , ηi)
⊤, with the quaternion identity given

by QI := (0⊤
3
, 1)⊤, where 0m ∈ R

m is the vector

of zero elements. Note that due to the redundancy in

the unit-quaternion representation, ±QI represents the

same physical orientation. For more properties of the

unit-quaternion representation of the attitude, the reader is

referred to [21].

Notations: For the sake of the presentation clarity, we

omit throughout the paper the arguments of time-dependent

signals, (e.g., Qi ↔ Qi(t)), except for those which are time-

delayed (e.g., Qi(t− τij)). In addition, the argument of the

signals inside the integrals is omitted, which is assumed to

be equal to the variable on the differential, unless otherwise

stated (e.g.
∫ t

0
Q̇ids ↔

∫ t

0
Q̇i(s)ds). Also, the limit of a

signal at infinity is replaced by an arrow (e.g., Qi → c ↔
limt→∞ Qi(t) = c, for a constant c, and Qi → Qj ↔
limt→∞ Qi(t) = limt→∞ Qj(t)).

III. PROBLEM STATEMENT

To achieve attitude synchronization, rigid bodies in the

team must exchange some of their states information. We

assume that the information flow between members of the

team is fixed and is represented by a weighted graph G =
(N , E ,K), where N is the set of nodes or vertices, describing

the set of vehicles in the team, E ⊆ N × N is the set of

pairs of nodes, called edges, and K = [kij ] is a weighted

adjacency matrix. An edge (i, j) ∈ E indicates that the ith

rigid body receives information from the jth rigid body,

which is designated as its neighbor. The weighted adjacency

matrix of a weighted graph is defined such that kij > 0 if

and only if (i, j) ∈ E and kij = 0 if and only if (i, j) /∈ E .

If the interconnection between rigid bodies is bidirectional,

then G is undirected, the pairs of nodes in E are unordered,

(i, j) ∈ E ⇔ (j, i) ∈ E , and K is symmetric, i.e., kij = kji.
In the case of unidirectional communication topology, G is

a directed graph, E contains ordered pairs, and K is not

necessarily symmetric. An undirected graph is said to be

connected if there is an undirected path between any two

distinct nodes of the graph. Similarly, a directed graph is

said to be strongly connected if there exists a directed path

between any two distinct nodes [22]. We also assume that

each rigid body can sense its states with no delays, and the

communication between the ith and jth rigid bodies, with

(i, j) ∈ E , is delayed by τij , which is non-uniform, i.e., τij
is not necessarily equal to τji.

With the above assumptions, our objective is to design

control laws for each rigid body, without angular velocity

measurements and in the presence of communication delays,

such that the following problems are solved:

• Leaderless problem (LSP). When no desired attitude is

assigned to the team, all rigid bodies are required to

synchronize their attitudes to the same attitude, such

that ωi → 03, and Qi → Qj , for all i, j ∈ N .

• Leader-follower problem (LFP). Given a constant de-

sired attitude, represented by the unit-quaternion Qd :=
(q⊤

d , ηd)
⊤, available to a single rigid body in the team

acting as a leader. All rigid bodies are required to

synchronize their attitudes to the desired attitude, i.e.,

ωi → 03 and Qi → Qd, for all i ∈ N .

IV. ATTITUDE SYNCHRONIZATION WITHOUT ANGULAR

VELOCITY MEASUREMENTS

In this section, we first present an approach to the at-

titude synchronization problem that removes the require-

ment of angular velocity measurements in the presence of

communication delays. Thereafter, we propose two attitude

synchronization schemes with different assumptions on the

communication delays and interconnection topologies.

A. Intermediate reference trajectory

Let us associate to each rigid body the following dynamic

system:

Q̇ri =
1

2
T(Qri)ωri , (4)

for i ∈ N , where Qri = (q⊤
ri
, ηri)

⊤ is the unit-quaternion

representing the attitude of system (4), with Qri(0) can be

initialized arbitrarily, and ωri is the angular velocity input
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to be designed. The matrix T(Qri) can be obtained similar

to (3) as:

T(Qri) =

(

ηri I3 + S(qri)
−q⊤

ri

)

.

The dynamic system (4) is introduced to generate an

intermediate reference trajectory for each rigid body, which

is given in terms of the time-varying reference attitude, Qri ,

with ωri and its time-derivative, ω̇ri being the reference

angular velocity and acceleration respectively. In view of

this definition, we let the discrepancy between the attitude

of the ith rigid body and its corresponding intermediate

reference attitude be represented by the unit-quaternion

Qe
i := (qe⊤

i , ηei )
⊤, and is defined as

Qe
i = Q−1

ri
⊙Qi, (5)

and satisfies the unit-quaternion dynamics

Q̇e
i =

1

2
T(Qe

i )ω
e
i , (6)

ωe
i = ωi −R(Qe

i )ωri , (7)

where T(Qe
i ) can be obtained similar to (3), and R(Qe

i ) is

the rotational matrix related to Qe
i and is given as R(Qe

i ) =
R(Qi)R(Qri)

⊤, [21].

The main idea in this approach is to design the input

torque of each rigid body, Γi, without angular velocity mea-

surements such that each rigid body tracks asymptotically

its corresponding intermediate reference trajectory. Then,

attitude synchronization will be achieved if one determines

an appropriate input of the dynamic system (4) such that the

intermediate reference attitudes of all rigid bodies converge

to the same final attitude in the presence of communication

delays.

B. Case of time-varying communication delays and undi-

rected graph topology

Consider the case where the interconnection graph be-

tween neighboring rigid bodies is bidirectional, represented

by the undirected graph G, and is subject to time-varying

communication delays. To achieve attitude synchronization

based on the above approach, communicating rigid bodies

need to transmit their intermediate reference attitudes. Since

the communication between rigid bodies is delayed, we let

the error between the intermediate reference attitudes of the

ith and jth rigid bodies be represented by the unit-quaternion

Q̄rij := (q̄⊤
rij

, η̄rij )
⊤, defined as

Q̄rij = Q−1

rj
(t− τij)⊙Qri . (8)

In addition, in the case where the constant desired attitude,

represented by Qd, is available to a rigid body in the team,

case of the LFP, the error between the desired attitude and

the intermediate reference attitude of the leader rigid body

is represented by the unit-quaternion Q̃rl := (q̃⊤
rl
, η̃rl)

⊤,

defined as:

Q̃rl = Q−1

d ⊙Qrl , (9)

and satisfies the unit-quaternion dynamics

˙̃
Qrl =

1

2
T(Q̃rl)ωrl , (10)

with T(Q̃rl) being defined similar to (3), and the subscript

“l” is used to designate the leader.

With these definitions, we propose the following input

torque in (2)

Γi = IfiR(Qe
i )ω̇ri + S(R(Qe

i )ωri)IfiR(Qe
i )ωri

− kpi q
e
i − kdi q̃

e
i , (11)

with

ω̇ri = −kωi ωri − αūi −
n
∑

j=1

kij q̄rij , (12)

ūi =

{

kql q̃rl for i = l
0 for i 6= l,

for i ∈ N , where kpi , kdi , kωi and kql are strictly positive scalar

gains, kij ≥ 0 is the (i, j)th entry of the adjacency matrix

of the weighted undirected graph G, qe
i is the vector part of

the unit-quaternion Qe
i defined in (5), q̃rl is the vector part

of the unit-quaternion Q̃rl defined in (9), with the subscript

“l” being used to designate the leader, q̄rij is the vector part

of the unit-quaternion Q̄rij defined in (8), and the scalar α
is selected as: α = 0 for the LSP and α = 1 for the LFP.

The reference angular velocity ωri is the solution of (12),

and can take arbitrary initial values. The vector q̃e
i in (11)

is the vector part of the unit-quaternion Q̃e
i := (q̃e⊤

i , η̃ei )
⊤

defined as

Q̃e
i = P−1

i ⊙Qe
i , (13)

Ṗi =
1

2
T(Pi)βi, (14)

where Pi is a unit-quaternion that can be initialized arbitrar-

ily, T(Pi) is given similar to (3), and βi ∈ R
3 is an input to

be determined. We can verify that Q̃e
i satisfies the following

unit-quaternion dynamics:

˙̃
Qe

i =
1

2
T(Q̃e

i )ω̃
e
i , (15)

ω̃e
i = ωe

i −R(Q̃e
i )βi, (16)

with T(Q̃e
i ) being defined similar to (3).

The role of the above input torque is to drive each

rigid body to track its corresponding intermediate reference

trajectory, i.e., ωe
i → 03 and Qe

i → ±QI for i ∈ N .

It should be noted that the torque input (11) is given in

terms of the intermediate reference trajectory, i.e., Qri , ωri

and ω̇ri , and the absolute attitudes of the rigid bodies, and

does not depend on the angular velocity of the rigid bodies.

The auxiliary system (14) is used to achieve tracking of

the intermediate reference trajectory without angular velocity

measurements [23], and the input of the dynamic system (4)

is designed in (12) such that all rigid bodies synchronize

their intermediate reference trajectories in the presence of

time-varying communication delays.
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Under the assumption that neighboring rigid bodies can

communicate their intermediate reference attitudes, i.e., Qri ,

the following result holds:

Theorem 1: Consider system (1)-(2) with the torque input

law (11) with (4) and (12)-(14). Let the time-varying commu-

nication delays be bounded such that τij ≤ τ for (i, j) ∈ E ,

where τ is a positive constant, and let the controller gains

satisfy:

kωi >
n
∑

j=1

kij
4

(

ǫ +
τ2

ǫ

)

, (17)

for some ǫ > 0. Let the vector βi in (14) be given as:

βi = λiq̃
e
i , with λi a strictly positive scalar gain. If the

undirected communication graph is a tree1, then all the

signals are globally bounded and the LSP and the LFP are

solved by setting α = 0, 1 respectively. Moreover, if there

exists a time t0 > 0 such that ηri(t) > 0 (or ηri(t) < 0)

for t ≥ t0, then the above results hold for any connected

undirected communication graph.

Proof: The proof is omitted due to space limitations

and can be found in [24].

Remark 1: Note that the above attitude synchronization

scheme can be extended to the case where the angular veloc-

ities are available for feedback. In this case, the intermediate

reference trajectories are not required and we can show

that the LSP and the LFP will be solved under the same

conditions reported in Theorem 1 if the following control

input is implemented:

Γi = −αūi − kωi ωi −
n
∑

i=1

kij q̄ij , (18)

where the control gains are defined as in Theorem 1, q̄ij is

the vector part of the unit-quaternion Q̄ij = Q−1

j (t− τij)⊙
Qi, ūi = kql q̃l, for i = l, and ūi = 0, for i 6= l, with q̃l

being the vector part of the unit-quaternion Q̃l = Q−1

d ⊙Ql.

Theorem 1 provides a sufficient condition that ensures the

stability of the closed loop system. This condition relates the

controller gains and the upper bound of the communication

delays, which can be satisfied with the reasonable assumption

that this upper bound is known. In addition, the above result

restricts the undirected communication graph to be a tree. It

is clear that this restriction is due to the nonlinear expression

of the relative attitudes between neighboring rigid bodies,

which makes the convergence analysis in this case difficult.

In fact, a connected and acyclic communication graph is

often considered in unit-quaternion based solutions to the

LSP and LFP in the case of no communication delays, as

can be seen in [1]-[2] and [6]-[7]. To relax this condition on

the communication graph, we present in the next subsection

a different design of the auxiliary system 4 that achieves

attitude synchronization under a directed communication

topology.

1An undirected graph is a tree if it is connected and contains no cycles,
[22]

C. Case of constant communication delays and directed

graph topology

We assume that the communication delays are constant

and the interconnection between rigid bodies is unidirectional

and is represented by the directed graph G. To solve the

LSP in this case, we propose the following design of the

intermediate reference angular velocity in (4) and (11):

ωri = −
n
∑

j=1

kij(qri − qrj (t− τij)), (19)

for i ∈ N , where kij ≥ 0 is the (i, j)th entry of the

adjacency matrix of the directed communication graph G.

It is easy to verify that

ω̇ri = −
n
∑

j=1

kij(q̇ri − q̇rj (t− τij)), (20)

with

q̇ri =
1

2
(ηriI3 + S(qri))ωri . (21)

Under the assumption that neighboring rigid bodies can com-

municate their intermediate reference attitudes and reference

angular velocities, i.e., Qri and ωri , the following result

holds:

Theorem 2: Consider system (1)-(2) with the control law

(11) with (4), (13)-(14) and (19)-(21). Let the vector βi in

(14) be given as in Theorem 1. If the directed communication

graph is strongly connected, then all the signals are globally

bounded and the LSP is solved in the presence of arbitrary

constant communication delays.

Proof: The proof is omitted due to space limitations

and can be found in [24].

Remark 2: It should be noted that the above control

scheme can be extended in an obvious way to the case

where the angular velocity vectors are available for feedback.

Moreover, note that the input torque (11) with (19)-(21)

consists of pure unit-quaternion terms and the inertia matrix

of the rigid body. As a result, a natural saturation is achieved

for the control effort as follows:

‖Γi‖ ≤ ‖Ifi‖(̺i + ρ2i ) + kpi + kdi ,

with ρi and ̺i can be obtained respectively from (19) and

(20) as: ‖ωri‖ ≤ ρi := 2
∑n

j=1
kij , and ‖ω̇ri‖ ≤ ̺i :=

1

2
ρ2i .

V. SIMULATION RESULTS

In this section, we provide simulation results show-

ing the effectiveness of the proposed control schemes.

We consider a team of four rigid bodies with the in-

ertia matrices: If1 = diag(20, 20, 30) kg.m2, If2 =
diag(10, 5, 15) kg.m2, If3 = diag(10, 3, 8) kg.m2 and

If4 = diag(5, 8, 15) kg.m2, and the following ini-

tial conditions: Q1(0) = (0, 0, sin(−π/4), cos(−π/4))⊤,

Q2(0) = (1, 0, 0, 0)⊤, Q3(0) = (0, 1, 0, 0)⊤, Q4(0) =
(0, 0, 1, 0)⊤, ω1(0) = (−0.1, 0.09, 0.1)⊤ rad/ sec, ω2(0) =
(0.2,−0.05, 0.1)⊤ rad/ sec, ω3(0) = (−0.2, 0.1,−0.05)⊤

rad/ sec, ω4(0) = (0.1, 0.1,−0.25)⊤ rad/ sec. The initial
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states of the dynamic systems (4) and the auxiliary sys-

tems (14) are selected as Qri(0) = Qi(0) and Pi(0) =
(0, 0, 1, 0)⊤, for i ∈ N .

We consider first the control scheme in Theorem 1 with

the control gains kωi = 15, kpi = 5, kdi = 30, λi = 3,

for i ∈ N , and kql = 25 for l = 1, with ωri(0) =
03 rad/ sec. The information flow between rigid bodies

is represented by the undirected graph G = (N , E ,K),
given in Fig. 1, where K = [kij ], with kij = kji = 15
for all (i, j) ∈ E := {(1, 2), (1, 4), (2, 3)} and kij = 0
otherwise. Also, the communication delays are selected as

τij = τ̄ij | sin(0.2 t)| sec, for i, j ∈ E , with τ̄1i = 0.1,

τ̄2i = 0.15, τ̄3i = τ̄4i = 0.2, for i ∈ N . Note that the

control gains satisfy (17) with τ = 0.3 and ǫ = 1.

Fig. 1: Interconnection graphs.

Fig. 2 shows the attitudes of the systems, with Qi =
(q1

i ,q
2

i ,q
3

i ,ηi)
⊤, in the case where a desired attitude, rep-

resented by Qd = (0, 0, 0, 1)⊤, is available to the first rigid

body designated as the leader, i.e., case of the LFP with l = 1
and α = 1. It can be observed that all systems synchronize

their attitudes to the desired attitude in the presence of

time-varying communication delays. Also, Fig. 3 depicts the

obtained results in the case of the LSP, with α = 0, where

it is clear that all rigid bodies synchronize their attitudes to

the same constant final attitude.
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Fig. 2: Attitudes of rigid bodies, Theorem 1, case of the LFP.

The control scheme in Theorem 2 is considered next,

with the strongly connected directed communication graph

G̃ in Fig. 1. The control gains are selected as: kpi =
8, kdi = 45, λi = 5, kij = 1, for (i, j) ∈ Ẽ :=
{(1, 4), (2, 1), (3, 1), (4, 2), (4, 3)}, and kij = 0 otherwise.
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Fig. 3: Attitudes of rigid bodies, Theorem 1, case of the LSP.

The constant communication delays are considered as: τ1i =
0.1 sec, τ2i = 0.15 sec, τ3i = τ4i = 0.2 sec, for i ∈ N . Fig. 4

illustrates the obtained results in this case, the LSP, where it

is clear that all rigid bodies align their attitudes to the same

constant final attitude despite the constant communication

delays.
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Fig. 4: Attitudes of rigid bodies, Theorem 2.

VI. CONCLUDING REMARKS

We addressed the attitude synchronization problem for a

group of rigid bodies without angular velocity measurements

and in the presence of communication delays. In Theorem

1, we proposed a solution to the LSP and the LFP in

the presence of time-varying communication delays and

undirected information exchange between members of the

team. It is shown that attitude synchronization is achieved

under a sufficient condition that can be satisfied with an

appropriate choice of the control gains. Also, the commu-

nication graph is restricted to an undirected tree. Theorem 2

presents a solution to the LSP under a strongly connected

directed communication graph in the presence of arbitrary

constant communication delays. This removes the restrictions
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obtained in Theorem 1 in this case, and considers a more

general communication topology between rigid bodies. The

extension of this result to the case of the LFP, as well

as the case of time-varying communication delays is not

straightforward and will be examined in our future work.

The proposed approach in this paper is based on the in-

troduction of dynamic systems that generate an intermediate

reference trajectory for each rigid body, and all rigid bodies

negotiate to reach an agreement on a common final reference

trajectory in the presence of communication delays. This

way, the attitude synchronization design problem is reduced

to a separate design of a tracking control law, without angular

velocity measurements, and an attitude synchronization with

communication delays using the internally synthesized, and

hence available, intermediate reference vectors.

As mentioned earlier, very few papers have considered

the attitude synchronization problem with delayed commu-

nication in the full state feedback case. The authors in [20]

have addressed the LSP with constant communication delays

in the full state feedback case. In this reference, only the

attitude kinematics have been considered to design a desired

angular velocity that achieves attitude synchronization under

strongly connected directed graphs. In addition, the result

of [20] relies on the assumption that the rotation matrix of

each rigid body is always positive definite. Besides the non-

requirement of angular velocity measurements, the result of

Theorem 2 provides an input torque design that solves this

problem without conditions on the initial attitudes of the rigid

bodies.

In [16]-[19], the attitude dynamics have been considered

to design attitude synchronization schemes with delayed

communication in the full state feedback case. In these

papers, only the cooperative attitude tracking problem under

undirected communication topologies has been addressed.

Due to the definition of the error variables in the aforemen-

tioned papers, it is not trivial to extend their results to solve

the LSP and the LFP in the full state feedback case with

delayed communications. Theorem 1 provides solutions to

these problems with time-varying communication delays and

removes the requirements of angular velocity measurements.

Note that the proposed control schemes in Theorem 1 and

Theorem 2 can be extended to solve the cooperative attitude

tracking problem in the presence of communication delays

without angular velocity measurements. Furthermore, our

results can be extended in a straightforward manner to the

full state information case, which constitutes on its own right

a new contribution in view of the existing literature.

Moreover, we believe that the result of Theorem 1 car-

ries an additional feature, which consists in the fact that

the time-varying communication delays are only assumed

to be bounded. Also, the control scheme in Theorem 2

is guaranteed to be a priori bounded. This enables the

designer to select appropriate control gains to account for

input saturations. The extension of this work to the case of

dynamically switching topologies is a challenging problem

and will be the focus of our future work.
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