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a b s t r a c t

This note deals with consensus strategy design for double-integrator dynamics. Specifically, we consider
the case where the control inputs are required to be a priori bounded and the velocity (second state) is not
available for feedback. Two different design methods are proposed. First, based on the auxiliary system
approach, we propose a consensus algorithm that extends some of the existing results in the literature to
account for actuator saturations and the lack of velocitymeasurement. The proposed velocity-free control
scheme, using local information exchange, achieves consensus among the teammembers with an a priori
bounded control law, whose upper bound depends on the number of neighbors of the vehicle. Second, we
propose another approach based on the use of a high order dynamic auxiliary system such that the upper
bound of the control law is independent of the number of neighbors of the vehicle, and the performance
of the closed loop system is improved in terms of the response damping. Finally, simulation results are
provided to illustrate the effectiveness of the proposed algorithms.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Consensus algorithms have received great interest in the
control community, leading to several results that have been
applied to a variety of problems related to the cooperative
control of multi-vehicle systems such as flocking, rendezvous and
formation control (see [1,2] and references therein). A team of
agents is said to achieve consensus if allmembers of the team reach
an agreement on a common final value using local information
exchange. Consensus algorithms for single-integrator kinematics
have been widely studied in the literature, [1–6] to name a few,
and several interesting results have been obtained using properties
from graph theory. These results have been extended to double-
integrator dynamics in [7–10] where it was shown that consensus
algorithms for double-integrator dynamics are more challenging
than first order kinematics. Several variants of the proposed
algorithms have been applied to flocking [11,12], rigid body
attitude synchronization [13,14] and formation control [15,16].

While most consensus algorithms for double-integrator dy-
namics rely on the availability of the full state for feedback, only a
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few works have been done when velocity information is not avail-
able. In fact, this problem is faced when vehicles are not equipped
with velocity sensors, to save cost, space and weight, or velocity
is not precisely measured. Another important problem that often
arises in practical applications, is to design algorithms that account
for actuator saturations. The problem becomes quite serious when
the number of vehicles in the team is large and the information
flow is high, i.e., each vehicle has a large number of neighbors. This
leads to a high control effort for each vehicle that causes actua-
tor saturations. In [15], formation control strategies for multirobot
formation maneuvers are discussed. The authors present two con-
trol schemes that respectively account for actuator saturation and
consider the lack of relative velocity measurements. In this work,
the communication flow between vehicles is restricted to a bidi-
rectional ring. The author in [8] extends the results in [15] to a
more general undirected communication topology, and presents
some consensus algorithms for double-integrator dynamics with-
out relative velocity measurements. However, in both works, the
velocity-free consensus algorithms do not take into consideration
actuator saturations.

The main contribution of this note is to propose consensus al-
gorithms for double-integrator dynamics without velocity mea-
surements and in the presence of input saturation constraints.
To the best of our knowledge, this work is the first dealing with
these two issues simultaneously. We discuss two conceptually
different design methodologies that achieve consensus, with and
without reference velocity, under a fixed and bidirectional com-
munication topology. The first approach discussed in this note
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extends the velocity-free consensus algorithm proposed in [8] to
account for actuator saturations. This approach is based on the
introduction of an auxiliary system for each agent, acting as a re-
duced order observer. The input of this auxiliary system is deter-
mined using the relative positions of the vehicles and its output
is used in the control law to generate the necessary damping in
the absence of velocity signals. As a result, consensus is achieved
with an a priori bounded control law using only position relative
errors. Consequently, the communication requirements between
the teammembers is considerably reduced as compared to the full
information case.

As will be clear throughout the paper, the first approach suffers
from some limitations. First, the upper bound of the control law
depends on the number of neighbors of each member of the team.
This is generally not desirable especially when each vehicle has a
large number of neighbors, since a trade-off between maintaining
the control upper bound and good performance can hardly be
achieved. Second, as most auxiliary systems-based methods, this
approach suffers from the lack of sufficient damping, and the
system response generally presents transient oscillations before
reaching consensus. To solve these problems, we propose a second
consensus algorithm based on a high order auxiliary system. The
proposed scheme guarantees that the control input of each vehicle
can be a priori bounded regardless of the number of its neighbors.
Furthermore, additional damping is added such that transient
oscillations can be reduced and/or eliminated. In this approach,
the control objective is achieved by forcing the vehicles’ relative
positions to track the relative errors of the auxiliary variables.
Thereafter, the auxiliary variables are forced to converge to zero
asymptotically, guiding the relative positions between all vehicles
in the team to zero.

2. Problem formulation and notations

Consider n-‘‘vehicles’’ with double-integrator dynamics given
by

ṙi = vi, v̇i = ui, for i ∈ N (1)

where ri ∈ Rm and vi ∈ Rm are respectively the position and
velocity of the ith vehicle, and ui is the control input, and N ,
{1, . . . , n}. To design consensus algorithms, vehiclesmust commu-
nicate someof their stateswith each other. In thiswork,we assume
that the information flow between members of the team is fixed
and undirected. Then, it is natural to describe the information flow
between vehicles using weighted graphs. A weighted undirected
graph, G, consists of the triplet (N , E,K), with N being the set of
nodes or vertices, describing the set of vehicles in the team, E ⊆

N × N the set of unordered pairs of nodes, called edges, and K =

[kij] ∈ Rn×n is a weighted adjacencymatrix. An edge (i, j) indicates
that vehicles i and j are neighbors and can obtain information from
one another. The weighted adjacency matrix of a weighted undi-
rected graph is defined such that kij = kji > 0 for (i, j) ∈ E , and
kij = 0 if (i, j) ∉ E . If there is a path between any twodistinct nodes
of a weighted undirected graph G, then G is said to be connected.
For more details on graph properties, the reader is referred to [17].

The objective of our work is to design control algorithms for
a group of vehicles such that consensus is reached on their final
states and all vehicles track a desired velocity, i.e., ri(t) → rj(t) and
vi(t) → vd(t) for all i, j ∈ N , with vd(t) being a reference velocity.
Also, we aim to extend our results to solve the consensus problem
without reference velocity, where it is required that ri(t) → rj(t)
and vi(t) → vj(t) for all i, j ∈ N . In this work, we assume that the
absolute and relative velocities are notmeasurable, and all vehicles
are subject to input saturation constraints such that ‖ui‖∞ ≤ umax
for i ∈ N .
3. Control design I

In this section, we propose a consensus algorithmwithout rela-
tive velocity measurements for (1) subject to input saturation con-
straints. Our result is stated in the following theorem.

Theorem 1. Consider a group of n-vehicles modeled as in (1), with
the following control input

ui = v̇d(t)− kvi tanh

λψ (ri − ψi)


−

n−
j=1

kij tanh

λr(ri − rj)


+ φ̇i, for i ∈ N , (2)

where λr and λψ are strictly positive scalar gains, kij ≥ 0 is the (i, j)th
entry of the weighted adjacency matrix K of the communication
graph, G = (V, E,K), characterizing the information flow between
vehicles, and the function tanh(·) is defined element-wise for a vector.
The scalar gain kvi is defined such that kvi > 0 if i ∈ I, and kvi = 0
otherwise, where the set I ≠ ∅ is a subset of N . The vectors φi ∈ Rm

and ψi ∈ Rm are respectively given by

φ̇i = −kφi tanh(λφφi)− kvi tanh

λψ (ri − ψi)


−

n−
j=1

kij tanh

λr(ri − rj)


, for i ∈ N , (3)

ψ̇i = vd + kψi (ri − ψi), for i ∈ I, (4)

where λφ , kφi and kψi are strictly positive scalar gains and φi(0) and
ψi(0) can be selected arbitrarily. Assume that the desired velocity and
its first time derivative are bounded. Let the controller gains satisfy

2


kvi +

n−
j=1

kij


+ kφi ≤ umax − ‖v̇d‖∞, for i ∈ N , (5)

for any umax > 0, and let the communication graph G be connected.1
Then
(i) ‖ui‖∞ ≤ umax for all i ∈ N ,
(ii) the signals vi,φi, (ri−rj), for all i, j ∈ N , and (ri−ψi), for i ∈ I,

are globally bounded,
(iii) limt→∞(ri(t) − rj(t)) = limt→∞(vi(t) − vd(t)) = 0 for all

i, j ∈ N .

Proof. First, one can easily check that the control input (2) with
(3)–(4) is bounded as ‖ui‖∞ ≤ 2


kvi +

∑n
j=1 kij


+ kφi + ‖v̇d‖∞.

Hence (i) follows from condition (5).
Let the velocity tracking error for each vehicle be defined as:

ṽi = (vi − vd), for i ∈ N , and consider the Lyapunov function
candidate

V1 =
1
2

n−
i=1

(ṽi − φi)
T (ṽi − φi)+

1
2

n−
i=1

φT
i φi

+

n−
i=1

kvi
λψ

1T
m log


cosh


λψ (ri − ψi)


+

1
2

n−
i=1

n−
j=1

kij
λr

1T
m log


cosh


λr(ri − rj)


, (6)

where 1m ∈ Rm is the vectorwith all elements equal to one and the
functions log(·) and cosh(·) are defined element-wise for a vector.
The time derivative of V1 along the closed loop dynamics (1) with
(2) is given by

1 The communication graph G is said to be connected if every vehicle can
communicate with at least one other vehicle in the team.
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V̇1 =

n−
i=1

(ṽi − φi)
T


−kvi tanh


λψ (ri − ψi)


−

n−
j=1

kij tanh

λr(ri − rj)


+

n−
i=1

φT
i φ̇i

+

n−
i=1

kvi (ṽi + vd − ψ̇i)
T tanh


λψ (ri − ψi)


+

1
2

n−
i=1

n−
j=1

kij(vi − vj)T tanh

λr(ri − rj)


. (7)

Motivated by the result of Lemma 3.1 in [8], and using the
relation (ṽi − ṽj) = (vi − vj), with the fact that the information
flow between vehicles is undirected, i.e., kij = kji, we can easily
show that

1
2

n−
i=1

n−
j=1

kij(vi − vj)T tanh

λr(ri − rj)


=

n−
i=1

n−
j=1

kijṽTi tanh

λr(ri − rj)


. (8)

Then, we can write

V̇1 =

n−
i=1

φT
i


φ̇i + kvi tanh


λψ (ri − ψi)


+

n−
j=1

kij tanh

λr(ri − rj)



+

n−
i=1

kvi (vd − ψ̇i)
T tanh


λψ (ri − ψi)


. (9)

Using (3)–(4) we obtain

V̇1 = −

n−
i=1

kφi φ
T
i tanh(λ

φφi)

−

n−
i=1

kvi k
ψ

i (ri − ψi)
T tanh


λψ (ri − ψi)


, (10)

which is negative semi-definite, and we can conclude that vi, φi,
for i ∈ N , (ri − rj), for (i, j) ∈ E and (ri −ψi), for i ∈ I, are globally
bounded. Hence, point (ii) follows from the assumption that the
undirected communication graph is connected.

Using the above boundedness results, we can see from (4) that
ψ̇i is bounded, for i ∈ I. Since φ̇i is bounded, for i ∈ N , we conclude
that V̈1 is bounded, and invoking Barbălat Lemmawe can conclude
that limt→∞ φi(t) = 0 for i ∈ N and limt→∞(ri(t) − ψi(t)) = 0
for i ∈ I. In addition, since φ̇i, vi, for i ∈ N and ψ̇i, for i ∈ I, are
bounded, we know that φ̈i is bounded, and since we have already
shown that limt→∞ φi(t) = 0, we know by Barbălat Lemma that
limt→∞ φ̇i(t) = 0, for i ∈ N . Therefore, we conclude from (3) that

lim
t→∞

n−
j=1

kij tanh

λr(ri − rj)


= 0, for i ∈ N . (11)

Multiplying the above set of equations by ri and taking the sum
over i, (11) will be equivalent to

lim
t→∞

n−
i=1

n−
j=1

kijrTi tanh

λr(ri − rj)


=

1
2

lim
t→∞

n−
i=1

n−
j=1

kij(ri − rj)T tanh

λr(ri − rj)


= 0, (12)
where we have used the fact that the information flow between
vehicles is undirected, i.e, kij = kji. As a result, we can conclude that
limt→∞(ri(t) − rj(t)) = 0 for all (i, j) ∈ E . Since the undirected
communication graph is assumed connected, this result is valid for
all i, j ∈ N . Furthermore, we can see from (1) and (2) that ˙̃vi is
bounded for i ∈ N , and hencewe can conclude by Barbălat Lemma
that limt→∞(vi(t)− vj(t)) = 0 for all i, j ∈ N .

Exploiting the above results, we can see that ψ̈i = v̇d + kψi (vi −
ψ̇i) is bounded for i ∈ I and ui in (2) is bounded for i ∈ N .
Therefore, we know that (r̈i − ψ̈i) is bounded for i ∈ I. Then,
from Barbălat Lemma, and since limt→∞(ri(t) − ψi(t)) = 0 for
i ∈ I, we conclude that limt→∞(vi(t) − ψ̇i(t)) = 0 for i ∈ I.
Consequently, we know from (4) that limt→∞(vi(t) − vd(t)) = 0
for i ∈ I. Finally, since the set I ≠ ∅, i.e., contains at least one
element, and limt→∞(vi(t) − vj(t)) = 0, for all i, j ∈ N , we can
conclude that limt→∞(vi(t) − vd(t)) = 0 for all i ∈ N , and this
ends the proof. �

It is worth noting that the auxiliary system, with output φi, is
used in the above control scheme to drive the relative positions
and the relative velocities to zero without velocity measurements.
The second auxiliary system, with output ψi, is used to drive the
velocity of at least one vehicle in the team to the desired velocity.
As a result, all vehicles reach consensus on their final states and
track the desired final velocity. Note that the second auxiliary
system is implemented for only some vehicles in the team, as
defined by the set I. Therefore, the variable ψi is not defined for
i ∉ I, which does not change our results since kvi = 0 in this case.
Also, note that the desired velocity needs to be available to only
some vehicles in the team. However, if the desired velocity is time
varying, all vehicles must have access to its time derivative.

In the case where no reference velocity is assigned to the team,
and it is desirable that consensus is achieved, i.e., ri(t) → rj(t)
and vi(t) → vj(t) asymptotically for all i, j ∈ N , we propose the
control strategy stated in the following corollary.

Corollary 1. Consider a group of n-vehicles modeled as in (1), with
the following control input

ui = −

n−
j=1

kij tanh

λr(ri − rj)


+ φ̇i,

φ̇i = −kφi tanh(λφφi)−

n−
j=1

kij tanh

λr(ri − rj)


,

(13)

for i ∈ N , where λr , λφ , kφi and kij are defined as in Theorem 1, and
φi(0) can be selected arbitrarily. Let the controller gains satisfy

2
n−

j=1

kij + kφi ≤ umax, for i ∈ N , (14)

for any umax > 0, and let the communication graph G be connected.
Then
(i) ‖ui‖∞ ≤ umax for i ∈ N ,
(ii) the signals vi,φi and (ri−rj) are globally bounded for all i, j ∈ N ,
(iii) limt→∞(ri(t) − rj(t)) = limt→∞(vi(t) − vj(t)) = 0 for all

i, j ∈ N .

Proof. First, note that the control input (13) is bounded as ‖ui‖∞

≤ 2
∑n

j=1 kij +kφi , which, under the constraint on the control gains
(14), yields (i). Using the following Lyapunov function candidate

V2 =
1
2

n−
i=1

(vi − φi)
T (vi − φi)+

1
2

n−
i=1

n−
j=1

kij
λr

1T
m

× log

cosh


λr(ri − rj)


+

1
2

n−
i=1

φT
i φi, (15)
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and following similar arguments as in the proof of Theorem 1,
with the help of Barbălat Lemma, the rest of the corollary can be
proven. �

Remark 1. Note that the control scheme (13) guarantees that all
vehicles achieve consensus with constant final velocity since vi is
globally bounded and limt→∞ ui(t) = 0 for i ∈ N .

Remark 2. Notice from the above consensus algorithms that only
a single auxiliary system, with output φi, is implemented for each
vehicle in the team to achieve the result of Corollary 1. Whereas,
to guarantee the results of Theorem 1, we need to implement an
additional auxiliary system, with outputψi, for at least one vehicle
in the team. In both cases, only the position vector ri is transmitted
between vehicles in the team.

It is important tomention that the control scheme in Theorem1
can be modified to guarantee the same results using only a single
auxiliary system for each vehicle. This can be seen from the control
law

ui = v̇d(t)− kvi tanh

λψ (ri − ψi)


−

n−
j=1

kij tanh

λr(ri − rj)


, for i ∈ N , (16)

where ψi is given in (4), with I = N , and the control gains
are defined as in Theorem 1. In fact, following similar steps as in
the proof of Theorem 1, we can easily show that (16) achieves
consensus with reference velocity. However, the auxiliary system
with outputφi is necessary to achieve consensuswithout reference
velocity, using only the relative positions of the vehicles in the
team.

Remark 3. The proposed control schemes in (2)–(4), with vd = 0,
and (13) extend respectively the results in Corollary 4.2 and
Theorem 4.1 in [8] to account for actuator saturations. The main
difference between the two works is the adopted design method,
namely the choice of the Lyapunov function. In fact, the Lyapunov
function used in [8] does not facilitate the design of an a priori
bounded control law for our system. Furthermore, and as was
shown in the result of Theorem 1, the proposed control scheme
can handle time-varying trajectories, which is not obvious using
the design method proposed in [8].

Remark 4. Although the presented control schemes in this section
achieve our control objectives, they suffer from two limitations
that are shared with the design of [8]. First, we can see from
(2)–(4) and (13) that the upper bounds of the proposed control
schemes depend on the number of neighbors of each vehicle. This
constitutes a constraint in tuning the above controllers. In fact,
it is generally hard to obtain a trade-off between guaranteeing
the controller upper bounds with achieving an acceptable/good
transient performance. This problem becomes more important
when the number of neighbors of each vehicle is large and umax
is small. Second, since the outputs of the auxiliary systems are
used in the control law instead of the missing velocity vectors, the
proposed control schemes in this section suffer from the oscillatory
transient response of the states (lack of sufficient damping). The
above mentioned limitations will be obviated in a new consensus
design that will be the subject of the next section.

4. Control design II—high order auxiliary systems

In this section, we extend the results in the previous section,
and present a consensus algorithm for the system that solves the
problems discussed above. To this end, we introduce the following
new variables for each vehicle

ξi := ri − θi, zi := ξ̇i = vi − θ̇i. (17)
The primary role of the variable θi ∈ Rm is to enable the
design of an a priori bounded control input for each vehicle, where
the upper bound is independent of the number of neighbors. We
propose the following control law

ui = v̇d −8i,

θ̈i = −8i − φ̇i + kvi (ξi − ψi)+

n−
j=1

kij(ξi − ξj),
(18)

with

8i = kθ1i tanh(θi)+ kθ2i tanh(θ̇i), (19)

for i ∈ N , where φi ∈ Rm and ψi ∈ Rm are design variables to
be determined later, kθ1i and kθ2i are strictly positive scalar gains,
kij are defined as in Theorem 1, and θi(0) and θ̇i(0) can be selected
arbitrarily. The scalar gain kvi is defined such that kvi > 0 if i ∈ I,
and kvi = 0 otherwise, where the set I ≠ ∅ is a subset of N . We
assume that the desired velocity and its first time derivative are
bounded.

It is important to notice that the control input is bounded as

‖ui‖∞ ≤ kθ1i + kθ2i + ‖v̇d‖∞, for i ∈ N , (20)

regardless of the number of neighbors of the ith vehicle. Then, the
proposed control law (18) accounts for actuator saturations if the
controller gains satisfy

kθ1i + kθ2i ≤ umax − ‖v̇d‖∞, for i ∈ N , (21)

for any umax > 0. Before stating our result, we need the following
lemma:

Lemma 1. Consider the second order system

θ̈i = −kθ1i tanh(θi)− kθ2i tanh(θ̇i)+ ηi(t). (22)

with θi ∈ Rm, kθ1i and kθ2i are positive scalar gains and the function
tanh(·) is defined element-wise for a vector. If ηi(t) is bounded for
all time and limt→∞ ηi(t) = 0, then θi and θ̇i are bounded and
limt→∞ θi(t) = limt→∞ θ̇i(t) = 0.

Proof. See Appendix. �

Now, we can state our main result in the following theorem.

Theorem 2. Consider a group of n-vehicles modeled as in (1), with
the control input (18). Let

φ̇i = −kφi φi − kvi

ξi − ψi


−

n−
j=1

kij

ξi − ξj


, for i ∈ N , (23)

ψ̇i = vd + kψi (ξi − ψi), for i ∈ I, (24)

with kφi and kψi defined as in Theorem 1, and φi(0) and ψi(0) can be
selected arbitrarily. Let the controller gains satisfy condition (21) and
let the communication graph G be connected. Then

(i) ‖ui‖∞ ≤ umax for all i ∈ N ,
(ii) the signals vi, φi, θi, θ̇i, (ri − rj), for all i, j ∈ N , and (ri − ψi),

for i ∈ I, are globally bounded,
(iii) limt→∞(ri(t) − rj(t)) = limt→∞(vi(t) − vd(t)) = 0 for all

i, j ∈ N .

Proof. The result (i) is obvious from (20) and condition (21). Now,
let us prove (ii) and (iii). Let z̃i = (zi − vd), for i ∈ N , and consider
the Lyapunov function candidate
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V3 =
1
2

n−
i=1

(z̃i − φi)
T (z̃i − φi)

+
1
4

n−
i=1

n−
j=1

kij(ξi − ξj)
T (ξi − ξj)

+
1
2

n−
i=1

φT
i φi +

1
2

n−
i=1

kvi (ξi − ψi)
T (ξi − ψi), (25)

whose time derivative along the system dynamics (1) with (17)
gives

V̇3 =

n−
i=1

(z̃i − φi)
T (ui − v̇d − θ̈i − φ̇i)

+

n−
i=1

n−
j=1

kijz̃Ti (ξi − ξj)+

n−
i=1

φT
i φ̇i

+

n−
i=1

kvi (z̃i + vd − ψ̇i)
T (ξi − ψi), (26)

where we have used the relation 1
2

∑n
i=1
∑n

j=1 kij(z̃i − z̃j)T (ξi −

ξj) =
∑n

i=1
∑n

j=1 kijz̃
T
i (ξi − ξj), with (z̃i − z̃j) = (zi − zj). Applying

the control law (18), with (23) and (24), we obtain

V̇3 = −

n−
i=1

kφi φ
T
i φi −

n−
i=1

kvi k
ψ

i (ξi − ψi)
T (ξi − ψi), (27)

which is negative semi-definite and we can conclude that zi, φi,
for i ∈ N , (ξi − ξj), for (i, j) ∈ E , and (ξi − ψi), for i ∈ I, are
bounded. Since the information flow between vehicles is assumed
connected, we know that (ξi − ξj) is bounded, for (i, j) ∈ N . To
completely prove point (ii), we still need to show that the vectors
θi and θ̇i are bounded, for i ∈ N .

Using the above results, we know from (23) that φ̇i is bounded,
for i ∈ N , and from (24) that ψ̇i is bounded, for i ∈ I. As a
result, V̈3 is bounded and we conclude from Barbălat Lemma that
limt→∞ φi(t) = 0, for i ∈ N , and limt→∞(ξi(t) − ψi(t)) = 0, for
i ∈ I. Using similar arguments as in the proof of Theorem 1, we
can conclude that limt→∞ φ̇i(t) = 0, for i ∈ N , limt→∞(zi(t) −

ψ̇i(t)) = 0, for i ∈ I. Therefore, we conclude from (23) that:
limt→∞

∑n
j=1 kij(ξi(t)− ξj(t))


= 0, for i ∈ N . Following

similar steps as in the proof of Theorem 1, we can conclude that
limt→∞(ξi(t) − ξj(t)) = 0 and limt→∞(zi(t) − vd(t)) = 0, for all
i, j ∈ N , since the communication graph is connected and I ≠ ∅.
As a result, we have limt→∞(ri(t)− rj(t)) = limt→∞(θi(t)−θj(t))
and limt→∞(vi(t)− vd(t)) = limt→∞ θ̇i(t), for all i, j ∈ N .

Exploiting the above results, the dynamics of the variable θi can
be written as in (22), with ηi = (−φ̇i + kvi (ξi −ψi)+

∑n
j=1 kij(ξi −

ξj)), which is globally bounded and converges asymptotically to
zero. Then from the results of Lemma 1, we can conclude that θi
and θ̇i are globally bounded and limt→∞ θi(t) = limt→∞ θ̇i(t) = 0,
for i ∈ N . Finally, we conclude that limt→∞(ri(t) − rj(t)) =

limt→∞(vi(t) − vd(t)) = 0 for all i, j ∈ N . This ends the
proof. �

Remark 5. It is important to mention that the idea behind the
introduction of the new variables θi in the above control scheme
is to modify the trajectories of the states during the transient.
In fact, instead of attempting to drive the relative positions and
velocity tracking errors directly to zero, we first force (ri − rj)
and (vi − vd) to converge respectively to (θi − θj) and θ̇i without
velocity measurements. This is accomplished using the output
of the first order auxiliary systems (23) and (24). Once this is
achieved, the variables θi and θ̇i are guaranteed to converge to zero
asymptotically, for all i ∈ N , guiding the relative positions and
velocity tracking errors towards zero.

When it is desirable that the vehicles achieve consensus in
their final states without reference velocity, i.e., ri(t) → rj(t) and
vi(t) → vj(t) asymptotically, for all i, j ∈ N , we propose the
consensus algorithm stated in the following corollary.

Corollary 2. Consider a group of n-vehicles modeled as in (1), with
the control input

ui = −8i,

θ̈i = −8i − φ̇i +

n−
j=1

kij(ξi − ξj),

φ̇i = −kφi φi −

n−
j=1

kij

ξi − ξj


,

(28)

for i ∈ N , with kφi and kij defined as in Theorem 1,8i is given in (19),
and θi(0), θ̇i(0) andφi(0) can be selected arbitrarily. Let the controller
gains satisfy

kθ1i + kθ2i ≤ umax, for i ∈ N , (29)

for any umax > 0, and let the communication graph G be connected.
Then,
(i) ‖ui‖∞ ≤ umax for i ∈ N ,
(ii) the signals vi, φi, θi, θ̇i and (ri − rj) are globally bounded for all

i, j ∈ N ,
(iii) limt→∞(ri(t) − rj(t)) = limt→∞(vi(t) − vj(t)) = 0 for all

i, j ∈ N .

Proof. The result (i) is obvious from the control law (28) with (19)
and condition (29). To prove points (ii) and (iii), we consider the
following Lyapunov function candidate

V4 =
1
2

n−
i=1

(zi − φi)
T (zi − φi)

+
1
4

n−
i=1

n−
j=1

kij(ξi − ξj)
T (ξi − ξj)+

1
2

n−
i=1

φT
i φi. (30)

Following similar steps as in the proof of Theorem 2, the time
derivative of V4 evaluated along the system dynamics (1), with
(28), is given by

V̇4 = −

n−
i=1

kφi φ
T
i φi, (31)

and we can conclude that zi, φi and (ξi − ξj), for all i, j ∈ N , are
bounded. Using similar arguments as in the proofs of Theorems 1
and 2, we conclude that limt→∞ φi(t) = 0, limt→∞ φ̇i(t) = 0, for
i ∈ N , limt→∞(ξi(t)− ξj(t)) = 0, and limt→∞(zi(t)− zj(t)) = 0,
for all i, j ∈ N . Then, using the results of Lemma 1, with ηi =
−φ̇i +

∑n
j=1 kij(ξi − ξj)


, we conclude that θi and θ̇i are bounded

and limt→∞(ri(t) − rj(t)) = limt→∞(vi(t) − vj(t)) = 0, for all
i, j ∈ N . �

Remark 6. To implement the above control schemes, it is required
that vehicles transmit their variables ξi. Hence, the proposed con-
sensus algorithm does not increase the communication require-
ments as compared to (2).

Remark 7. The main advantage from the introduction of the aux-
iliary systemwith output θi in this section is to enable the design of
a bounded control input for each vehicle, which does not depend
explicitly on the vehicles’ relative positions (as can be seen from
(18) and (28)with (19)). Consequently, the upper bound of the con-
trol input of each vehicle can be determined a priori independently
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Fig. 1. Interaction graph between vehicles G.

from the number of its neighbors in the group. This facilitates
considerably the tuning of the controller gains to achieve good
transient performance regardless of the communication topology
between vehicles. In the case of the control scheme (28) for ex-
ample, the gains kφi and kij can be freely selected such that the
term ηi =


−φ̇i +

∑n
j=1 kij(ξi − ξj)


converges to zero as fast as

possible. Thereafter, the choice of the gains kθ1i and kθ2i will de-
termine the way ri converges to the final position for each ve-
hicle. It is worth noting that when ηi → 0 and θi has not yet
converged to zero but becomes sufficiently small, we have v̇i →

θ̈i ≈ −kθ1iθi − kθ2i θ̇i. This leads us to expect that at this moment of
the transient response, sufficient damping is imposed on θi by an
appropriate choice of kθ2i . As a result, and since (ri − rj) has con-
verged to (θi − θj), sufficient damping is implicitly applied to the
system.

Remark 8. The design methodology presented in this section can
be applied to extend the consensus algorithms proposed in [8], in
the full information case, to achieve a priori boundedness of the
control input with upper bounds independent of the number of
neighbors.

5. Simulation results

In this section, we provide simulation results to demonstrate
the effectiveness of the two control schemes proposed in thiswork.
We consider a group of 10 vehicles modeled as in (1), withm = 1,
and with initial conditions: R(0) = (1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5,
5, 5.5)T and V (0) = (0.1, 0.02,−0.08, 0.05, 0.07,−0.1,−0.05,
0.06, 0.04, 0.08)T , where R(t) and V (t) are the vectors containing
respectively the positions and velocities of the vehicles, ri(t) and
vi(t) for i ∈ {1, . . . , 10}. We consider the communication topology
between vehicles as described by the undirected and connected
graph G shown in Fig. 1.

To consider the results of Theorems 1 and 2, we assume that the
desired velocity is given by vd(t) = 0.5 sin(2t/π), and all vehicles
are constrained such that umax = 2.8.We first consider the control
law (2)–(4) with, λφ = λψ = kψi = 1, λr = 10, kφi = 0.5,
for i ∈ {1, . . . , 10}, kij = 0.15, for (i, j) ∈ E and kvi = 0.2 for
i ∈ I = {1, 7}, i.e., the auxiliary system (4) is implemented for
only vehicles 1 and 7. Note that this choice of gains with the upper
bound of v̇d(t) satisfy condition (5). The results are illustrated in
Fig. 2. We can see that all vehicles reach consensus on their final
positions with the final desired velocity after 35 s.

Then, we consider control law (18) and (23)–(24), with kθ1i =

0.7, kθ2i = 1.1, kφi = 10, kψi = 1, for i ∈ {1, . . . , 10}, kij = 100,
for (i, j) ∈ E , and kvi = 5 for i ∈ I = {1, 7}, i.e., the auxiliary
system (24) is implemented in only vehicles 1 and 7. Note that the
choice of the gains kθ1i and kθ2i with the upper bound of v̇d(t) satisfy
condition (21), with umax = 2.8. The results are illustrated in Fig. 3,
where we can see that faster consensus with final desired velocity
is achieved using this consensus algorithm.

From these figures, we notice the oscillations present in the
system response and the control input of each vehicle. This is
mainly due to the ‘‘insufficient’’ damping introduced to the system
by the auxiliary variables used to substitute the missing velocity
information. However, we can see that in the second approach,
Fig. 3, oscillations in the system response and in the control input
of each vehicle decay rapidly after few seconds, whereas in the
first approach, Fig. 2, oscillations are present for a longer time. It
Fig. 2. Results of Theorem 1, with umax = 2.8.
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Fig. 3. Results of Theorem 2, with umax = 2.8.
Fig. 4. Results of Corollary 1, with umax = 6.
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Fig. 5. Results of Corollary 2, with umax = 6.
is interesting to investigate the response of the system when the
second approach is implemented. From the control input in Fig. 3,
we can see the high control activity for each vehicle in the first
period of time, (0, 1) s, where the maximum input, as determined
in (20), is almost reached. This indicates that the variables θi, θ̇i
and ηi =


−φ̇i + kvi (ξi − ψi)+

∑n
j=1 kij(ξi − ξj)


have not yet

reached small values. Note that this is due to the high values of
the gains kφi , kij and kvi , which are selected independently from the
system constraints and aim to drive the term ηi to zero as fast as
possible. After the instant 1 s, we see from the same figure that the
value of the control input for each vehicle starts decreasing. This
indicates that the variables θi and θ̇i are decreasing, and the term
ηi is approaching zero. At this point, the dynamics of (ri − rj) are
approaching the dynamics of (θi − θj), for (i, j) ∈ E , and with the
above choice of kθ1i and kθ2i , we are adding damping to the response
of θi, and consequently damping is introduced to the response of
ri, for i ∈ {1, . . . , 10}. As a result, the transient oscillations in the
system response are considerably reduced after few seconds.

Next, we consider the results of Corollary 1. We assume that
no reference velocity is assigned to the team and all vehicles are
constrained such that umax = 6. Fig. 4 illustrates the obtained
results when control law (13) is implemented with λφ = 3, λr =

50, kφi = 1, for i ∈ {1, . . . , 10}, and kij = 0.5, for (i, j) ∈ E . Note
that this choice of the control gains satisfies condition (14), and
it achieves the fastest consensus that we have obtained with (13).
We can see that consensus is achieved after 12 s with the presence
of some oscillations in the vehicles’ positions and velocities. To
investigate the effects of the control upper bound on the system
response, we consider the same control law, (13), with umax = 2,
λφ = 3, λr = 100, kφi = 0.4, for i ∈ {1, . . . , 10}, and kij =

0.16, for (i, j) ∈ E . The obtained results are illustrated in Fig. 6,
where we can see that consensus is achieved after more than 25 s.
It is important to mention that with the same information flow
between vehicles, and smaller values of umax, tuning the controller
gains to achieve good results becomes more difficult.

Finally, we consider the results of Corollary 2 with umax = 6.
In Fig. 5, we show the obtained results when the control scheme
in (28) is implemented with kφi = 10, kθ1i = 1.5 and kθ2i = 3,
for i ∈ {1, . . . , 10}, and kij = 100, for (i, j) ∈ E . Note that
this choice of gains satisfy condition (29). Due to the controller
gains tuning flexibility introduced by thismethod, and as discussed
above, we can see that the transient oscillations are reduced and
faster consensus is achieved as compared to the results in Fig. 4. In
the case where umax = 2, we consider the same control law, (28)
with kθ1i = 0.65 and kθ2i = 1.35, for i ∈ {1, . . . , 10}, with the
same previous gains, and the obtained results are shown in Fig. 7.
We can notice that similar performance is achieved, as compared
to Fig. 5, even with lower upper bounds of the control efforts for
each vehicle.

6. Conclusion

We considered the consensus problem for double-integrator
dynamics without velocity measurements and with input con-
straints, under fixed and undirected information flow. First, based
on the auxiliary systems approach, we proposed a velocity-free
consensus scheme which extends the work in [8] to account for
actuator saturations. Although consensus is attained, the proposed
scheme presents some limitations in the sense that the upper
bound of the control input for each vehicle depends on the num-
ber of its neighbors. To overcome this problem, we proposed a
second velocity-free consensus algorithm with a priori bounded
control inputs, where the upper bounds are not affected by the
number of neighbors of each vehicle. The main idea in this ap-
proach is the introduction of an additional second order auxiliary
system in terms of θi for each vehicle. As a result, additional damp-
ing is generated through the dynamics of the new variables leading
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Fig. 6. Results of Corollary 1, with umax = 2.
Fig. 7. Results of Corollary 2, with umax = 2.
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to reduce the transient oscillations of the vehicles’ positions before
reaching consensus. In contrast to the existing velocity-free con-
sensus algorithms, an important feature of the proposed schemes
in this paper is that they can handle time-varying trajectories. Our
future work will consider the extension of the proposed consen-
sus algorithms in the presence of communication delays and in the
case of directed and/or switching communication topologies.

Appendix

Proof of Lemma 1. Consider the following Lyapunov function
candidate

Wi =
1
2
θ̇
T
i θ̇i + kθ1i1

T
m log(cosh(θi)), (A.1)

The time derivative ofWi along the dynamics (22) is given by

Ẇi = −θ̇
T
i (kθ2i tanh(θ̇i)− ηi)

≤ −

m−
k=1

|θ̇ ki |

kθ2i tanh(|θ̇

k
i |)− |ηki |


, (A.2)

where θi = col[θ ki ] and ηi = col[ηki ], for k = 1 . . .m, and we
have used the property x tanh(x) = |x| tanh(|x|) for any x ∈ R.
First of all, let us show that θi and θ̇i cannot escape in finite time.
In fact, from (A.2) it is clear that Ẇi ≤ ‖θ̇i‖‖ηi‖. Using the fact that
‖θ̇i‖

2
≤ 2Wi, we have Ẇi ≤ η̄i

√
Wi, with

√
2‖ηi‖ ≤ η̄i, which can

be rewritten as

dWi
√
Wi

≤ η̄idt. (A.3)

Integrating the last inequality over the interval [t0, t] yields

2


Wi(t)−


Wi(t0)


≤ η̄i(t − t0), (A.4)

which shows thatWi(t) cannot go to infinity in finite time.
Now, we will show the global boundedness and convergence of

θi and θ̇i to zero. It is easily seen that the right hand side of (A.2) is
negative as long as

tanh(|θ̇ ki |) >
|ηki |

kθ2i
, for k = 1 . . .m. (A.5)

Due to the definition of tanh, inequality (A.5) cannot be satisfied
when |ηki | > kθ2i , for k = 1 . . .m. However, since ηi(t) is bounded
and converges asymptotically to zero, it is clear that there exists
a finite time t1 such that |ηki (t)| ≤ kθ2i for all t ≥ t1. Note that
θi and θ̇i remain bounded on the interval [0, t1] as there is no
finite escape time. Consequently, for all t ≥ t1, one can conclude
that Ẇi < 0, and θi and θ̇i are bounded outside the set M =
θ̇i | tanh(|θ̇ ki |) ≤

|ηki |

kθ2i
, for k = 1 . . .m


. From the properties of

the function tanh(|.|), we conclude that θ̇i is ultimately bound to
reach the set M and will be driven to zero as limt→∞ ηi(t) =

0. Finally, using a special version of Barbălat Lemma (see, for
instance, Lemma 2 in [18]), together with the fact that ηi and θ̇i are
bounded and converge asymptotically to zero, we can show that
limt→∞ θi(t) = 0.
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