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Adaptive Position Tracking of VTOL UAVs
Andrew Roberts, Student Member, IEEE, and Abdelhamid Tayebi, Senior Member, IEEE

Abstract—An adaptive position-tracking control scheme is pro-
posed for vertical take-off and landing (VTOL) unmanned air-
borne vehicles (UAVs) for a set of bounded external disturbances.
The control design is achieved in three main steps. The first step
is devoted to the design of an a priori bounded linear acceleration
driving the translational dynamics toward the desired trajectory.
In the second step, we extract the required a priori bounded thrust
and the desired attitude, in terms of unit quaternion, from the
desired acceleration derived in the first step. In the last step, we
design the required torque for the rotational dynamics, allowing
the system’s attitude to be driven toward the desired attitude ob-
tained at the second step. Two control laws for the system control
torque are rigorously designed. The first control law ensures that
the position-tracking objective is satisfied for any initial conditions,
whereas the second ensures that the tracking objective is satisfied
for a set of initial conditions, which is dependant on the control
gains. The latter case is included, since it is less complicated than
the former control law and may be advantageous from a practical
point of view. Finally, simulation results are provided to illustrate
the effectiveness of the proposed control strategy.

Index Terms—Adaptive control, unmanned airborne vehicle
(UAV), vertical take-off and landing (VTOL).

I. INTRODUCTION

IN the recent past, the use of vertical take-off and landing
(VTOL) unmanned airborne vehicles (UAVs) has seen a

significant increase in popularity. These types of vehicles are
desired for a variety of applications, including visual inspec-
tion of structures (buildings, bridges, etc.), search and recovery,
defence, etc. Most commonly these systems are piloted by a
remote operator, however, a number of researchers have been
working to develop systems that offer a higher degree of auton-
omy, thus reducing the complexity of the task presented to the
operator. One example of a VTOL UAV is the ducted-fan air-
craft, which is illustrated in Fig. 1. The system uses one or two
main rotors/fans/propellers to generate vertical thrust, which
provides the VTOL ability. This type of aircraft uses vectored
thrust, which controls the movement of the system by directing
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Fig. 1. Exogenous forces.

the thrust using a set of ailerons/wings/control surfaces that are
located at the underside of the system. In previous work, for
example, [2], the goal was to achieve a tracking control law
for the system attitude. This paper extends further to deal with
the position-tracking problem of a ducted-fan VTOL UAV in
the presence of external disturbances. Due to the nature of this
underactuated system, a common practice is to use the system
attitude as a means to direct the thrust in order to control the
system position and velocity. This choice is intuitive and offers
promising results when used with traditional backstepping ap-
proaches. Position control of VTOL UAVs has also been the fo-
cus of a number of researchers (for example, [3]–[7]), yet despite
their tremendous efforts, there still exist some open problems
in terms of handling external disturbances, coupling between
system dynamics, singularities, as well as achieving global sta-
bility results. Previous work that address unknown disturbances
include [3]–[5]. In most cases, the disturbance force is required
to satisfy some assumptions in order to develop the control laws
(for example, the disturbance is constant in the inertial frame of
reference), which is also the case in this paper.

A second common problem is related to which system inputs
are used to specify the control law. Usually, it is desired to obtain
the control torque that is applied to the rotational dynamics of the
system (that is generated by the vectored thrust). This goal can be
challenging, especially in the presence of external disturbances,
and as a result, the control law is often specified in terms of
the desired system angular velocity (one integrator away from
the control torque). The desired angular velocity must then be
implemented using high-gain feedback. There are few examples
of controllers in the literature that use the control torque as a
system input while considering external disturbances. In [5], a
result is achieved for the position regulation problem; however,
this result only guarantees local stability and does not consider
position tracking. In [8], a neural network adaptive controller
has been proposed; however, it is not accompanied with proofs
for stability, either locally or globally.

1552-3098/$26.00 © 2010 IEEE



130 IEEE TRANSACTIONS ON ROBOTICS, VOL. 27, NO. 1, FEBRUARY 2011

For this type of aircraft, the vectored thrust action produces a
translational force in addition to a moment. Due to this system
characteristic, another well-known problem is due to this cou-
pling between the rotational and translational dynamics. This
coupling is usually in the form of a perturbing term (given as a
function of the control torque or angular velocity) that affects
the translational acceleration of the system. This problem is
discussed in more detail in [9] and [10]. This coupling term is
system dependant, and is not always present in certain VTOL
systems, for example, the quadrotor aircraft. In [11], a position-
tracking controller is proposed for the quadrotor aircraft achiev-
ing practical stability. In addition, an attitude controller for the
quadrotor aircraft is proposed in [12]. As is the case with this
paper, it is assumed that the coupling term is negligible and is
thus omitted in the control design. However, as discussed in [9]
and [10], depending on the strength of the coupling and the
choice of control gains, this can lead to unexpected oscillations
in the system states. There are some examples of controllers in
the literature which address the coupling problem. For instance,
in [10], a nice change of coordinates is presented; however, only
for a planar system. In [5], a change of coordinates is also pre-
sented that removes the coupling due to the control torque. A
consequence of this change of coordinates is that a new coupling
is introduced in terms of the system angular velocity, which can
only be neglected if the system yaw rate is assumed to be zero,
which is the case in [5]. However, in practice, this would likely
not be the case. Therefore, there still seems to be some potential
for improvement regarding this coupling term in future work.
Last, to the best of our knowledge, there are no results in the
available literature to achieve almost global asymptotic stabil-
ity for the position-tracking problem of UAVs in the presence
of disturbance forces that use the control torque as the system
input. In [6] and [11], controllers are proposed that achieve prac-
tical stability. Position-tracking control laws, that do not address
disturbance forces, can be found in [7], [11], and [13]. In [4], a
nice result is obtained to achieve almost global stability using a
simple control law, which is given in terms of the system angular
velocity.

A necessary step for this type of problem is to obtain a method
to extract the magnitude and direction of the thrust from a given
desired translational force. In the case where only one vector is
used for attitude extraction, there exists an infinite number of
solutions to this problem. However, similar to the work of [14],
we utilize one solution to the attitude extraction problem in
terms of the unit quaternion that has almost no restrictions on
the demanded acceleration, except for a mild singularity that
can be avoided.

Relying on this quaternion extraction method, we present two
adaptive tracking controllers using the torque as a control in-
put. Both controllers depend on an adaptive estimation method,
which use a projection mechanism [15], [16]. The projection
mechanism is required to avoid the singularity associated with
the attitude extraction method. The first proposed controller
achieves the position-tracking objective for any initial condi-
tion of the state, whereas the second controller achieves the
position-tracking objective for a set of initial conditions, which
are dependant on the control gains. The latter controller is in-

cluded, since it is less complicated than the prior case and may
be more suitable to use in practice. During the process of devel-
oping the two control laws, the disturbance forces are assumed
to be constant in the inertial frame. In this case, both control
laws are proven to achieve the position-tracking objective pro-
vided that an upper bound of the disturbance force is known
a priori (although the actual magnitude of the disturbance force
may be less than this limit). To evaluate the robustness of the
proposed controller when the disturbance force is not constant,
simulation results are provided, which considers a model of the
aerodynamic forces that are exerted on the system in the pres-
ence of a uniform external wind, which is assumed to have a
constant velocity.

II. BACKGROUND

A. Attitude Representation

In this paper, we make use of two well-known forms of at-
titude representation, the rotation matrix (direct cosine matrix)
and the unit quaternion [17]–[19]. The rotation matrix is the map
from the inertial frame to the body frame, where R ∈ SO(3) :=
{R ∈ R3×3 ; det(R) = 1;RRT = RTR = I3×3}. The dynam-
ics of the rotation matrix are Ṙ = −S(Ω)R, where S(·) is the
skew-symmetric matrix such that S(u)v = u × v, where × de-
notes the vector cross product and u, v ∈ R3 . The vector Ω ∈ R3

is the body-referenced angular velocity of the rigid body. The
system attitude can also be represented by the unit quaternion
Q = (q0 , q) ∈ Q = {Q ∈ S3 , ‖Q‖ = 1}. The rotation matrix
corresponding to a unit quaternion Q = (q0 , q) is given by

R(q0 , q) = I3×3 + 2S(q)2 − 2q0S(q). (1)

Other attitude representations and their transformations, includ-
ing transformations from unit quaternion to rotation matrices
can be found in [17]. Given two quaternion Q,P ∈ Q, where
P = (p0 , p) we use the well-known noncommutative quaternion
multiplication

Q � P =
(
p0q0 − qTp, q0p + p0q + S(q)p

)
. (2)

The unit quaternion has the inverse Q−1 = (q0 ,−q), which has
the property Q � Q−1 = Q−1 � Q = (1,0), where (1,0) is
known as the identity quaternion, and Q � (1,0) = (1,0) �
Q = Q. In general, the unit-quaternion dynamics is expressed
using the body-referenced angular velocity Ω by

Q̇ =
1
2
Q �

[
0
Ω

]
=

1
2
A (q0 , q) Ω (3)

A (q0 , q) =
[ −qT

q0I3×3 + S(q)

]
. (4)

B. System Model

Using the representation given in Section II-A, the well-
known rigid body model can be written as follows:

ṗ = v (5)

v̇ = gẑ − T

m
RTẑ − 1

m�
RTS(ẑ)u +

1
m

Fd (6)
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Q̇ =
1
2

[ −qT

q0I3×3 + S(q)

]
Ω (7)

IbΩ̇ = −S(Ω)IbΩ + εM S(ẑ)RFd + u (8)

where p, v,∈ R3 denote the inertial referenced system position
and velocity, respectively, Fd denotes the inertial referenced
disturbance force, Ib is the constant body-referenced inertia
tensor, u is the control torque input, T is the system thrust,
ẑ = col [0, 0, 1], m is the system mass, � is the torque lever
arm, g is the gravitational acceleration, and εM is the lever arm
that creates a disturbance torque due to Fd . The model for the
disturbance force and torque is similar to [5], since we assume
that the disturbance force is applied to a point on the body-
referenced z-axis at a distance εM away from the system center
of gravity. The coupling between the translational and rotational
dynamics appears in the equation of v̇ in the form of the control
torque u.

To simplify notation, we define two unknown parameters θa

and θb , in addition to a scalar thrust control input ut , which are
given by

θa =
1
m

Fd, θb = εM Fd, ut =
T

m
. (9)

C. Mathematical Preliminary

Throughout the paper, ‖u‖ denotes the Euclidian norm of the
vector u, and ‖M‖F denotes the Frobenius norm of the matrix
M . We also consider a bounded function h : R3 → R3 such that
0 ≤ ‖h(u)‖ < 1∀u, whose first and second partial derivatives
are denoted as follows:

∂

∂u
h(u) := φh(u),

∂

∂u
φh(u)v := fφh

(u, v) . (10)

We choose the following bounded function:

h(u) =
(
1 + uTu

)−1/2
u (11)

from which we evaluate the partial derivatives as follows:

φh(u) =
(
1 + uTu

)−3/2 (
I3×3 − S(u)2) (12)

fφh
(u, v) =

(
1 + uTu

)−5/2 (
3
(
S(u)2 − I3×3

)
vuT

+
(
1 + uTu

)
(2S(u)S(v) − S(v)S(u))

)
. (13)

The eigenvalues of φh(u) are given by

λ (φh(u)) =

⎡⎢⎢⎣
(
1 + ‖u‖2

)−3/2(
1 + ‖u‖2

)−1/2(
1 + ‖u‖2

)−1/2

⎤⎥⎥⎦ (14)

and therefore, 0 < ‖φh(u)‖ ≤ 1∀u.

III. MAIN PROBLEM FORMULATION

Using the model given by (5)–(8), our objective is to force
the position p to track some continuous time-varying reference
r(t), given that it meets the following requirements.

Assumption 1: The second, third, and fourth derivatives (w.r.t.
t) of the reference trajectory r(t) are uniformly continuous.

Furthermore, there exists positive constants δr and δrz such that
the second derivative of the reference trajectory is bounded by
‖r̈‖ ≤ δr and ẑTr̈ < δrz < g.

Although, in general, the disturbance force exerted on the
aircraft can be time-varying, for the purposes of developing the
control laws we consider (for the time being) that the disturbance
force is constant in the inertial frame of reference (for example,
this may be valid if the system is moving with a constant velocity
in the presence of a constant and uniform wind).

Assumption 2: The disturbances θa and θb are constant and
there exists positive constants δa < g and δb such that the distur-
bances are contained in the set θa ∈ Ba := {θa ∈ R3 ; ‖θa‖ <
δa < g}, θb ∈ Bb := {θb ∈ R3 ; ‖θb‖ < δb}.

Assumption 3: The control torque lever arm � is sufficiently
large such that m� � 1, and therefore, the coupling term
(m�)−1RTS(ẑ)u ≈ 0.

At this point, we define the error signals for the system states
that will be used in the control design. Some of the error signals
involve virtual control laws that will not be defined until later
in the paper. Given the reference trajectory r(t), we define the
error signals as follows:

p̃ = p − r(t), position error (15)

ṽ = v − ṙ(t), velocity error. (16)

To use the system velocity v as a virtual control, we must use
the system attitude R and thrust ut as virtual inputs to the
translational dynamics (5) and (6). Therefore, we define

μ = gẑ − utR
Tẑ (17)

which is the acceleration of the system due to gravity and the
system thrust expressed in the inertial frame. We define μd as the
desired virtual acceleration, which will be defined later as an
intermediate step in the control design. The acceleration error
can then defined as follows:

μ̃ = μ − μd, acceleration error. (18)

The use of μ as a virtual control requires the extraction of
the thrust ut and the desired attitude (or desired orientation)
Qd = (qd0 , qd) from μd . That is, we require a transforma-
tion χut

: R3 → R and χQ : R3 → S3 , such that the signals
ut = χut

(μd) and (qd0 , qd) = χQ (μd) = (χq0 (μd) , χq (μd))
satisfy

μd = col [μd1 , μd2 , μd3 ] = gẑ − utR
T
d ẑ (19)

where Rd = R (qd0 , qd) as defined by (1). The choice of χut
and

χQ is the focus of Section IV. Provided that the transformation
χQ is differentiable, it is also possible to define the dynamics of
the desired attitude Q̇d . The derivative of the desired attitude can
then be used to obtain the desired angular velocity Ωd , based
on the following well-known relationship:

Q̇d =
1
2
A (qd0 , qd) Ωd . (20)
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Since ATA = I3×3 , one can obtain the desired angular velocity
from

Ωd = 2AT d

dt

[
χq0 (μd)

χq (μd)

]
. (21)

Using the desired orientation Qd , we also define the attitude
error Q̃ = (q̃0 , q̃) as the rotation from the actual attitude Q to
the desired attitude Qd , which is given by

Q̃ = Q−1
d � Q, attitude error. (22)

During the control design, it is necessary to obtain the dy-
namics of the attitude error Q̃. Differentiating (22) along the
trajectories (7) and (20), we obtain

˙̃Q =
1
2

[
q̃T (Ωd − Ω)

q̃0 (Ω − Ωd) + S(q̃) (Ωd + Ω)

]
. (23)

Due to the use of the quaternion multiplication operator, the
attitude error Q̃ preserves the properties of the unit quaternion
and can also be considered as a rotation/orientation. Using this
representation, one of the goals of the control design is to force
the attitude error Q̃ to the identity quaternion (1,0), or to the
negated identity quaternion (−1,0), since this represents a ro-
tation of 2π from the desired attitude and is, therefore, the same
physical orientation.

A. Error Dynamics

In this section, we define the dynamics of the error signals
given in the previous section. In light of Assumption 3, for the
purposes of the control design, we assume that the coupling
term in the translational dynamics due to the control torque is
negligible. As a result of the earlier formulation, the system
error dynamics are given by

˙̃p = ṽ (24)

˙̃v = μd + μ̃ + θa − r̈ (25)

˙̃Q =
1
2

[
q̃T(Ωd − Ω̃ − β)

q̃0(β + Ω̃ − Ωd) + S(q̃)(β + Ω̃ + Ωd)

]
(26)

Ib
˙̃Ω = −S(Ω)IbΩ + S(ẑ)Rθb − Ib β̇ + u (27)

with Ω̃ = Ω − β, where β is a virtual control law for the an-
gular velocity that is defined later in the control design. More
specifically, we find two virtual control laws β = β1 for the first
control law, and β = β2 for the second control law. Based on
this formulation, our control strategy can be separated into three
tasks.

1) Specify the virtual control law for the desired virtual accel-
eration μd that satisfies the position- and velocity-tracking
objectives.

2) Find continuous and differentiable transformations χut

and χQ , which extract the desired thrust ut and desired
attitude Qd , respectively, that forces the system to the
desired virtual acceleration specified in step 1.

3) Specify the virtual control law for the angular velocity
β that forces the system attitude Q to track the desired
system attitude Qd specified in step 2, which is used to

specify the control law for the system control torque u to
force the system angular velocity Ω to track the desired
angular velocity β.

Section IV describes the proposed attitude extraction algo-
rithm and defines the transformations χut

and χQ . Section V-A
briefly restates the projection mechanism from [16]. Section V-
B and C describes the two proposed control laws. A step-by-step
procedure describing the implementation of the two controllers
is given in Section V-D. Finally, Section VI gives simulation
results from the two proposed controllers.

IV. ATTITUDE EXTRACTION

In this section, we define the transformations χut
and χQ ,

which extract the system thrust ut , and desired attitude Qd or
Rd , from the virtual control law μd given by (19). In general, the
attitude extraction problem for a single pair of vectors can be
stated as follows: given two vectors u and v, where ‖u‖ = ‖v‖,
we wish to find an orientation Rd ∈ SO(3) that satisfies

Rdu = v. (28)

Note that (28) can also be expressed using the unit quaternion
as follows: [

0
v

]
= Q−1

d �
[

0
u

]
� Qd (29)

where instead we seek an expression for the quaternion Qd .
In [14], an intuitive solution to this problem is described. A
similar solution which yields a unit quaternion is stated in the
following lemma.

Lemma 1: Given two vectors u and v, where ‖u‖ = ‖v‖ 
= 0,
and where u 
= −v; then, a solution for the unit quaternion
Qd = (qd0 , qd) that satisfies (29) exists and is given by

qd0 =
1

‖u‖

√
‖u‖2 + uTv

2
(30)

qd =
1

‖u‖

√
1

2 (‖u‖2 + uTv)
S(v)u. (31)

Proof: The proof is given in Appendix A.
Remark 1: As discussed by [14], this extraction uses the vector

which is orthogonal to both u and v as the axis of rotation. Due to
this choice, this method extracts the solution to the problem that
minimizes the angle of rotation. Given the solution of the unit
quaternion by (30) and (31), a rotation matrix which satisfies
(28) can also be found using (1).

We now apply the results of the quaternion extraction to
our particular case. Recall (17)–(19), and let μd be the virtual
control input that achieves the position-tracking objective for
the translational dynamics. We need to extract the thrust ut and
the desired orientation Rd or Qd for a given μd satisfying (19).
A solution for the system thrust ut = χut

and desired attitude
Qd = (χq0 , χq ) that satisfies (19), where the rotation matrix Rd

is found from (1) is given by the following lemma.
Lemma 2: Given μd and assuming that μd /∈ L

L = {μd ∈ R3 ;μd = col [0, 0, μd3 ] ;μd3 ∈ [g,∞)} (32)
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a solution for the transformations χut
and χQ , which extracts the

system thrust ut = χut
and desired attitude Qd = (qd0 , qd) =

(χq0 , χq ), which satisfies (19), is given by

χut
= ‖μd − gẑ‖ (33)

χq0 =
(

1
2

(
1 +

g − μd3

‖μd − gẑ‖

))1/2

(34)

χq =
1

2‖μd − gẑ‖χq0

⎡⎢⎣ μd2

−μd1

0

⎤⎥⎦ . (35)

Proof: Note that (19) can also be written as RT
d ẑ =

u−1
t (gẑ − μd). Choosing the system thrust input (33), then it is

clear that this is similar to the problem described by Lemma 1
with v = ẑ and u = (gẑ − μd) /‖gẑ − μd‖ and ‖u‖ = ‖v‖ =
1. Applying these values of u and v to (30) and (31) results in
the expressions given by (34) and (35). �

Remark 2: The singularity (32) corresponds to the desired at-
titude being perfectly inverted such that the vertical acceleration
of the vehicle is greater than or equal to the acceleration due
to gravity. Note that the singularity only applies to the desired
attitude Qd , and the actual attitude of the system can take any
value without encountering a singularity. Since the singularity
corresponds to an undesirable operating mode of the aircraft,
avoiding this singularity does not significantly limit the normal
operating mode of the system. Avoiding this singularity can be
achieved by using a bounded law for the desired virtual accel-
eration μd . This is the main purpose of using the function h
described by (11) and the projection mechanism described by
Section V-A.

During the process of the control design, it is necessary to
obtain an expression for the angular velocity Ωd , which can be
found using (21) and by differentiating the expression for the
desired attitude Qd . The value of Q̇d is obtained by straightfor-
ward differentiation of the extracted attitude given by (34) and
(35). This procedure ultimately yields the following expression:

Ωd = M(μd)μ̇d (36)

M(μd) =
1

‖μd − gẑ‖2c1

·

⎡⎢⎣ −μd1 μd2 −μ2
d2

+ ‖μd − gẑ‖c1 μd2 c1

μ2
d1

− ‖μd − gẑ‖c1 μd1 μd2 −μd1 c1

μd2 ‖μd − gẑ‖ −μd1 ‖μd − gẑ‖ 0

⎤⎥⎦
(37)

where c1 = ‖μd − gẑ‖ + g − μd3 .

V. POSITION-TRACKING CONTROL

In this section, we propose two control laws in terms of the
system torque control input u. The first control law guarantees
the position-tracking objective is satisfied for any initial condi-
tions. The second control law guarantees the position-tracking
objective for a set of initial conditions that is dependant on the
control gains. The latter controller is included, since it is some-

what less complicated and may be beneficial from a practical
perspective.

The first step of the control design is to choose the desired vir-
tual acceleration μd . Based on the earlier formulation, there are
some requirements for this control law that must be considered.

1) To ensure a solution always exists for the desired orien-
tation, Qd , the desired virtual acceleration μd must be
bounded such that it does not encounter the singularity
(32).

2) In order to satisfy the tracking objective, the expression
for the desired virtual acceleration μd must contain an
(adaptive) estimate of the disturbance force.

3) Due to the use of backstepping, the expression for μd must
be twice differentiable.

In order to satisfy the first two requirements, the adaptive esti-
mate of the disturbance force must be guaranteed to be bounded
a priori. To meet this criteria, we use a projection-based es-
timation algorithm. Furthermore, in order to satisfy the third
requirement, the solution for the disturbance estimates obtained
using the projection-based adaptation law must be twice differ-
entiable. This motivates us to use the sufficiently smooth pro-
jection algorithm described by [16]. The use of other existing
projection-based algorithms (for example, see [15] and [20]) is
not directly applicable since they are not always differentiable.

As shown in [16], when utilizing projection, overparameteri-
zation is required when the system is of a sufficiently high order.
For this reason, a second adaptive estimate θ̂2 is used due to the
unknown disturbance θa , and a third adaptive estimate θ̂3 is used
due to the unknown disturbance θb .

We begin by briefly describing the sufficiently smooth pro-
jection algorithm of [16] in Section V-A. This is followed by
the two control laws in Section V-B and C respectively.

A. Adaptive Estimation Using Projection

In this section, we restate the projection algorithm described
by [16], which yields adaptive estimates whose trajectories are
sufficiently smooth. The use of the projection algorithm allows
us to use an adaptive estimate of the disturbance force in the
expression of the desired virtual acceleration μd , while ensuring
that the desired attitude Qd never encounters the singularity (32).

Consider a constant unknown parameter θp , which belongs to
the set Bp :=

{
θp ∈ R3 ; ‖θp‖ < δp

}
, where the parameter δp is

known a priori. Let θ̂p be the corresponding adaptive estimate
of θp , and define the error θ̃p = θp − θ̂p . In general, the ideal

adaptive estimation law is given by ˙̂
θp = τ , which does not

necessarily guarantee that θ̂p ∈ Bp . Based on the ideal adaptive
estimation law, a projection-based adaptation law defined in
[16], which guarantees the bound of θ̂p is given for our particular
case by

˙̂
θp = τ + α(θ̂p , δp , τ) (38)

α(θ̂p , δp , τ) = −kαη1η2 θ̂p (39)

kα = (2(ε2
α + 2εαδp)2δ2

p )−1 (40)
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η1 =

{
(θ̂T

p θ̂p − δ2
p )2 , if θ̂T

p θ̂p > δ2
p

0, otherwise

}
(41)

η2 = θ̂T
p τ + ((θ̂T

p τ)2 + δ2
α )1/2 (42)

where εα > 0, δα > 0 and has the properties

‖θ̂p‖ < δp + εα , θ̃T
p α ≥ 0,

˙̂
θp ∈ C1 . (43)

B. Controller 1

Let θ̂1 denote the first adaptive estimate of the unknown pa-
rameter θa . Using the bounded function h(u) defined by (11), we
propose the following law for the desired virtual acceleration:

μd = r̈ − θ̂1 − kpΓ−1
v h(p̃) − (kv + kθ ) h(ṽ) (44)

where kp , kθ , kv > 0, Γv = ΓT
v > 0, and ẑ = col [0, 0, 1]. Using

the parameters δrz and δa defined in Assumptions 1 and 2, we
place the restriction

kp‖ẑTΓ−1
v ‖ + 2kθ + kv + εα < g − δrz − δa (45)

where εα > 0 is a control gain used in the projection algorithm.
Applying the value of the desired virtual acceleration (44) to the
thrust and attitude extraction algorithm specified by (33)–(35),
we extract the system thrust and desired attitude

ut = χut
(μd), qd0 = χq0 (μd), qd = χq (μd) (46)

from which we obtain the attitude error Q̃ = (q̃0 , q̃) = Q−1
d �

Q = (qd0 ,−qd) � Q. We propose the following estimation law
for the first adaptive estimate:

˙̂
θ1 = γθ1 (τ2 + α(θ̂1 , δa + kθ , τ2)) (47)

τ2 = Γv ṽ +
kθ

γθ1

kpφh(ṽ)Γ−1
v h(p̃) +

kθkv

γθ1

φh(ṽ)h(ṽ)

+
(
γq (kθ + kv )φh(ṽ)M(μd)T − 2utkθ

γθ1

φh(ṽ)RTS(q̄)
)

q̃

(48)

q̄ = q̃0 ẑ + S(ẑ)q̃ (49)

where γθ1 > 0, γq > 0, φh(u) is the partial derivative of h(u)
as defined by (12), and α is the projection function defined
by (39). We propose the following virtual control law for the
angular velocity:

β1 = M(μd)(r(3) + wβ ) − 1
γq

Φṽ − Kq q̃ (50)

wβ = kpkvφh(ṽ)Γ−1
v h(p̃) − γθ1 α(θ̂1 , δa + kθ , τ2) (51)

Φ = (γθ1 γqM(μd) − 2utS(q̄)R)Γv + γqkpM(μd)Γ−1
v φh(p̃)

(52)

where Kq = KT
q > 0, and the matrix M(μd) is given by (37).

In general, the derivative of (50) is given by

β̇1 = fβ1 + f̄β1 θa (53)

where the actual expressions for fβ1 and f̄β1 are given in
Appendix B. Let θ̂2 denote the second estimate of θa , θ̂3

denote the estimate of θb , and let Ω̃ = Ω − β1 denote the angu-
lar velocity error. We propose the following control law for the
system torque control input:

u = −γq q̃ + S(Ω)IbΩ − S(ẑ)Rθ̂3 + Ibfβ1 + Ib f̄β1 θ̂2 − Kω Ω̃
(54)

where Kω = KT
ω > 0, in addition to the following adaptation

laws:
˙̂
θ2 = γθ2 (−f̄T

β1
IbΩ̃ + α(θ̂2 , δa ,−f̄T

β1
IbΩ̃)) (55)

˙̂
θ3 = γθ3 (−RTS(ẑ)Ω̃ + α(θ̂3 , δb ,−RTS(ẑ)Ω̃)) (56)

where γθ2 , 3 > 0, and δb > 0 is given based on Assumption 2.
Theorem 1: Consider the system described (24)–(27), where

we apply the control and estimation laws (47) and (54)–(56).
Provided that the following inequalities are satisfied:

λmin (Kq ) >
2
√

2kv ūtδμd
+ 2γθ1 γq (kv + kθ )
δ2
μd

+
k2

v

2ε1

λmin (Γv ) >
γqkv ε1

δ2
μd

(57)

where ε1 > 0, and

ūt = g + δr + δa + kp‖Γ−1
v ‖ + kv + 2kθ + εα (58)

δμd
= g − δrz − δa − kp‖ẑTΓ−1

v ‖ − kv − 2kθ − εα (59)

then the system thrust input ut is bounded and nonvanishing
such that 0 < δμd

< ut < ūt , the system states (p, v,Ω) are
bounded, and

lim
t→∞

[p(t) − r(t), v(t) − ṙ(t), q̃(t), Ω̃(t)] = 0 (60)

for any initial condition.1

Furthermore, the adaptive estimates θ̂1 , θ̂2 , θ̂3 are bounded,
and in particular, the estimate θ̂1 converges asymptotically to
the constant unknown disturbance θa .

Proof: The proof is given in Appendix B. �

C. Controller 2

In this section, we propose a similar albeit simpler version
of the control law described in Section V-B. The motivation to
simplify the previous result is largely due to the complexity of
the virtual control law for the angular velocity β1 from (50),
and it is derivative of (53). It is possible to simplify this virtual
control law, if an additional constraint is satisfied that is based
on the initial conditions of the state and the control gains. This
simplified version, which may be more suitable from a practical
perspective, is described in the following.

Using the previous law for the desired virtual acceleration
from (44) under the restriction (45), and the extraction of the

1There are two equilibrium solutions (physically identical), which satisfy the
position-tracking objective, which are defined by (p̃, ṽ, q̃, Ω̃) = 0, q̃0 = ±1.
The equilibrium solution characterized by q̃0 = 1 is stable, while the one char-
acterized by q̃0 = −1 is unstable (repeller equilibrium). This is due to the
well-known topological obstruction on SO(3) under strictly continuous feed-
back. For more details regarding this topological obstruction (see [21]). One
solution to this problem consists of using discontinuous or hybrid feedback
control laws (see, for instance, [22]).
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thrust control input ut and desired attitude Qd from (46), we
obtain the attitude error Q̃ = (q̃0 , q̃) = Q−1

d � Q. Let θ̂1 denote
the first estimate of θa , where we use the estimation law (47).
We propose the following virtual control law for the angular
velocity:

β2 = M(μd)(r(3) + wβ ) − Kq q̃ (61)

where Kq = KT
q > 0, and wβ is given by (51). The derivative

of β2 can be written as follows:

β̇2 = fβ2 + f̄β2 θa (62)

where the actual expressions for fβ2 and f̄β2 are given in
Appendix D. Using the angular velocity error Ω̃ = Ω − β2 , we
propose the following control law for the system control torque
input:

u = −γq q̃ + S(Ω)IbΩ − S(ẑ)Rθ̂3 + Ibfβ2 + Ib f̄β2 θ̂2 − Kω Ω̃
(63)

where Kω = KT
ω > 0. Using the new expression for angular

velocity error Ω̃, we apply the adaptive estimation laws (55)
and (56).

Theorem 2: Consider the system described (24)–(27), where
we apply the control and estimation laws (47) and (63). Using the
angular velocity error Ω̃ = Ω − β2 , where β2 is obtained using
(61), we apply the estimation laws (55) and (56). Provided that
the following inequalities are satisfied:

λmin(Kq ) >
2
√

2kv ūtδμd
+ 2γθ1 γq (kv + kθ )
δ2
μd

+
k2

v

2ε1
+

δ2
1

2γq ε2

(64)

λmin(Γv ) >
γqkv ε1

δ2
μd

(65)

δ1 =

(
2ūt +

√
2γqγθ1

δμd

)
‖Γv‖ +

√
2γqkp

δμd

‖Γ−1
v ‖ (66)

where ε2 > 0, then the system thrust input ut is bounded and
nonvanishing such that 0 < δμd

< ut < ūt , the system states
(p, v,Ω) are bounded, and

lim
t→∞

[p(t) − r(t), v(t) − ṙ(t), q̃(t), Ω̃(t)] = 0 (67)

for all system initial conditions that satisfy

kp

(√
1 + p̃(0)Tp̃(0) − 1

)
+

1
2
X(0)TC̄X(0)

< λmin (Γv )
(

2‖Δv‖
ε2

− 1
2

)
(68)

Δv = kv

(
Γv − γqkv ε1

δ2
μd

I3×3

)
(69)

X = col[ṽ, 1 − q̃0 , q̃, Ω̃, θa − kθh(ṽ) − θ̂1 ,

θa − θ̂2 , θb − θ̂3 ] (70)

C̄ = diag[‖Γv‖I3×3 , 4γq I4×4 , ‖Ib‖I3×3 , γ
−1
θ1

I3×3 ,

γ−1
θ2

I3×3 , γ
−1
θ3

I3×3 ]. (71)

Furthermore, the adaptive estimates θ̂1 , θ̂2 , and θ̂3 are bounded,
and in particular, the estimate θ̂1 converges asymptotically to the
constant unknown disturbance θa .

Proof: The proof is given in Appendix C. �

D. Implementation

To implement the controllers given in Section V-B and C,
consider the following iterative procedure.

1) Obtain the signals p, v, Q, Ω, and the desired reference
trajectory r(t) and di/dtir(t), i = 2, 3, 4, and calculate
the error signals p̃, ṽ.

2) Calculate the virtual control law μd using (44), which
is used to obtain the system thrust input ut from (33),
desired attitude Qd using (34) and (35), and the matrix
M(μd) from (37).

3) Calculate the error signals Q̃ and μ̃ from (22) and (18),

respectively, which is used to obtain τ2 from (48) and ˙̂
θ1

from (47).
4) Using the virtual control law for the desired angular ve-

locity (50) (or (61) for controller 2), calculate the angular
velocity error Ω̃ = Ω − β1 (Ω̃ = Ω − β2 for controller 2).

5) Using the expression for the derivative β̇1 (β̇2 for the
second control law) given by (103) and (104) [(101) and
(102) for controller 2], apply the control law u from (54)

(or (63) for controller 2), and the estimation laws ˙̂
θ2 and

˙̂
θ3 from (55) and (56), respectively.

VI. SIMULATIONS

To aid in the development of the control laws, some assump-
tions were required regarding the disturbance force Fd and the
control torque lever arm �. Assumption 2 states that the distur-
bance forces were assumed to be constant in the inertial frame,
and Assumption 3 requires that the control torque lever arm is
sufficiently large enough that an undesired coupling term can
be omitted. However, these may be unlikely and/or unrealis-
tic assumptions, since the disturbance forces are dependant on
system aerodynamic forces caused by wind and the motion of
the system, and the control torque lever arm may not be suf-
ficiently large. To address these shortcomings, we demonstrate
the robustness of the proposed controller by including in the
simulations a time-varying disturbance force (which is based on
an aerodynamic model) and the coupling term that was previ-
ously omitted (using reasonable values for the system mass m
and the control torque lever arm �). The disturbance model used
is defined by

Fd = Fdrag + Fram

Fdrag = ‖vw − v‖RTCdR (vw − v)

Fram =

√
TρA

2
RTIxyR (vw − v)

where Fdrag are frictional drag forces that are proportional
to the square of the external airflow, Fram is the ram-drag
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Fig. 2. Torque-generating aerodynamic forces as a result of airflow in body-
fixed frame.

force,2 Ixy = diag (1, 1, 0), vw is an inertially referenced un-
known wind velocity (which is assumed to be uniform and
constant in the inertial frame), ρ is the air density, A is the
duct cross-sectional area, and Cd ∈ R3 is a matrix that con-
sists of system-dependant aerodynamic constants expressed
in the body-fixed frame. For the purposes of simulation, the
aerodynamic-drag matrix and wind velocity was chosen to be
Cd = diag [0.1, 0.1, 0.05] kg/m and vw = [−1,−1, 0] m/s. As-
suming that the external airflow is uniform, due to the cylindrical
symmetry of the system, the net aerodynamic force is assumed
to be applied at a point on the body-referenced z-axis, located
at a constant distance of εM = 0.1 m from the system center of
gravity, which is often referred to as the aerodynamic center-
of-pressure [see Fig. 2]. In addition, to simulate uncertainty in
the system inertia tensor, the controllers were implemented us-
ing an expected value of Ib = diag [0.5, 0.5, 0.25] kg·m2 , where
the actual value was specified as Ib = diag [0.6, 0.6, 0.3] kg·m2 .
For both simulations, the desired reference trajectory was spec-
ified as r(t) = [10t, 30 sin(0.1t + 3.48), 20 sin(0.1t + 4.71)]T.

1) Other system parameters used in simulations: system
mass m = 5 kg, gravitational acceleration g = 9.81m/s2 ,
control torque lever arm � = 0.5 m, upper bound for
θa , δa = 5m·s−2 , upper bound for θb , δb = 3N·m, air
density ρ = 1.2 kg/m3 , and duct cross-sectional area
A = 0.114m2 (corresponds to 15 in duct inner diameter).

2) Initial conditions used in simulations: p(0) = col[50,
10, 0] m, v(0) = col [5, 0, 0.5] m/s, Q(0) = (qd0(0),
qd(0)) = (0, 1, 0, 0), and Ω(0) = col [0, 0, 0].

3) Control/adaptation gains for controllers 1 and 2: kp =
1, kv = 0.1, Γv = diag [0.2, 0.2, 0.8], kθ = 1, γq = 10,
Kq = 20I3×3 , Kω = 20I3×3 , γθ1 = 0.2, and γθ2 = γθ3 =
1.

The simulation results are given by Figs. 3–11. Although the
second controller is easier to implement, in situations where the
system initial conditions are sufficiently far from the desired
trajectory, some control gains are required to have extremely
large values [as specified by requirements (64)–(68)]. These

2In addition to generating the thrust T along the body-referenced vertical axis
ẑ, the change in momentum of the airflow (due to the system rotors/propellers)
can cause an additional force when the external duct airflow velocity has a
component, which is orthogonal to the thrust vector T ẑ. This force (which is
also orthogonal to the thrust vector) is caused due to the deceleration of the
horizontal component of the airflow, and is known as the ram drag. For further
information, see [23].

Fig. 3. Three-dimensional plot of desired versus actual system trajectory for
controller 1.

Fig. 4. Three-dimensional plot of desired versus actual system trajectory for
controller 2.

Fig. 5. Norm of position error ‖p̃‖.

Fig. 6. Norm of velocity error ‖ṽ‖.

requirements are likely conservative, and simulations suggest
that the domain of attraction is actually larger than the region
specified by (68).
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Fig. 7. Norm of attitude error ‖q̃‖.

Fig. 8. Norm of angular velocity error ‖Ω̃‖.

Fig. 9. Norm of estimation error ‖θ̃1‖.

Fig. 10. Norm of control torque ‖u‖.

The simulations show that both controllers are successful in
forcing the system to the desired trajectory. For each case, the
system attitude was initialized at Q = (0, 1, 0, 0), which corre-

Fig. 11. System thrust T .

sponds to the system being completely inverted. This is done
to demonstrate the effectiveness of the control laws for extreme
deviations in the system attitude. The control laws were effec-
tive, despite the time-varying disturbance due to aerodynamic
drag, the coupling term, which was omitted during the control
design, and uncertainty in the inertia tensor.

VII. CONCLUSION

Two adaptive position-tracking controllers have been pro-
posed for a VTOL UAV in the presence of external disturbances.
The second control law is included since it is somewhat less
complicated to implement than the first controller, which may
be desirable from a practical point of view. The two control
laws are dependant on a quaternion extraction algorithm, which
allows the extraction of the system attitude and thrust from
the desired virtual acceleration that is required to achieve the
tracking objective. This quaternion extraction method provides
almost global results, with the exception of a mild singularity,
which is easily avoided by using a bounded control law for the
desired virtual acceleration required to meet the tracking objec-
tive. To compensate for the external disturbances while ensuring
the bound of the required acceleration, projection is used in the
adaptive estimation algorithms. Although this improves the ro-
bustness of the proposed controllers, this method requires the
use of an overparameterization of the parameters estimates.

Simulations were performed for the two proposed controllers.
In both cases, the controllers successfully achieved the track-
ing objective even in the presence of the coupling term that is
omitted in the control design, time-varying disturbance due to
aerodynamic drag and uncertainty in the inertia tensor of the
system. Due to the time-varying nature of the disturbances, a
slight error was observed in the simulations. The implementa-
tion of the second controller was less complicated; however,
in general, high gains were required to guarantee stability, al-
though simulations suggest that the stability requirements are
quite conservative. Still, even when using reasonable gains, the
second controller was shown to be effective.

There is also potential for improvement due to the open prob-
lem related to the coupling term that is neglected in the control
design. Another improvement would be to remove the overpa-
rameterization that is required due to the projection algorithm.
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APPENDIX A

PROOF OF ATTITUDE EXTRACTION

One definition of a unit quaternion as it pertains to a rota-
tional transformation is given by Qd = (cos(δ/2), sin(δ/2)k̂),
where δ is an angle of rotation about the normalized axis
of rotation k̂. One possible solution for the angle and
axis of rotation can be found by using the scalar and
vector products, i.e., uTv = ‖u‖‖v‖ cos(δ), and S(v)u =
‖u‖‖v‖ sin(δ)k̂. From the definition of the scalar product, we
find cos(δ) = uTv/‖u‖2 , where we assume ‖u‖ = ‖v‖. The
result sin(δ) = 1/‖u‖2

√
(‖u‖2 + uTv) (‖u‖2 − uTv) follows

from the fact that sin2 (δ) = 1 − cos2 (δ). Applying the double
angle formula cos(δ) = 1 − 2 sin2 (δ/2), we obtain sin(δ/2) =

1/‖u‖
√

‖u‖2 −uTv
2 . Subsequently, the normalized axis of rota-

tion is given by k̂ = ((‖u‖2 + uTv)(‖u‖2 − uTv))−1/2S(v)u.
Therefore, the solution for the vector and scalar parts of the
quaternion are given by

k̂ sin (δ/2) =
1

‖u‖

√
1

2 (‖u‖2 + uTv)
S(v)u

cos(δ/2) =
sin(δ)

2 sin(δ/2)
=

1
‖u‖

√
‖u‖2 + uTv

2
.

�

APPENDIX B

PROOF OF THEOREM 1

In the following sections, we present the proof of the con-
trol law proposed in Section V-B. The proof is completed in a
number of stages. In subsection 1, we focus on the upper and
lower bounds for the system thrust as a result of the proposed
control law. In subsection 2, we analyze the system translational
dynamics, the dynamics of the estimation error, and the dynam-
ics of the angular velocity associated with the quaternion Qd .
The parts of the proof contained in Appendix B-1 and 2 are the
same for both proposed control laws. Appendix B-3 finalizes the
proof for the first proposed control law, where the proof for the
second control law can be found in Appendix C. Appendix D
provides derivatives of a number of functions that are necessary
to implement the controller.

1) Bounded Control: The proposed control laws are depen-
dent on an attitude extraction algorithm that encounters a singu-
larity defined by (32). Fortunately, the singularity can be avoided
if the third component of the virtual control law μd is bounded
such that μd3 = ẑTμd < g. Recall the expression for the sig-
nal μd given by (44). Due to Assumption 1, the acceleration of
the reference trajectory is bounded such that ẑTr̈ < δrz < g
and ‖r̈‖ < δr , where the parameters δr and δrz are known
a priori. Given the projection-based estimation law (47) and the
property (43), the disturbance estimate θ̂1 is bounded such that
‖θ̂1‖ < δa + kθ + εα . In addition, the function h(·), defined by
(11), is bounded such that 0 ≤ ‖h(·)‖ < 1. Consequently, the
signal μd is also bounded by

‖μd‖ < μ̄d = kp‖Γ−1
v ‖ + δr + δa + 2kθ + kv + εα (72)

|ẑTμd | < μ̄d3 = kp‖ẑTΓ−1
v ‖ + δrz + δa + 2kθ + kv + εα (73)

where due to (45), the bound on the third component of μd is
limited to |ẑTμd | = |μd3 | < μ̄d3 < g. As a result, we define

δμd
= g − μ̄d3 > 0. (74)

As a result of the bounds (72)–(74), the system thrust, given
by (33), is also bounded such that δμd

< ut < ūt , where ūt =
μ̄d + g. Therefore, the system thrust never vanishes and the
singularity in the attitude and thrust extraction (32) is avoided.

2) Translational and Quaternion Dynamics: Recall the ex-
pression for the velocity error dynamics defined by (25), and let
θ̃1 denote the following estimation error function:

θ̃1 = θa − θ̂1 − kθh(ṽ). (75)

Given the virtual control law μd defined by (44) and the estima-
tion error θ̃1 , the time derivative of the velocity error can now
be written as follows:

˙̃v = μ̃ − K1h(p̃) − K2h(ṽ) − θ̂1 + θa

= μ̃ − K1h(p̃) − kvh(ṽ) + θ̃ (76)

where K1 = kpΓ−1
v , and K2 = (kv + kθ ) I3×3 . Furthermore,

in light of Assumption 2 and the velocity error (76), the time
derivative of (75) is given by

˙̃
θ1 = −kθφh(ṽ)θ̃1 + τ1 − ˙̂

θ1 (77)

τ1 = −kθφh(ṽ) (μ̃ − K1h(p̃) − kvh(ṽ)) . (78)

The expressions for ˙̃v and ˙̃
θ1 are dependant on the error function

μ̃ = μ − μd . A more convenient notation is to express the error
function μ̃ in terms of the attitude error Q̃ = (q̃0 , q̃) = Q−1

d �
Q, where Qd is the desired attitude defined by (34) and (35). This
can be achieved if we consider the rotation matrix R̃ = RRT

d

(which corresponds to the unit quaternion Q̃) and the fact that
R̃ = I3×3 + 2S(q̃)2 − 2q̃0S(q̃) to obtain

μ̃ = WT
1 q̃ W1 = −2utS(q̄)R q̄ = S(ẑ)q̃ + q̃0 ẑ. (79)

Consequently, the expressions for ˙̃v and ˙̃
θ1 can be written as

functions of the attitude error q̃.
At this point, we focus our attention on the dynamics of

the attitude error in terms of the quaternion scalar q̃0 . From
(26), we note that the time derivative of q̃0 is given by ˙̃q0 =
1/2q̃T (Ωd − Ω), where from (36), we recall Ωd = M(μd)μ̇d .
Differentiating (44) in light of (47) and (76), we find the deriva-
tive μ̇d to be given by

μ̇d = r(3) + wβ + W2h(ṽ) + W3 q̃ + W4 ṽ

− (kθ + kv ) φh(ṽ)θ̃1 (80)

W2 = k2
v φh(ṽ)

W3 = −γθ1 γq (kθ + kv ) φh(ṽ)M(μd)T − kvφh(ṽ)WT
1

W4 = −γθ1 Γv − kpΓ−1
v φh(p̃)

wβ = kvkpφh(ṽ)Γ−1
v h(p̃) − γθ1 α(θ̂1 , δa + kθ , τ2) (81)
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from which we obtain the desired attitude dynamics

Ωd = M(μd)(r(3) + wβ + W2h(ṽ) + W3 q̃ + W4 ṽ)

− (kθ + kv )M(μd)φh(ṽ)θ̃1 . (82)

Since Ωd is not entirely known (due to the presence of the
signal θ̃1), it is necessary to study the upper bound of the unde-
sired terms in (82). For the most part, this analysis is straight-
forward except for the matrix M(μd). To determine an upper
bound for this matrix, we apply the Frobenius norm to the ex-
pression for M(μd) given by (37). For convenience, we let
ξ = col [ξ1 , ξ2 , ξ3 ] = μd − gẑ and find the value of the norm to
be given by ‖M(μd)‖F =

√
2/(‖ξ‖2 + ‖ξ‖|ξ3 |) + 1/‖ξ‖2 .

Since inf{‖ξ‖} = inf{|ξ3 |} = δμd
, we obtain

‖M(μd)‖F ≤
√

2
δμd

. (83)

We now propose the following Lyapunov function candidate:

V1 = kp(
√

1 + p̃Tp̃ − 1) +
1
2
ṽTΓv ṽ

+ 2γq (1 − q̃0) +
1

2γθ1

θ̃T
1 θ̃1 . (84)

Given (24), (26), (76)–(78), (82), and the adaptive estimation
law (48), we differentiate V1 to obtain

V̇1 = −kv ṽTΓvh(ṽ) − kθ

γθ1

θ̃T
1 φh(ṽ)θ̃1 − θ̃T

1 α(θ̂1 , δa + kθ , τ2)

+ q̃T(Φṽ + γq (Ω − M(μd)r(3)

− M(μd)(wβ + W2h(ṽ) + W3 q̃))) (85)

Φ = W1Γv − γqM(μd)W4 . (86)

3) Angular Velocity Error Dynamics—Controller 1: Recall
the expression for the angular velocity error is given by Ω̃ =
Ω − β1 . Applying the virtual control law β1 , which is given by
(50), to V̇1 defined by (85), we obtain

V̇1 = −kv ṽTΓvh(ṽ) − kθ

γθ1

θ̃T
1 φh(ṽ)θ̃1 + γq q̃

TΩ̃

− θ̃T
1 α(θ̂1 , δa + kθ , τ2) − γq q̃

TM(μd)W2h(ṽ)

− γq q̃
T(Kq + M(μd)W3)q̃. (87)

To further simplify this result, using (14) and (83), we apply
Young’s inequality to obtain the following upper bound:

|γq q̃
TM(μd)W2h(ṽ)| ≤ γqk

2
v

2ε1
q̃Tq̃ +

γqk
2
v ε1

δ2
μd

ṽTh(ṽ) (88)

where ε1 > 0. Furthermore, due to ‖S(q̄)‖ ≤ 1 and ut < ūt =
g + μ̄d , we also find

‖M(μd)W3‖ ≤ 2
√

2kv ūt

δμd

+
2γθ1 γq (kθ + kv )

δ2
μd

. (89)

Due to the bounds (88) and (89), the Lyapunov function deriva-
tive (87) is bounded by

V̇1 ≤ −ṽTΔvh(ṽ) − γq q̃
TΔq q̃ −

kθ

γθ1

θ̃T
1 φh(ṽ)θ̃1

− θ̃T
1 α(θ̂1 , δa + kθ , τ2) + γq q̃

TΩ̃, (90)

Δv = kv

(
Γv − γqkv ε1

δ2
μd

I3×3

)
(91)

Δq = Kq −
(

2
√

2kv ūtδμd
+ 2γθ1 γq (kθ + kv )
δ2
μd

+
k2

v

2ε1

)
I3×3 .

(92)

Provided that (57) is satisfied, then Δv and Δq are positive
definite matrices. Introducing the error signals θ̃2 = θa − θ̂2
and θ̃3 = θb − θ̂3 , we introduce the second Lyapunov function

V2 = V1 +
1
2
Ω̃TIbΩ̃ +

1
2γθ2

θ̃T
2 θ̃2 +

1
2γθ3

θ̃T
3 θ̃3

= kp(
√

1 + p̃Tp̃ − 1) +
1
2
XTCX (93)

X = col[ṽ, 1 − q̃0 , q̃, Ω̃, θ̃1 , θ̃2 , θ̃3 ] (94)

C = diag[Γv , 4γq I4×4 , Ib , γθ1 I3×3 , γθ2 I3×3 , γθ3 I3×3 ]. (95)

The time derivative of (93) is subsequently found using (90), in
addition to the control and estimation laws defined by (54)–(56),
to obtain the following result:

V̇2 ≤ −ṽTΔvh(ṽ) − γq q̃
TΔq q̃ −

kθ

γθ1

θ̃T
1 φh(ṽ)θ̃1

− Ω̃TKω Ω̃ − θ̃T
1 α(θ̂1 , δa + kθ , τ2)

− θ̃T
2 α(θ̂2 , δa ,−f̄T

β1
IbΩ̃) − θ̃T

3 α(θ̂3 , δb ,−RTS(ẑ)Ω̃).

Due to the property of the projection law given by (43), θ̃T
i α >

0, and the Lyapunov function derivative can be simplified as
follows:

V̇2 ≤ −ṽTΔvh(ṽ) − γq q̃
TΔq q̃ −

kθ

γθ1

θ̃T
1 φh(ṽ)θ̃1 − Ω̃TKω Ω̃.

Therefore, V̇2 ≤ 0 and the states (p̃, ṽ, Ω̃) are bounded.
The attitude error Q̃ is bounded by definition, and the adap-
tive estimation error θ̃1,2,3 are bounded due to Assump-
tion 2 and due to the property of the projection mecha-
nism (43). Applying Barbalat’s Lemma, V̈2 is bounded due
to Assumption 1, which shows that (p̃, ṽ, q̃, Ω̃, θ̃1) → 0 as
t → ∞. Since θ̃1 → 0 and ṽ → 0, then θ̂1 → θa . In addi-
tion, since ˙̃v → 0, and ˙̃v = WT

1 q̃ − K1h(p̃) − (kv + kθ )h(ṽ) −
θ̂1 + θa = −K1h(p̃) = 0, then p̃ → 0, which satisfies the track-
ing objective.

APPENDIX C

PROOF OF THEOREM 2

In this section, we present the proof of the control law pro-
posed in Section V-C. The two proposed controllers differ due
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to the choice of the virtual control law for the angular velocity.
Consequently, the sections pertaining to the bounded control
and translational and quaternion dynamics are similar to both
proofs. Therefore, before proceeding further see Appendix B-1
and 2. Based on the framework outlined in Appendix B-1 and
2, the following section finalizes the proof of Theorem 2. Ap-
pendix D provides derivatives of a number of functions that are
necessary to implement the controller.

Using the second control scheme, the angular velocity error
is now defined as Ω̃ = Ω − β2 , where the virtual control law β2
is given by (61). To study the stability of the system using the
second controller, we use the same Lyapunov function candidate
V1 given by (84). Using the expression for V̇1 given by (85), in
addition to the virtual control law β2 , the bounds defined by
(88) and (89), and the matrices (91) and (92), the upper bound
of the V̇1 is now given by

V̇1 ≤ − kθ

γθ1

θ̃T
1 φh(ṽ)θ̃1 − θ̃T

1 α(θ̂1 , δa + kθ , τ2) + q̃TΦṽ

− ṽTΔvh(ṽ) − γq q̃
TΔq q̃ + γq q̃

TΩ̃.

Using (86) in addition to (79) and (81), the expression for Φ
can also be written as follows:

Φ = (γθ1 γqM(μd) − 2utS(q̄)R) Γv + γqkpM(μd)Γ−1
v φh(p̃).

Due to bound of the matrix M(μd) given by (83) and the
fact ut < ūt = g + μ̄d , we find the upper bound of the matrix
Φ given by

‖Φ‖ ≤
(√

2γqγθ1

δμd

+ 2ūt

)
‖Γv‖ +

√
2γqkp

δμd

‖Γ−1
v ‖.

From the definition of δ1 given by (66), we see that ‖Φ‖ ≤ δ1 ,
and therefore, using Young’s inequality, we find

|q̃TΦṽ| ≤ δ2
1

2ε2
q̃Tq̃ +

ε2

2
ṽTṽ

for any ε2 > 0. Therefore, the time derivative of the Lyapunov
function V̇1 is modified as follows:

V̇1 ≤ − kθ

γθ1

θ̃T
1 φh(ṽ)θ̃1 − θ̃T

1 α(θ̂1 , δa , τ2) + γq q̃
TΩ̃

− q̃TΔ̄q q̃ − ṽTΔ̄v ṽ (96)

where we define the matrices

Δ̄q = γqΔq −
δ2
1

2ε2
I3×3

Δ̄v =
1

(1 + ṽTṽ)1/2 Δv − ε2

2
I3×3 . (97)

Using the two estimation error functions θ̃2 = θa − θ̂2 and θ̃3 =
θb − θ̂3 , we introduce the following Lyapunov function:

V2 = V1 +
1
2
Ω̃TIbΩ̃ +

1
2γθ2

θ̃T
2 θ̃2 +

1
2γθ3

θ̃T
3 θ̃3

= kp(
√

1 + p̃Tp̃ − 1) +
1
2
XTCX (98)

where X and C are given by (94) and (95), respectively. In light
of (96), the estimation laws (55) and (56) and the control law
(63), we find the following upper bound for V̇2 :

V̇2 ≤− ṽTΔ̄vh(ṽ) − γq q̃
TΔ̄q q̃ −

kθ

γθ1

θ̃T
1 φh(ṽ)θ̃1

− Ω̃TKω Ω̃ − θ̃T
1 α(θ̂1 , δa + kθ , τ2)

− θ̃T
2 α(θ̂2 , δa ,−f̄T

β2
IbΩ̃) − θ̃T

3 α(θ̂3 , δb ,−RTS(ẑ)Ω̃).

Due to the property of the projection law (43), θ̃T
i α > 0, and

V̇2 ≤ −ṽTΔ̄vh(ṽ) − γq q̃
TΔ̄q q̃ −

kθ

γθ1

θ̃T
1 φh(ṽ)θ̃1 − Ω̃TKω Ω̃.

Given the requirements (64) and (65) are satisfied, then Δ̄q >
0 and Δv > 0. However, in light of (97), to ensure that Δ̄v > 0,
we must also satisfy the following inequality:

‖ṽ‖2 <
4
ε2
2
‖Δv‖2 − 1.

Due to the definition of the Lyapunov function (98), the fol-
lowing inequality is always satisfied:

1
2
λmin(Γv )‖ṽ‖2 ≤ V2 ≤ kp(

√
1 + p̃Tp̃ − 1) + XTC̄X

where C̄ is given by (71), which we can further simplify to
obtain

‖ṽ‖2 ≤ 2λmin(Γv )−1(kp(
√

1 + p̃Tp̃ − 1) + XTC̄X).

Therefore, to ensure V̇2 ≤ 0, it is sufficient to have

2λmin(Γv )−1(kp(
√

1 + p̃(0)Tp̃(0) − 1) + X(0)TC̄X(0))

<
4
ε2
2
‖Δv‖2 − 1

which is satisfied due to (68), and consequently, Δ̄v is positive
definite. Therefore, V̇2 ≤ 0 and the states (p̃, ṽ, Ω̃) are bounded.
The attitude error Q̃ is bounded by definition, and the adap-
tive estimation error θ̃1,2,3 are bounded due to Assumption 2
and due to the property of the projection mechanism (43).
Applying Barbalat’s lemma, V̈2 is bounded due to Assump-
tion 1, which shows that (p̃, ṽ, q̃, Ω̃, θ̃1) → 0 as t → ∞. Since
θ̃1 → 0 and ṽ → 0, then θ̂1 → θa . In addition, since ˙̃v → 0,
and ˙̃v = WT

1 q̃ − K1h(p̃) − K2h(ṽ) − θ̂1 + θa = −K1h(p̃) =
0, then p̃ → 0, which satisfies the tracking objective.

APPENDIX D

DERIVATIVES OF ANGULAR VELOCITY VIRTUAL CONTROL

LAWS β2 AND β1

In this section, we obtain the derivatives of the two virtual
control laws for the angular velocity β1 and β2 , which are given
by (50) and (61), respectively. Due to the complexity of the
virtual control laws, we begin by evaluating the derivatives of
several signals before continuing to the derivatives of the virtual
control laws. We first focus on the partial derivative of the ma-
trix M(μd) and its transpose. Let μd = col [μd1 , μd2 , μd3 ] and
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v = col [v1 , v2 , v3 ] denote two arbitrary vectors, and define the
functions Z1 , Z2 : R3 × R3 → R3 such that

Z1(μd, v) :=
∂

∂μd
M(μd)v Z2(μd, v) :=

∂

∂μd
M(μd)Tv.

From the definition of M(μd) given by (37), after some
straightforward albeit tedious calculations, we evaluate these
functions to be

Z1(μd, v) = γ−1
M M(μd)vfγ + γM Λ1(μd, v)

Z2(μd, v) = γ−1
M M(μd)Tvfγ + γM Λ2(μd, v)

fγ = γ2
M (gẑ − μd)

T (3c1I3×3 + S(ẑ)S(gẑ − μd))

where γM = ‖μd − gẑ‖−2c−1
1 , c1 = ‖μd − gẑ‖ + g − μd3 ,

and

Λ1 =

⎛⎜⎝ c1v2

−c1v1

μd2 v1 − μd1 v2

⎞⎟⎠ α1(μd)T

+

⎛⎜⎝ −μd2 v1 −μd1 v1 − 2v2μd2 + c1v3 0
2v1μd1 + v2μd2 − c1v3 μd1 v2 0

−utv2 utv1 0

⎞⎟⎠
+ ( utv2 + μd2 v3 −utv1 − μd1 v3 0 )T α2(μd)T,

Λ2 =

⎛⎜⎝ 2v2μd1 − μd2 v1 utv3 − μd1 v1 0
μd2 v2 − utv3 μd1 v2 − 2μd2 v1 0

−c1v2 c1v2 0

⎞⎟⎠

+

⎛⎜⎝ μd2 v3 − c1v2

c1v1 − μd1 v3

0

⎞⎟⎠ α1(μd)T

+ (−utv2 utv1 μd2 v1 − μd1 v2 )Tα2(μd)T

with α1 = (μd − gẑ) /‖μd − gẑ‖ and α2 = α1 − ẑ.
In order to obtain the derivative of the projection law α, we

first focus on obtaining the derivative of the signal τ2 . Leading
up to this goal, we first differentiate several signals. Due to the
unknown parameter θa , in general, we group the derivative of
an arbitrary signal x into known and unknown components as
ẋ = fx + f̄xθa .

Recall the expression for the signal μ̇d given by (80). This
result can also be written as μ̇d = fμd

+ f̄μd
θa , where the func-

tions fμd
and f̄μd

are given by

fμd
= r(3) + wβ + (W2 + kθK2φh(ṽ)) h(ṽ) + W3 q̃

+ W4 ṽ + K2φh(ṽ)θ̂1

f̄μd
= −K2φh(ṽ)

where K2 = (kθ + kv ) I3×3 . Similarly, in light of (26), the
derivative of ˙̃q can be written as ˙̃q = f

q̃
+ f̄

q̃
θa using the fol-

lowing expressions:

f
q̃

=
1
2

(q̃0I + S(q̃)) Ω +
1
2

(S(q̃) − q̃0I) (M(μd)fμd
)

f̄
q̃

=
1
2

(S(q̃) − q̃0I)
(
M(μd)f̄μd

)
.

From the definition of μ̃ given by (18), the derivative ˙̃μ = fμ̃ +
f̄μ̃ θa is obtained, where

fμ̃ = −(I + u−1
t RTẑ(μd − gẑ)T)fμd

− utR
TS(Ω)ẑ

f̄μ̃ = −(I + u−1
t RTẑ(μd − gẑ)T)f̄μd

.

The expression for ˙̃v, previously given by (76), can also be
given by ˙̃v = fṽ1 + θ̃1 = fṽ2 + θa , where the functions fṽ1 and
fṽ2 are given by

fṽ1 = −K1h(p̃) − kvh(ṽ) + μ̃

fṽ2 = −K1h(p̃) − K2h(ṽ) + μ̃ − θ̂1 .

Since we require the derivative of the signal fṽ1 , we also find
ḟṽ1 = ffṽ

+ f̄fṽ
, where

ffṽ
= −K1φh(p̃)ṽ − kvφh(ṽ)fṽ2 + fμ̃

f̄fṽ
= −kvφh(ṽ) + f̄μ̃ .

At this point we require the derivative of the signal τ2 , given
by (48). Using the partial derivative of φ(u) given by (13), we
obtain τ̇2 = fτ2 + f̄τ2 θa , where

fτ2 = Γv fṽ2 −
kθ

γθ1

(fφh
(ṽ, fṽ1 )fṽ2 − φh(ṽ)K1φh(p̃)ṽ

− kvφh(ṽ)2fṽ2 + φh(ṽ)fμ̃)

+ γq (fφh
(ṽ,K2M(μd)Tq̃)fṽ2 + φh(ṽ)K2Z2(μd, q̃)fμd

+ φh(ṽ)K2M(μd)Tfq̃ ) (99)

f̄τ2 = Γv − kθ

γθ1

(fφh
(ṽ, fṽ1 ) − k2

v φh(ṽ)2 + φh(ṽ)f̄μ̃)

+ γq (fφh
(ṽ,K2M(μd)Tq̃) + φh(ṽ)K2Z2(μd, q̃)f̄μd

+ φh(ṽ)K2M(μd)Tf̄q̃ ). (100)

In light of the work presented in [16] and using the aforemen-
tioned derivatives, we now differentiate the projection law α.
Using the projection algorithm defined by (39)–(42), in addi-
tion to the derivative of τ2 as defined by (99) and (100), we
obtain α̇(θ̂1 , δa + kθ , τ2) = fα + f̄αθa , where the functions fα

and f̄α are given by

fα = −kα η̇1η2 θ̂1 − kαη1η2
˙̂
θ1

− kαη1
η2

η2 − θ̂1τ2
(τT

2
˙̂
θ1 + θ̂T

1 fτ2 )θ̂1

f̄α = −kαη1
η2

η2 − θ̂T
1 τ2

θ̂1 θ̂
T
1 f̄τ2

η̇1 =

{
4(θ̂T

1 θ̂1 − θ2
0 )θ̂T

1
˙̂
θ1 , if ‖θ̂1‖2 > θ2

0

0, otherwise.

Having obtained the derivative of α, we differentiate the sig-
nal wβ given by (51) to obtain ẇβ = fwβ

+ f̄wβ
θa with

fwβ
= kpkv fφh

(
ṽ,Γ−1

v h(p̃)
)
fṽ2 + kpkvφh(ṽ)Γ−1

v φh(p̃)ṽ

− γθ1 fα

f̄wβ
= kpkv fφh

(
ṽ,Γ−1

v h(p̃)
)
− γθ1 f̄α .
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Using the expression for q̄ given by (49), we also find ˙̄q =
fq̄ + f̄q̄ θa , where

fq̄ = S(ẑ)f
q̃
+

1
2
ẑ q̃TM(μd)fμd

− 1
2
ẑ q̃TΩ

f̄q̄ = S(ẑ)f̄
q̃
+

1
2
ẑ q̃TM(μd)f̄μd

.

In light of the earlier results, we finally obtain the derivative
of the virtual control law for the second controller β̇2 = fβ2 +
f̄β2 θa , where

fβ2 = Z1(μd, r
(3) + wβ )fμd

+ M(μd)(r(4) + fwβ
) − Kqfq̃

(101)

f̄β2 = Z1(μd, r
(3) + wβ )f̄μd

+ M(μd)f̄wβ
− Kq f̄q̃

(102)

which is used to specify the derivative of the virtual control law
for the first controller β̇1 = fβ1 + f̄β1 θa , where

fβ1 = fβ2 − γθ1 Z1 (μd,Γv ṽ) fμd
− γθ1 M(μd)Γv fṽ2

− kpZ1(μd,Γ−1
v φh(p̃)ṽ)fμd

− kpM(μd)Γ−1
v fφh

(p̃, ṽ)ṽ

− kpM(μd)Γ−1
v φh(p̃)fṽ2

+
2

γqut
S(q̄)RΓv ṽ (μd − gẑ)T fμd

− 2ut

γq
S(RΓv ṽ)fq̄

− 2ut

γq
S(q̄)S(Ω)RΓv ṽ +

2ut

γq
S(q̄)RΓv fṽ2 (103)

f̄β1 = f̄β2 − γθ1 Z1 (μd,Γv ṽ) f̄μd
− γθ1 M(μd)Γv

− kpZ1
(
μd,Γ−1

v φh(p̃)ṽ
)
f̄μd

− kpM(μd)Γ−1
v φh(p̃)

+
2

γqut
S(q̄)RΓv ṽ (μd − gẑ)T f̄μd

− 2ut

γq
S(RΓv ṽ)f̄q̄

+
2ut

γq
S(q̄)RΓv . (104)
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