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Abstract

In this paper, we propose some adaptive iterative learning control (ILC) schemes for trajectory tracking of rigid robot manipulators,
with unknown parameters, performing repetitive tasks. The proposed control schemes are based upon the use of a proportional-derivative
(PD) feedback structure, for which an iterative term is added to cope with the unknown parameters and disturbances. The control design
is very simple in the sense that the only requirement on the PD and learning gains is the positive de3niteness condition and the bounds
of the robot parameters are not needed. In contrast to classical ILC schemes where the number of iterative variables is generally equal to
the number of control inputs, the second controller proposed in this paper uses just two iterative variables, which is an interesting fact
from a practical point of view since it contributes considerably to memory space saving in real-time implementations. We also show that
it is possible to use a single iterative variable in the control scheme if some bounds of the system parameters are known. Furthermore,
the resetting condition is relaxed to a certain extent for a certain class of reference trajectories. Finally, simulation results are provided to
illustrate the e7ectiveness of the proposed controllers.
? 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

For the sake of implementation simplicity, the use of
classical linear controllers such as PD and PID in robotics
applications has attracted researchers and industrials for
many decades. In fact, a PD controller with gravity compen-
sation is able to globally asymptotically stabilize the joint
positions of rigid robot manipulators at a given set-point
as long as the gravity forces can be instantaneously eval-
uated or at least known at the desired 3nal con3guration
(Takegaki & Arimoto, 1981; Spong & Vidyasagar, 1989;
Tomei, 1991). This condition is not easy to satisfy in prac-
tical situations because the gravity terms generally depend
on the unknown and possibly time-varying payloads manip-
ulated by the robot during a given task. Without compen-
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sating for the gravity forces, the PD control scheme leads
to a steady-state error, which can eventually be reduced by
increasing the proportional and derivative gains (high-gain
feedback) or by introducing an integral action. The draw-
back of the high-gain feedback solution is related to the
fact that it may saturate the joint actuators or/and excite
high-frequency modes. On the other hand, with the PID
control scheme only local asymptotic stability was proven
under some relatively complex conditions until the introduc-
tion of the passivity property for robot manipulators, which
allowed to design globally asymptotically stabilizing PID
controllers without gravity compensation (Arimoto, 1996).
Again this result requires the control gains to satisfy some
relatively complex relations involving particularly the robot
manipulator dynamics. Besides that, owing to the physical
property that the robot parameters appear linearly in the
Lagrange equation, another interesting approach has been
derived for trajectory tracking instead of set-point regulation
(Slotine & Li, 1987; Slotine & Li, 1991). This approach
consists basically of a PD controller with an additional term
generated by an appropriate adaptive rule in order to cope
with the unknown parameters assumed to be time-invariant.
Since robot manipulators are generally used in repeti-

tive tasks, one should take advantage of the fact that the
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reference trajectory is repeated over a given operation time.
In this context, ILC techniques can be applied in order to
enhance the tracking performance from operation to oper-
ation. Since the early works of Arimoto, Kawamura, and
Miyazaki (1984), Casalino and Bartolini (1984) and Craig
(1984), several ILC schemes for robot manipulators have
been proposed in the literature, see for instance Arimoto
(1996), Bondi, Casalino, and Gambardella (1988), De Luca,
Paesano, and Ulivi (1992), Horowitz (1993), Kavli (1992),
Kawamura, Miyazaki, and Arimoto (1988) and Moon,
Doh, and Chung (1997). These ILC algorithms, whether
developed for the linearized model or the nonlinear model,
are generally based upon the contraction mapping theory
and require a certain a priori knowledge of the system
dynamics.
On the other hand, another type of ILC algorithms has

been developed using Lyapunov and Lyapunov-like meth-
ods. In fact, in French and Rogers (2000) a standard Lya-
punov design is used to solve ILC problems. The idea con-
sists of using a standard adaptive controller and to start the
parameter estimates with their 3nal values obtained at the
preceding iteration. In the same spirit, Choi and Lee (2000)
proposed an adaptive ILC for uncertain robot manipulators,
where the uncertain parameters are estimated along the time
horizon, whereas the repetitive disturbances are compen-
sated along the iteration horizon. However, as in standard
adaptive control design, this technique requires the unknown
system parameters to be constant. In Kuc, Nam and Lee
(1991), Ham, Qu, and Kaloust (1995), Ham, Qu, and
Johnson (2000), Xu (2002), Xu, Badrinath, and Qu
(2000), Xu and Tan (2001), several ILC algorithms have
been proposed based upon the use of a positive de3nite
Lyapunov-like sequence which is made monotonically
decreasing along the iteration axis via a suitable choice
of the control input. In contrast to the standard adap-
tive control, this technique is shown to be able to handle
systems with time-varying parameters since the adapta-
tion law in this case is nothing else but a discrete inte-
gration along the iteration axis. Based on this approach,
Kuc et al. (1991) proposed an ILC scheme for the lin-
earized robot manipulator model, while in Ham et al.
(2000), Xu et al. (2000) nonlinear ILC schemes have been
proposed for the nonlinear model. Again these control
laws require a certain a priori knowledge of the system
dynamics.
In this paper, we present three simple ILC schemes for

the position tracking problem of rigid robot manipulators.
The control schemes are built around a classical PD feed-
back structure, for which an iterative term is added in order
to cope with the unknown parameters and disturbances. The
convergence of the tracking error to zero, over the whole
3nite time-interval, is guaranteed when the iteration num-
ber tends to in3nity. The proof of convergence is based
upon the use of a Lyapunov-like positive de3nite sequence,
which is made monotonically decreasing through an ade-
quate choice of the control law and the iterative adaptation

rule. In this framework, the acceleration measurements and
the bounds of the robot parameters are not needed and the
only requirement on the control gains is the positive de3-
niteness condition. On the other hand, one of the proposed
controllers uses just two iterative variables, which is an in-
teresting advantage from a practical point of view. We also
show that it is possible to bring down the number of iter-
ative variables to one, at the expense of the knowledge of
some bounds of the system parameters. Furthermore, the
resetting condition is relaxed to a certain extent for a cer-
tain class of reference trajectories. Finally, simulation results
are provided to illustrate the e7ectiveness of the proposed
controllers.

2. Problem formulation

Using the Lagrangian formulation, the equations of mo-
tion of a n degrees-of-freedom rigid manipulator may be
expressed by

M (qk(t)) Lqk(t) + C(qk(t); q̇k(t))q̇k(t) + G(qk(t))

=	k(t) + dk(t); (1)

where t denotes the time and the nonnegative integer
k ∈Z+ denotes the operation or iteration number. The sig-
nals qk ∈Rn, q̇k ∈Rn and Lqk ∈Rn are the joint position,
joint velocity and joint acceleration vectors, respectively,
at the iteration k. M (qk)∈Rn×n is the inertia matrix,
C(qk ; q̇k)q̇k ∈Rn is a vector resulting from Coriolis and
centrifugal forces. G(qk)∈Rn is the vector resulting from
the gravitational forces. 	k ∈Rn is the control input vector
containing the torques and forces to be applied at each
joint. dk(t)∈Rn is the vector containing the unmodeled
dynamics and other unknown external disturbances.
Assuming that the joint positions and the joint velocities

are available for feedback, our objective is to design a control
law 	k(t) guaranteeing the boundedness of qk(t), ∀t ∈ [0; T ]
and ∀k ∈Z+, and the convergence of qk(t) to the desired
reference trajectory qd(t) for all t ∈ [0; T ] when k tends to
in3nity.
Throughout this paper, we will use theLpe norm de3ned

as follows:

‖x(t)‖pe ,




(∫ t

0
‖x(	)‖p d	

)1=p

if p ∈ [0; ∞);

sup
06	6t

‖x(	)‖ if p = ∞;

where ‖x‖ denotes any norm of x, and t belongs to the 3nite
interval [0; T ]. We say that x ∈Lpe when ‖x‖pe exists (i.e.,
when ‖x‖pe is 3nite).
We assume that all the system parameters are unknown

and we make the following reasonable assumptions:

(A1) The reference trajectory and its 3rst and second
time-derivative, namely qd(t), q̇d(t) and Lqd(t), as well
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as the disturbance dk(t) are bounded ∀t ∈ [0; T ] and
∀k ∈Z+.

(A2) The resetting condition is satis3ed, i.e., q̇d(0) −
q̇k(0) = qd(0) − qk(0) = 0, ∀k ∈Z+.

We will also need the following properties, which are com-
mon to robot manipulators

(P1) M (qk)∈Rn×n is symmetric, bounded, and positive
de3nite.

(P2) The matrix Ṁ (qk) − 2C(qk ; q̇k) is skew symmetric,
hence xT(Ṁ (qk) − 2C(qk ; q̇k))x = 0; ∀x ∈Rn.

(P3) G(qk) + C(qk ; q̇k)q̇d(t) = �(qk ; q̇k)�(t), where
�(qk ; q̇k)∈Rn×(m−1) is a known matrix and �(t)∈
Rm−1 is an unknown continuous vector over [0; T ].

(P4) ‖C(qk ; q̇k)‖6 kc‖q̇k‖ and ‖G(qk)‖ ¡ kg, ∀t ∈ [0; T ]
and ∀k ∈Z+, where kc and kg are unknown positive
parameters.

Note that (P1–P3) are needed to derive the result in The-
orem 1 and (P1;P2;P4) are needed to derive the result in
Theorems 2 and 3. Assumption (A2) will be relaxed to a
certain extent in Theorem 4.

3. Adaptive ILC design

Now, one can state the following result

Theorem 1. Consider system (1) with properties (P1–P3)
under the following control law:

	k(t) = KPq̃k(t) + KD ˙̃qk(t) + �(qk ; q̇k ; ˙̃qk)�̂k(t); (2)

with

�̂k(t) = �̂k−1(t) + ��T(qk ; q̇k ; ˙̃qk) ˙̃qk(t); (3)

where �̂−1(t) = 0, q̃k(t) = qd(t) − qk(t) and ˙̃qk(t) =
q̇d(t) − q̇k(t). The matrix �(qk ; q̇k ; ˙̃qk)∈Rn×m is de4ned
as �(qk ; q̇k ; ˙̃qk) , [�(qk ; q̇k) sgn( ˙̃qk)], where sgn( ˙̃qk)
is the vector obtained by applying the signum func-
tion to all elements of ˙̃qk . The matrices KP ∈Rn×n,
KD ∈Rn×n and � ∈Rm×m are symmetric positive def-
inite. Let assumptions (A1–A2) be satis4ed, then
q̃k(t)∈L∞e, ˙̃qk(t)∈L∞e, 	k(t)∈L2e for all k ∈Z+ and
limk→∞ q̃k(t) = limk→∞ ˙̃qk(t) = 0, ∀t ∈ [0; T ].

The proof of this theorem is in three parts. The 3rst part
consists of taking a positive de3nite Lyapunov-like compos-
ite energy function (Xu, 2002; Xu& Tan, 2001), namely Wk ,
and show that this sequence is non-increasing with respect to
k and hence bounded if W0 is bounded. In the second part, we
show that W0(t) is bounded for all t ∈ [0; T ]. Finally, in the
third part, we show that limk→∞ q̃k(t) = limk→∞ ˙̃qk(t) = 0,
∀t ∈ [0; T ].

Proof. Part 1: Let us consider the following Lyapunov-like
composite energy function 1 :

Wk( ˙̃qk(t); q̃k(t); �̃k(t)) = Vk( ˙̃qk(t); q̃k(t))

+
1
2

∫ t

0
�̃T

k (	)�−1�̃k(	) d	; (4)

with �̃k(t)=�(t)− �̂k(t), where �(t)= [�T(t) �]T ∈Rm and
�̂k(t) = [�̂T

k (t) �̂k(t)]T is the estimated value of �(t). The
unknown vector �(t) is de3ned in (P3) and the unknown
parameter � is obtained according to (P1) and (A1) such
that ‖M (qk) Lqd − dk‖6 �, ∀t ∈ [0; T ] and ∀k ∈Z+.
The term Vk( ˙̃qk(t); q̃k(t)) in (4) is chosen as follows

Vk( ˙̃qk(t); q̃k(t)) = 1
2
˙̃qT

k M (qk) ˙̃qk + 1
2 q̃T

k KPq̃k : (5)

The di7erence of Wk is given by

SWk = Wk − Wk−1 = Vk − Vk−1

+
1
2

∫ t

0
(�̃T

k �−1�̃k − �̃T
k−1�−1�̃k−1) d	

= Vk − Vk−1 − 1
2

∫ t

0
( T�T

k �−1 T�k + 2 T�T
k �−1�̃k) d	; (6)

where T�k = �̂k − �̂k−1. On the other hand, one can rewrite
Vk as follows

Vk( ˙̃qk(t); q̃k(t)) = Vk( ˙̃qk(0); q̃k(0))

+
∫ t

0

(
˙̃qT

k M L̃qk +
1
2
˙̃qT

k Ṁ ˙̃qk + ˙̃qT
k KPq̃k

)
d	: (7)

Now, using (1) and (P2;P3), Eq. (7) leads to

Vk( ˙̃qk(t); q̃k(t)) = Vk( ˙̃qk(0); q̃k(0))

+
∫ t

0

˙̃qT
k [M (qk) Lqd − dk + C(qk ; q̇k)q̇d

+G(qk) + KPq̃k − 	k ] d	

6 Vk( ˙̃qk(0); q̃k(0))

+
∫ t

0

˙̃qT
k (�(qk ; q̇k)� + KPq̃k

+� sgn( ˙̃qk) − 	k) d	

1 Throughout this paper, we will use the abusive notation Wk (t) and
Vk (t) instead of Wk ( ˙̃qk (t); q̃k (t); �̃k (t)) and Vk ( ˙̃qk (t); q̃k (t)). We will also
use Wk and Vk instead of Wk (t) and Vk (t) where this does not lead to
any confusion.
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6 Vk( ˙̃qk(0); q̃k(0)) +
∫ t

0

˙̃qT
k (�(qk ; q̇k ; ˙̃qk)�

+KPq̃k − 	k) d	: (8)

Now, substituting (2) in (8) we obtain

Vk( ˙̃qk(t); q̃k(t))6 Vk( ˙̃qk(0); q̃k(0))

+
∫ t

0

˙̃qT
k (�(qk ; q̇k ; ˙̃qk)�̃k − KD ˙̃qk) d	:

(9)

Using (3), (9) and (A2), Eq. (6) leads to

SWk 6−Vk−1 − 1
2

∫ t

0

˙̃qT
k (�(qk ; q̇k ; ˙̃qk)��T(qk ; q̇k ; ˙̃qk)

+2KD) ˙̃qk d	6 0: (10)

Hence, Wk is a non-increasing sequence. Thus if W0 is
bounded one can conclude that Wk is bounded. In Part 2
of the Proof we will show that W0(t) is bounded for all
t ∈ [0; T ]. Hence, q̃k(t), ˙̃qk(t) and

∫ t
0 �̃T

k (	)�−1�̃k(	) d	 are
bounded for all k ∈Z+ and all t ∈ [0; T ]. Since �(t) is con-
tinuous over [0; T ], the boundedness of

∫ t
0 �̃T

k (	)�−1�̃k(	) d	
implies the boundedness of

∫ t
0 �̂T

k (	)�−1�̂k(	) d	. Conse-
quently, one can conclude that 	k(t)∈L2e for all k ∈Z+.

Part 2: Now, we will show that W0(t) is bounded over
the time interval [0; T ]. In fact, considering (4) with k = 0,
the time-derivative of W0 can be bounded as follows

Ẇ 06 ˙̃qT
0 (�(q0; q̇0; ˙̃q0)�̃0 − KD ˙̃q0) +

1
2

�̃T
0�−1�̃0: (11)

Since �̂−1(t)=0, one has �̂0(t)=��T(q0; q̇0; ˙̃q0) ˙̃q0(t). Hence

Ẇ 06− ˙̃qT
0KD ˙̃q0 +

(
�̂T
0 +

1
2

�̃T
0

)
�−1�̃0

6− ˙̃qT
0KD ˙̃q0 − 1

2
�̃T
0�−1�̃0 + � T�−1�̃0: (12)

Using Young’s inequality, we have

� T�−1�̃06K‖�−1�̃0‖2 + 1
4K

‖�‖2

for anyK¿ 0. Hence,

Ẇ 06− "1‖ ˙̃q0‖2 − "2‖�̃0‖2 + 1
4K

‖�‖2; (13)

with "1 = #min(KD), "2 = 1
2 #min(�−1) −K#2

max(�
−1) and

0¡K6 #min(�−1)=2#2
max(�

−1), where #min(∗)(#max(∗))
denotes the minimal (maximal) eigenvalue of (∗). Since �
is continuous over [0; T ], it is clear that it is bounded over
[0; T ], i.e., ‖�‖∞e 6 �max. Hence, one can conclude from
(13) that Ẇ 0(t)6 �2

max=(4K), which implies that W0(t) is
uniformly continuous and thus bounded over [0; T ].

Part 3: Note that Wk can be written as follows Wk =W0 +∑k
j=1 SWj. Hence, using (10), one has

Wk 6W0 −
k∑

j=1

Vj−1

6W0 − 1
2

k∑
j=1

q̃T
j−1KPq̃j−1 − 1

2

k∑
j=1

˙̃qT
j−1M (qj−1) ˙̃qj−1;

(14)

which implies that

k∑
j=1

q̃T
j−1KPq̃j−1 +

k∑
j=1

˙̃qT
j−1M (qj−1) ˙̃qj−1

6 2(W0 − Wk)6 2W0:

Hence, limk→∞ q̃k(t)= limk→∞ ˙̃qk(t)=0, ∀t ∈ [0; T ], since
Wk(t) is bounded ∀k ∈Z+, ∀t ∈ [0; T ].

Note that under properties (P1–P3) the control law (2)–
(3) involves m iterative parameters, where m is generally
larger than the number of degrees-of-freedom n. It also re-
quires the knowledge of the matrix �(qk ; q̇k). However, by
using (P4) instead of (P3), the knowledge of the matrix
�(qk ; q̇k) is not required anymore and the number of itera-
tive parameters is reduced to two as stated in the following
theorem.

Theorem 2. Consider system (1)with properties (P1;P2;P4)
under the following control law:

	k(t) = KPq̃k(t) + KD ˙̃qk(t) + %( ˙̃qk)�̂k(t) (15)

with

�̂k(t) = �̂k−1(t) + �%T( ˙̃qk) ˙̃qk(t); (16)

where �̂−1(t) = 0. The matrices KP ∈Rn×n, KD ∈Rn×n

and � ∈R2×2 are symmetric positive de4nite. The ma-
trix %( ˙̃qk) is de4ned as %( ˙̃qk) , [ ˙̃qk sgn( ˙̃qk)]. Let
assumptions (A1–A2) be satis4ed, then q̃k(t)∈L∞e,
˙̃qk(t)∈L∞e, 	k(t)∈L2e for all k ∈Z+ and limk→∞ q̃k(t)=
limk→∞ ˙̃qk(t) = 0, ∀t ∈ [0; T ].

Proof. Here we use the same Lyapunov-like composite en-
ergy function (4), with � ∈R2×2 and �̃ ∈R2. The vector �
is de3ned as � = [&; ']T ∈R2. The unknown parameters &
and ' are de3ned as follows:

˙̃qT
k (M (qk) Lqd + C(qk ; q̇k)q̇d + G(qk) − dk)

6 ‖ ˙̃qk‖(� + kg + kc‖q̇d‖‖q̇k‖)
6 ‖ ˙̃qk‖(� + kg + kc‖q̇d‖2 + kc‖q̇d‖‖ ˙̃qk‖); (17)
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where kc and kg are de3ned in (P4), and � is obtained ac-
cording to (A1) and (P1). Since q̇d is bounded, inequality
(17) leads to

˙̃qT
k (M (qk) Lqd + C(qk ; q̇k)q̇d + G(qk) − dk)

6 ˙̃qT
k (& ˙̃qk + ' sgn( ˙̃qk))6 ˙̃qT

k %( ˙̃qk)�; (18)

where & = kc Supt∈[0; T ]‖q̇d‖ and ' = � + kg + kc Supt∈[0; T ]

‖q̇d(t)‖2.
Following the steps of the Proof of Theorem 1, and using

(18), we obtain

Vk( ˙̃qk(t); q̃k(t))6 Vk( ˙̃qk(0); q̃k(0))

+
∫ t

0

˙̃qT
k (%( ˙̃qk)� + KPq̃k − 	k) d	: (19)

Substituting (15) in (19) we obtain

Vk( ˙̃qk(t); q̃k(t))6 Vk( ˙̃qk(0); q̃k(0))

+
∫ t

0

˙̃qT
k (%( ˙̃qk)�̃k − KD ˙̃qk) d	: (20)

Using (16) and (20) in (6), in view of (A2), we obtain

SWk 6−Vk−1

−1
2

∫ t

0

˙̃qT
k (%( ˙̃qk)�%T( ˙̃qk) + 2KD) ˙̃qk d	6 0: (21)

The remaining of the proof is omitted since it is similar to
the proof of Theorem 1.

Remark 1. Generally, in contraction-mapping-based ILC
schemes, the number of iterative parameters is equal to the
number of the control inputs which is equal to the number
of degrees of freedom n. In our approach (Theorem 2), we
use only two iterative parameters �̂k ∈R2, which is an inter-
esting fact from a practical point of view since it contributes
considerably to memory space saving. Now, the question is:
Can we bring the number of iterative parameters from two
to one and at what expense? The answer is yes, but to the
expense of a certain knowledge of the system dynamics. In
fact, in contrast with the result in Theorem 2, the knowl-
edge of the parameter kc de3ned in (P4) is needed to guar-
antee the convergence of the tracking error to zero as stated
bellow in Theorem 3.

Theorem 3. Consider system (1) with properties (P1;P2;
P4) under the following control law:

	k(t) = KPq̃k(t) + KD ˙̃qk(t) + '̂k(t) sgn( ˙̃qk(t)) (22)

with

'̂k(t) = '̂k−1(t) + * ˙̃qT
k (t) sgn( ˙̃qk(t)); (23)

where '̂−1(t) = 0. The matrices KP ∈Rn×n and KD ∈Rn×n

are symmetric positive de4nite, and * is a positive scalar.
Let assumptions (A1–A2) be satis4ed. If (KD − &I) is
positive semi-de4nite, with & = kc Supt∈[0; T ]‖q̇d(t)‖, then

q̃k(t)∈L∞e, ˙̃qk(t)∈L∞e, 	k(t)∈L2e for all k ∈Z+ and
limk→∞ q̃k(t) = limk→∞ ˙̃qk(t) = 0, ∀t ∈ [0; T ].

Proof. Here we use the following Lyapunov-like composite
energy function

Wk = Vk( ˙̃qk(t); q̃k(t)) +
1
2

∫ t

0
*−1'̃2

k(	) d	; (24)

with '̃k(t) = ' − '̂k(t), where the unknown parameter ' is
de3ned in (18). The term Vk is de3ned in (5) and can be
written as (19), by virtue of (18).
Now, substituting (22) in (19) we obtain

Vk( ˙̃qk(t); q̃k(t))6 Vk( ˙̃qk(0); q̃k(0))

+
∫ t

0

˙̃qT
k ('̃k sgn( ˙̃qk) + & ˙̃qk − KD ˙̃qk) d	:

(25)

In the same way as in the Proof of the Theorem 2, using
(23) and (25), in view of (A2), we obtain

SWk 6−Vk−1 − 1
2

∫ t

0

˙̃qT
k (* sgn( ˙̃qk) sgn( ˙̃qk)T

+2(KD − &I)) ˙̃qk d	; (26)

which is non-increasing if the matrix (KD − &I) is positive
semi-de3nite. The remaining of the proof is omitted since it
is similar to the proof of Theorem 1.

Note that to carry out the results in Theorems 1–3, we
assumed that the resetting condition is satis3ed. In fact, this
condition, i.e., (A2), can be relaxed to a certain extent if
the alignment condition is satis3ed (Xu et al., 2000; Xu and
Tan, 2001), i.e., ˙̃qk(0)= ˙̃qk−1(T ) and q̃k(0)=q̃k−1(T ) that is
Vk(0) = Vk−1(T ). In other words, if the reference trajectory
satis3es qd(0) = qd(T ) and q̇d(0) = q̇d(T ), we can start
the system from where it was stopped at the last operation
instead of bringing the system to the same initial position at
each operation. According to this discussion one can state
the following result.

Theorem 4. If the alignment condition, i.e., Vk(0) =
Vk−1(T ), is used in theorems 1–3 instead of (A2), then

• q̃k(t)∈L∞e, ˙̃qk(t)∈L∞e, 	k(t)∈L2e for all k ∈Z+.
• limk→∞ q̃k(t) = ,, ∀t ∈ [0; T ], where , is 4nite and tends

to zero when #min(KP) tends to in4nity.

Proof. Since the proof is similar for Theorems 1–3, we will
prove this result just for Theorem 2. In fact, using (20) in
(6), and using the alignment condition instead of (A2), for
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t = T , we obtain

SWk(T )6 Vk(0) − Vk−1(T )

−1
2

∫ T

0

˙̃qT
k (%( ˙̃qk)�%T( ˙̃qk) + 2KD) ˙̃qk d	

6− 1
2

∫ T

0

˙̃qT
k (%( ˙̃qk)�%T( ˙̃qk) + 2KD) ˙̃qk d	

6 0: (27)

In the same way as in the Proof of Theorem 1, one can show
that Wk(T ) is bounded for all k ∈Z+ and

Wk(T ) = W0(T ) +
k∑

j=1

SWj(T )

6W0(T ) −
k∑

j=1

{∫ T

0

˙̃qT
j KD ˙̃qj d	

}
; (28)

which leads to
k∑

j=1

{∫ T

0

˙̃qT
j KD ˙̃qj d	

}
6W0(T ) − Wk(T )6W0(T ): (29)

Hence,

lim
k→∞

∫ T

0

˙̃qT
k KD ˙̃qk d	 = 0: (30)

Since Wk(T ) is bounded for all k ∈Z+, one can con-
clude that 1

2

∫ T
0 �̃T

k (	)�−1�̃k(	) d	 , $k(T )6$ ¡ ∞.
Since $k(t)6$k(T )6$, ∀k ∈Z+, ∀t ∈ [0; T ], one has
Wk(t) = Vk(t) + $k(t)6Vk(t) + $. Thus,

Wk−1(t)6Vk−1(t) + $: (31)

On the other hand, one has

SWk(t) = Wk(t) − Wk−1(t)6Vk(0) − Vk−1(t): (32)

From (31) and (32), one can conclude that

Wk(t)6Vk(0) + $ = Vk−1(T ) + $: (33)

Since Wk(T ) is bounded ∀k ∈Z+, it is clear that Vk(T ) is
bounded ∀k ∈Z+. Hence, from (33), one can conclude that
Wk(t) is bounded ∀k ∈Z+, ∀t ∈ [0; T ]. Consequently, q̃k(t),
˙̃qk(t) and

∫ t
0 �̃T

k (	)�−1�̃k(	) d	 are bounded for all t ∈ [0; T ]
and all k ∈Z+. Since � is continuous, the boundedness of∫ t
0 �̂T

k (	)�−1�̂k(	) d	 is guaranteed. Therefore, 	k(t)∈L2e

for all k ∈Z+ and so is Lqk(t).
Now, using the fact that

‖q̃k(t) − q̃k(0)‖2 =
∣∣∣∣
∣∣∣∣
∫ t

0

˙̃qk(	) d	
∣∣∣∣
∣∣∣∣
2

; (34)

and using Schwartz inequality, we obtain

‖q̃k(t) − q̃k(0)‖26
∫ t

0

˙̃qT
k (	) ˙̃qk(	) d	

∫ t

0
12 d	

6 T
∫ T

0

˙̃qT
k (	) ˙̃qk(	) d	

6
T

#min(KD)

∫ T

0

˙̃qT
k (	)KD ˙̃qk(	) d	: (35)

From (30) and (35), one can conclude that

lim
k→∞

‖q̃k(t) − q̃k(0)‖ = lim
k→∞

‖q̃k(t) − q̃k−1(T )‖ = 0; (36)

for all t ∈ [0; T ]. Hence limk→∞ q̃k(t)=,, ∀t ∈ [0; T ], where
, is a 3nite value. Finally, using (1) and (15), one can show
that , tends to zero when #min(KP) tends to in3nity.

Remark 2. In all theorems proposed in this paper, one can
show that the tracking error and its time derivative, at the
3rst iteration, can be made arbitrarily small, over the 3nite
time interval [0; T ], by increasing the minimal eigenvalues
of the control and learning gains KP , KD and (� or *).

Remark 3. It is worth noting that the proposed control strat-
egy can be used in a straightforward manner for industrial
robot manipulators already functioning under a PD con-
troller by just adding the iterative term to the control input
in order to enhance the tracking performance from operation
to operation.

Remark 4. Note that the problem of set-point regulation is
included in Theorem 4 since a constant reference trajectory
satis3es the alignment condition. Basically, in this particu-
lar case, our algorithms will ensure a step-by-step conver-
gence to the position set-point. In fact, after one operation
we arrive to a certain position q1, from which we start the
next operation to arrive to q2 and so one, we arrive to the
position qk after k iterations. The tracking error is reduced
progressively and converges to the 3nite value , as stated in
Theorem 4.

Remark 5. Note that, in all theorems proposed in this paper,
one can show that the control input 	k(t)∈L∞e for any
3nite k. This follows from the fact that q̃k(t); ˙̃qk(t)∈L∞e;
∀k ∈Z+ which implies that the parameters estimates are
bounded for any 3nite k.

Remark 6. In practical applications, the manipulator joints
are equipped with incremental encoders to measure the joint
positions. In general, the joint velocities are not measured
but estimated from the joint positions using a 3ltered deriva-
tive (e.g., sq̃k =(1 + Tcs)). However, the measurement noise
ampli3cation, due to the derivative action, will accumulate
through the iterative process. A potential solution to this
problem is to design a P-type iterative parametric updating
law that does not require the joint velocities measurements.
In this case, the noise e7ect will be reduced considerably,
but will not be totally eliminated since the measurement
noise from the joint positions will accumulate from itera-
tion to iteration. Consequently, in practical applications, it is
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important to stop the learning process after a certain num-
ber of iterations once the tracking error reaches a certain
acceptable level. This crucial point will be investigated in
our future research.

Remark 7. It is worth noting that the sign function used in
the proposed control laws might lead to the chattering phe-
nomenon. In practical applications, the sign function can be
replaced by a continuous approximation (e.g., saturation) in
order to smooth out the control input and reduce the chatter-
ing. In fact, if we substitute in our algorithms the sign func-
tion by the following function: f( ˙̃qk) = ˙̃qk =max{,; ‖ ˙̃qk‖},
, ¿ 0, one can show that the tracking error converges to a
certain domain around zero, which can be made arbitrarily
small by decreasing ,. It might also be possible to show the
convergence to zero of the time-weighted norm (also called
#-norm) of the tracking error, i.e., e−#t‖q̃k‖, for a suXciently
large #, under the saturation function. This point needs fur-
ther investigation and will be part of our future research. In
fact, in Cao and Xu (2002), a saturation-type learning vari-
able structure control, guaranteeing the convergence of the
#-norm of the tracking error to zero over a given 3nite-time
interval, was proposed for a class of uncertain nonlinear
systems. However, it is well known that the #-norm leads
generally to low convergence rates.

4. Simulation results

Let us consider a two degrees-of-freedom planar manip-
ulator with revolute joints described by (1). The matrix
M = [mij]2×2 is given by m11 = m1l2c1 + m2(l21 + l2c2 +
2l1lc2 cos q2)+I1+I2, m12=m21=m2(l2c2+l1lc2 cos q2)+I2,
and m22 = m2l2c2 + I2. The matrix C = [cij]2×2 is given
by c11 = hq̇2, c12 = hq̇1 + hq̇2, c21 = −hq̇1 and c22 = 0,
where h=−m2l1lc2 sin q2. The vector G=[G1; G2]T is given
by G1 = (m1lc1 + m2l1)g cos q1 + m2lc2g cos(q1 + q2) and,
G2 = m2lc2g cos(q1 + q2). The robot parameters are given
by m1 = m2 = 1Kg, l1 = l2 = 0:5 m, lc1 = lc2 = 0:25 m,
I1 = I2 = 0:1Kg:m2, g = 9:81 m=s2. The disturbances are
assumed to be time-varying and also varying from itera-
tion to iteration as follows d1 = d2 = rand(k) sin(t), where
rand(k) is a random function taking its values between 0
and 1. The matrix �(q; q̇; ˙̃qk) = [�ij]2×5 is given by �11 =
q̇2 sin q2, �21 =−q̇1 sin q2, �12 = �11 − �21, �22 = �23 = 0,
�13 = cos q1, �14 = �24 = cos(q1 + q2), �15 = sgn( ˙̃q1)
and �25 = sgn( ˙̃q2).
The desired reference trajectories for q1 and q2 are chosen

as q1; d(t) = sin(24t) and q2; d(t) = cos(24t) over the time
interval [0; 1s]. Applying the control law (2)–(3), with the
resetting condition, with KP =KD =10I2×2 and �=10I5×5,
where Ii×i is an i × i identity matrix, we obtain the re-
sult shown in Fig. 1. Applying the control law (15)–(16),
with the resetting condition, with KP = KD = 10I2×2 and
� = 10I2×2 we obtain the result shown in Fig. 2. Applying
the control law (22)–(23), with the resetting condition, with

Fig. 1. Sup-norm of the tracking error versus the number of iterations for
links 1 and 2 with the control law (2)–(3), with the resetting condition.

Fig. 2. Sup-norm of the tracking error versus the number of iterations for
links 1 and 2 with the control law (15)–(16), with the resetting condition.

Fig. 3. Sup-norm of the tracking error versus the number of iterations for
links 1 and 2 with the control law (22)–(23), with the resetting condition.

KP =KD =10I2×2 and *=10 we obtain the result shown in
Fig. 3. Applying the control law (15)–(16), with the align-
ment condition, with KP = 500I2×2, KD = � = 10I2×2, and
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Fig. 4. Sup-norm of the tracking error versus the number of iterations
for links 1 and 2 with the control law (15)–(16), with the alignment
condition.

q1;0(0)=q2;0(0)= q̇1;0(0)= q̇2;0(0)=0, we obtain the result
shown in Fig. 4.

5. Conclusion

Three adaptive ILC schemes have been proposed for the
position tracking problem of rigid robot manipulators with
unknown parameters and subject to external disturbances.
The proposed controllers are based upon a PD feedback
structure plus an iterative term designed to cope with the
unknown parameters and disturbances. The proof of con-
vergence is based upon the use of a Lyapunov-like posi-
tive de3nite sequence, which is shown to be monotonically
decreasing under the proposed control schemes. The con-
trollers are very simple to design and to implement since
the only requirement on the PD and learning gains is the
positive de3niteness condition. The result in Theorem 2 is
particularly interesting since it does not require any a pri-
ori knowledge of the system dynamics, and the number of
iterative parameters used in this scheme is just two. Further-
more, in Theorem 3, we propose a solution to the problem
using a single iterative variable at the expense of the knowl-
edge of some bounds of the system parameters. Finally, the
relaxation of the resetting condition for a certain class of
reference trajectories has been discussed and formulated in
Theorem 4.
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