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a b s t r a c t

In iterative learning control (ILC), it is highly desirable to have a learning compensator with a unit-
gain for all frequencies, in order to avoid noise amplification and learning speed degradation during the
learning process. In this paper, we show that the realization of a unit-gain compensator is straightforward
in ILC, using both forward and backward filtering. As an illustrative example, a unit-gain derivative is
proposed to overcome the drawbacks of the conventional derivative. The proposed scheme is equivalent
to an all-pass unit-gain phase shifter; the forward filtering uses a 0.5-order derivative and the backward
filtering employs a 0.5-order integral. The all-pass phase shifter is deployed in a unit-gain D-type ILC.
The advantages of the unit-gain feature are demonstrated by some experimental results on a robot
manipulator.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Iterative learning control (ILC) (Arimoto, Kawamura, &Miyazaki,
1984; Middleton, Goodwin, & Longman, 1989) is a suitable tech-
nique for uncertain systems that operate in a repetitive manner. It
aims to iteratively reduce the tracking error, over a finite time in-
terval, by incorporating past experience in the actual control input.
In general, ILC schemes are based on a batch update,1 and the gen-
eration of the control input to be applied in the current cycle can be
obtained ‘‘offline’’ using data from the previous cycles. Hence non-
causal operations are allowed in terms of time t for the previous
cycles. In Elci, Longman, Phan, Juang, and Ugoletti (2002), a sim-
ple linear anticipatory operator (phase lead) is adopted. In Jeong
and Choi (2002), an input update law, which depends on the num-
ber of non-minimum phase zeros, using advanced output data has
been proposed. A contraction mapping based learning law using
all the ‘‘future’’ error data has been proposed in Jang and Longman
(1994, 1996b). In Chen, Moore, and Bahl (2004), an average win-
dow is used as a zero-phase filter, and the learning law in Tsai, Lin,
and Yau (2006) employs a zero-phase Butterworth filter. Backward
filtering of the previous cycle data has also been used in Kinoshita,
Sogo, and Adachi (2002), Yamakita and Furuta (1991) and Ye and
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Wang (2005b). From thephase point of view, backward filtering es-
sentially generates phase lead to compensate the phase lag of a real
plant so that an overall approximate zero-phase effect is achieved.
In Plotnik and Longman (1999), the previous error history is zero-
phase filtered via a combination of forward and backward filtering.
The learning compensators in Ghosh and Paden (2002) and Ye and
Wang (2005a) contain a part in the form of a zero-phase filter, also
via both forward and backward filtering of the previous error his-
tory.
It is well known that phase compensation in ILC is highly

desirable as it can compensate for the plant phase (delay) leading
to awider learnable band and consequently improving the tracking
accuracy (Ye & Wang, 2005b). Therefore, a learning compensator
is typically chosen as a phase compensator to provide phase (lead)
compensation. A phase compensator with a unit-gain or all-pass
feature is welcome as it neither attenuates the learning speed
nor amplifies the noise. To the best of the authors’ knowledge,
in the existing literature, three digital learning compensators
have the unit-gain feature. The first one is the linear phase lead
learning compensator (Elci et al., 2002). The linear phase lead will
provide phase compensation increasing linearly with frequency,
which will be excessive at high frequency, and cutoff has to be
introduced to stop phase compensation at high frequencies. The
second one is the learning compensator using the partial isometry
of system Markov parameter matrix, calculated by singular
value decomposition (Jang & Longman, 1996a). Nevertheless, the
computation burden of the learning law is heavy, if the size of a
systemMarkov parameter matrix is large, i.e., the trajectory length
is long. The third learning law is the phase cancelation learning law
that constructs its learning compensator (matrix) by calculation
of an Inverse Discrete Fourier Transform (IDFT) from the phase
characteristics of the plant (Lee-Glauser, Juang, & Longman, 1996;
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Longman & Wang, 1996). Again, the computation burden may be
heavy. Computational enhancement is proposed in Lee-Glauser
et al. (1996) to reduce the calculation cost.
In this paper, the idea of noncausal unit-gain/all-pass filtering,

which is also achieved via both forward and backward filtering, is
firstly formalized in the ILC setting. Thereafter, a straightforward
approach in a non-matrix form and with less computational
complexity is proposed for the realization of noncausal unit-
gain phase compensators. To illustrate the method, a unit-gain
derivative scheme is presented as an example. In the forward
filtering procedure, a 0.5-order derivative is performed while in
the backward filtering procedure, a 0.5-order integral is carried
out. The overall effect is a noncausal all-pass phase shifter.
Employing the noncausal all-pass phase shifter, a unit-gain D-type
ILC is proposed. For computer implementation, frequency-band
synthesis of non-integer differentiator is used to approximate the
0.5-order derivative and 0.5-order integral. Experiments on a 6
DOF rigid robot manipulator have been carried out to show the
advantages of the unit-gain feature.

2. Analysis of learning compensators

2.1. Necessity of phase advancement

Although ILC is a finite-time problem, it is a common practice
to analyze it in the frequency domain (Chen et al., 2004; Goh,
1994; Longman, 2000). The standard convergence analysis from
the phase point of view has been given by many authors in the
literature (e.g., Wang and Ye (2004) and Ye and Wang (2005a)),
and is provided here for the sake of completeness.
Consider the control system modeled by a transfer function

Gp(s), and described by the input-output relationship at the
iteration k as follows

Yk(s) = Gp(s)Uk(s). (1)

The frequency characteristics of Gp(s) are given as follows:

Gp(jω) = Np(ω) exp(jθp(ω)) (2)

where Np(ω) and θp(ω) are the magnitude and phase characteris-
tics, respectively.
Let the Laplace transform of the learning law be:

Uk(s) = Uk−1(s)+ ΓΦc(s)Ek−1(s) (3)

where Γ is a scalar learning gain and Φc(s) is a learning compen-
sator in the Laplace domain. The learning compensator Φc(s) has
frequency characteristicsΦc(jω) = Nc(ω) exp(jθc(ω))with Nc(ω)
and θc(ω) being its magnitude and phase characteristics, respec-
tively.
Using (1) and (3), we get

Ek(s) = [1− Γ Gp(s)Φc(s)]Ek−1(s). (4)

[1 − Γ Gp(s)Φc(s)] can be viewed as a transfer function from the
tracking error at iteration (k− 1) to the tracking error at iteration
k. The condition for tracking error contraction at steady state is
(Goh, 1994; Hideg & Judd, 1988),∣∣1− Γ Gp(jω)Φc(jω)∣∣ < 1. (5)

Using the characteristics of Gp(jω) andΦc(jω), (5) leads to:

Γ Np(ω)Nc(ω) < 2 cos(θp(ω)+ θc(ω)). (6)

If Γ > 0, (6) necessarily requires

− 90◦ < θp(ω)+ θc(ω)+ i× 360◦ < 90◦,

i = 0,±1,±2 . . . . (7)
The frequency range where (5) or (6) hold is termed the learnable
band. We cutoff the frequencies outside the learnable band to
prevent a bad learning transient as in Longman (2000). In this
paper, cutoff is done on the input signal uk(t).
Condition (7) is vital because if (7) is satisfied we can always

find a learning gain Γ small enough to satisfy (6). Therefore the
frequency range where (7) holds is named the utmost learnable
band. For minimum phase systems, θp(ω) is typically negative, and
with i = 0 in (7), Φc(jω) should generally provide positive phase
θc(ω). For non-minimum phase systems whose phase starts from
360◦ (or its multiples) at dc, i is set as −1 (or its multiples) so
that θp(ω)+ i× 360◦ is 0 at dc and negative at other frequencies.
Again, θc(ω) should generally be positive. In both cases, phase
advancement is required to ensure a wider learnable band. And a
wider learnable band can ensure higher tracking accuracy (Wang
& Ye, 2004).

2.2. Desirable unit-gain feature

If a learning compensator has a magnitude Nc(ω) = 1, it has a
unit-gain or all-pass feature. Nc(ω) = 1 means that the noise will
not be amplified if there is noise contained in error ek−1(t). From
(5), the error contraction rate between two successive iterations
is
∣∣1− Γ Np(ω)Nc(ω)ej(θp(ω)+θc (ω))∣∣. If a learning compensator has

Nc(ω) → 0 at some frequencies, at these frequencies, the
contraction rate will tend to 1 and one can expect a very slow
learning speed. For example, a low-pass learning compensator has
Nc(ω) → 0 at high frequency and the classic D-type learning
compensator (Arimoto et al., 1984) has Nc(ω) → 0 at low
frequency. On the contrary, if Nc(ω) = 1, the learning speed will
not be sacrificed at any frequency.

3. Realization of noncausal unit-gain

The noncausal unit-gain is realized by first passing through a
filter φ(s)with stable zeros and then reverse filtering the result by
1/φ(s), as follows,{
step 1 : φ(s) runs in the forward time
step 2 : 1/φ(−s) runs in the backward time (8)

−s indicates that the Laplace transform is defined in backward
time, according to the definition of one-sided Laplace transform
(Le Page, 1980). To implement step 2, the result of step 1 is
firstly reversed in sequence, the reversed result is then passed
through 1/φ(s), and the final result is reversed back. According
to the definition of one-sided Laplace transform (Le Page, 1980),
the magnitude of 1/φ(−jω) is still 1/|φ(jω)|. Combination of the
two sub-equations in (8) leads to an interesting fact: the overall
magnitude is 1.
If φ(s) is chosen with phase (lead) characteristics θ(ω), the

overall phase (lead) compensation effect of (8), i.e., φ(s)/φ(−s),
is 2 × θ(ω) which is double of the original phase. Supposing that
ideally the plant is fully known, if θ(ω) = 0.5×(−θp(ω)), from (6),
exact-phase-cancelation is achieved. This provides a new approach
of phase cancelation learning control (Longman & Wang, 1996)
with no attenuation of learning speed.

4. A unit-gain derivative example

To demonstrate more effectively the proposed unit-gain
realization method, a simple illustrative example is given.
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4.1. D-type ILC revisited

In Arimoto et al. (1984), the input update utilizes the derivative
of the previous error signal and the learning law is termed D-type
ILC,

uk(t) = uk−1(t)+ Γ
d
dt
(ek−1(t)). (9)

D-type ILC is a simple but effective law. In the frequency domain,
the differentiation brings in a 90◦ phase advancement which
helps to compromise the phase lag of the system and extend the
learnable band of ILC. However, at low frequencies, the magnitude
is small and the learning speed is attenuated and in fact, D-type ILC
cannot learn dc components; at high frequencies, differentiation
amplifies the magnitude significantly and brings in substantial
noise, leading to possible divergence. Since the Laplace transfer of
the derivative is s, the convergence condition for the D-type ILC (9),
derived from (5), is (Chen & Moore, 2001; Wang & Ye, 2005)∣∣1− Γ jωGp(jω)∣∣ < 1. (10)

And correspondingly, (6) and (7) become

ΓωNp(ω) < 2 cos(θp(ω)+ 90◦) (11)

and

− 180◦ < θp(ω)+ i× 360◦ < 0, i = 0,±1,±2 . . . . (12)

Inequality (12) shows that the differential action provides 90◦
phase compensation so that, when i = 0, the phase lag restriction
of the system is relaxed from −90◦ to −180◦. Hence phase
advancement is a desirable feature of D-type ILC. However, the
magnitude of the derivative, i.e., ω, becomes very large at high
frequencies. Since the right-hand-side of (11) is upper-bounded by
2, the increasingmagnitudewill inevitably violate the convergence
condition. Therefore, the ω magnitude is an undesirable feature
of D-type ILC. To tackle this undesirable feature, one can either
use a much smaller learning gain Γ or employ a zero-phase low-
pass filter on the derivative signal to attenuate the magnitude,
so that (11) is satisfied over a wider learnable band. But a small
learning gainwill degrade the learning speed, and the introduction
of a zero-phase low-pass filter puts more burdens on the design.
Aiming at removing the undesirable magnitude feature while
keeping the desirable phase advancement feature, the derivative
action is modified.

4.2. All-pass derivative

By observing that s = s0.5 × s0.5, it is noted that the phase
of s is double of the phase of s0.5. The aforementioned idea (8) is
applied to the special case of φ(s) = s0.5, and an all-pass unit-gain
derivative is proposed as follows{
step 1 : s0.5 runs in the forward time
step 2 : 1/(−s)0.5 runs in the backward time

(13)

s0.5 is the 0.5-order derivative, running in the forward time.
1/(−s)0.5 is the 0.5-order integral running in the backward time.
A fractional-order derivative and integral is a generalization of
integration and differentiation to non-integer order operators
(Oldham & Spanier, 1974). The Laplace transform of an α-order
derivative or integral is defined as sα (Petráš&Dorčák, 1999). In this
paper, only the situation where α is a real number is considered. If
α > 0, sα is an α-order derivative. And if α < 0, sα is an |α|-order
integral.
The magnitude characteristics of step 1 and magnitude

characteristics of step 2 are reciprocal so that the complete gain
is 1. The overall phase is 90◦: step 1 and step 2 both contribute
half, i.e., 45◦. An all-pass unit-gain derivative scheme is then
obtained, keeping the phase advancement feature and eliminating
the frequency dependant magnitude feature. Note that the overall
transfer function of steps 1 and 2 is s/|s|whose frequency response
is simply j.

Remark 1. In theory, we have realized a noncausal all-pass phase
shifter. The all-pass unit-gain derivative scheme is mathematically
equivalent to using a zero-phase filter with magnitude character-
istics of 1/ω on the conventional derivative signal. Since a zero-
phase filter with such magnitude restriction is difficult to realize,
the use of (13) becomes a viable choice.

4.3. Unit-gain D-type ILC

Based on the proposed all-pass derivative scheme, a unit-gain
D-type ILC is formulated as follows,
e1(t) = ek−1(t) −→ s0.5

e2(t) = e1(T − t)

e3(t) = e2(t) −→
1
s0.5

e4(t) = e3(T − t)
uk(t) = uk−1(t)+ Γ e4(t)

(14)

where the operator−→ denotes passing the signal on its left side
through the system represented by the transfer function on its
right. The Laplace transform of (14) is

E1(s) = Ek−1(s)s0.5

E2(s) = eTsE1(−s)

E3(s) = E2(s)
1
s0.5

E4(s) = eTsE3(−s)
Uk(s) = Uk−1(s)+ Γ E4(s).

(15)

Note that the Laplace transform of e1(T − t) is eTsE1(−s) (Le Page,
1980).
From (15), the unit-gain D-type ILC can bewritten simply in the

Laplace domain as

Uk(s) = Uk−1(s)+ Γ
s
|s|
Ek−1(s), (16)

or in the frequency domain as

Uk(jω) = Uk−1(jω)+ Γ jEk−1(jω). (17)

Remark 2. A pioneer work dealing with fractional-order deriva-
tive based ILC can be found in Chen and Moore (2001). In this pa-
per, an in-between P-type (Saab, 1994) and D-type scheme, using a
fractional-order derivative (sα , α ∈ (0, 1]) of the tracking error, is
proposed and termedDα-type ILC. But this schemedoes not change
the undesirable features of small magnitude at low frequency and
large magnitude at high frequency. Moreover, the phase compen-
sation is α × 90◦, less than that of the conventional derivative ac-
tion. And the possible extension of the utmost learnable band is
also limited according to (7).

Remark 3. The proposed unit-gain D-type scheme can be ex-
tended to using an all-pass G0.5p (−s)/G

0.5
p (s) as the learning com-

pensator if the plantGp(s) has only stable zeros. The procedurewill
phase-shift the error signal by the inverse of the plant phase, i.e.,
−θp(ω) and an overall zero-phase is achieved by fractional-order
filtering. In practice, by using the plant model Gm(s), approximate
zero-phase can be achieved by means of G0.5m (−s)/G

0.5
m (s).



260 Y. Ye et al. / Automatica 45 (2009) 257–264
4.4. Implementation of fractional-order operator

One can use analog devices for the realization of true fractional-
order operations (Bohannan, 2002). However, computer imple-
mentation needs a suitable approximation to the fractional-order
operator. In ILC, phase lead compensation in a designated fre-
quency band is enough to substantially extend the learnable band.
Fortunately, Oustaloup, Levron,Mathieu, andNanot (2000) synthe-
sizes fractional-order differentiators whose action is limited to any
given frequency bandwidth. The authors use a recursive approxi-
mation scheme to approximate the fractional-order derivative.
Using a 2N + 1 order approximation, sα can be approximated

by

DN(s) =
(
ωu

ωh

)α N∏
m=−N

1+ s/ω′m
1+ s/ωm

(18)

with ωu =
√
ωlωh and

ω′m = ωl

(
ωh

ωl

)(m+N+0.5−0.5α)/(2N+1)
, (19)

ωm = ωl

(
ωh

ωl

)(m+N+0.5+0.5α)/(2N+1)
. (20)

α is the fractional number and N is a nonnegative integer number.
ωl is the low transitional frequency where the designer wants the
phase compensation effect to appear andωh is the high transitional
frequency where the designer wants the phase compensation
effect to disappear. 1/sα is then approximated by 1/DN(s).

5. Experimental study

To demonstrate the benefits of the unit-gain feature, experi-
mental study has been performed on a 6-DOF robot manipulator
CRS465. The six links are independently controlled by a PD feed-
back control with

Kp = [2.5, 2.5, 2.5, 0.5, 0.5, 0.3],
Kd = [0.05, 0.05, 0.05, 0.005, 0.005, 0.002].

System identification is performed on a single axis while keeping
the others locked, one by one. The closed-loop transfer functions,
from the reference joint position to actual joint position, around
the ready configuration of the robot manipulator, have been
identified by the system identification toolbox of MATLAB, as
follows:

J1 : Gp1(s) =
−0.2622s+ 1624
s2 + 39.42s+ 1761

J2 : Gp2(s) =
−0.2101s+ 1312
s2 + 35.15s+ 1374

J3 : Gp3(s) =
0.6385s+ 1285
s2 + 35.74s+ 1380

J4 : Gp4(s) =
−1.067s+ 797.5
s2 + 91.32s+ 880.8

J5 : Gp5(s) =
−0.5967s+ 564.5
s2 + 61.34s+ 603.5

J6 : Gp6(s) =
−0.2123s+ 481.2
s2 + 55.56s+ 545.2

.

(21)

Remark 4. Note that some of the identified transfer functions are
non-minimum phase systems with phase starting from 360◦ at dc.
Noncausal learning control laws have been successfully applied
to non-minimum phase systems, with bounded input, e.g., the α-
pseudo inverse based ILC (Ghosh & Paden, 2002) and the approach
Fig. 1. Magnitude responses of the two semi-filters.

in Ye and Wang (2005a). The basic idea in these publications is to
avoid using an inverse of the system as the learning compensator
and to invert only the phase (phase cancelation) so that the input
is bounded. In this paper, system inversion is not used either and
approximate phase cancelation is adopted, similar to that in Ghosh
and Paden (2002) and Ye and Wang (2005a).

Remark 5. The robot is in fact a nonlinear system. However, being
closed-loop controlled, each joint can be locally approximated by
a linear system. The effect of coupling and nonlinearities can be
treated as a repetitive disturbance term applied to each joint.
Linear learning control laws have been very successful in dealing
with nonlinear robots with repetitive disturbances (Chen et al.,
2004; Gunnarsson & Norrlöf, 2001; Longman, 2000; Tang, Cai, &
Huang, 2000).

To examine the tracking ability of all joints under fast motion,
the same desired trajectory is used for all joints

yd(t) =


51∑
n=1

an[1− cos(2ωnt)] 0 ≤ t ≤ 0.5 s

51∑
n=1

an[cos(2ωnt)− 1] 0.5 < t ≤ 1 s
(22)

where theωn are 0π, 2π, 4π, 6π, . . . , 100π , and the amplitude is
an = 2400e−ωn . Swinging quickly in 1 s, the desired trajectory is
really a challenge for each joint.

Remark 6. Since the desired trajectory starts with zero and
ends with zero, the effects of initial/final conditions of filtering
are trivial. For general reference trajectories, extension of the
initial/final points may be necessary to suppress the initial
condition effects, as having been extensively studied in Plotnik and
Longman (1999).

The sampling rate is 1 kHz. Cutoff is realized by DFT/IDFT with
no end-extension. Learning control is applied to the sixDOF closed-
loop systems independently. Learning gain should be nomore than
the reciprocal of the dc gain of closed-loop system (Longman, 2000)
and smaller gainwill result in a smaller final error level (Wirkander
& Longman, 1999). Hence the learning gains are chosen as Γ1 =
0.5,Γ2 = 0.5,Γ3 = 0.5,Γ4 = 0.2,Γ5 = 0.2,Γ6 = 0.2. sα
with α = 0.5 is approximated by (18), given N = 3. 1/sα is
approximated by 1/DN(s) with the same parameters. Zero degree
is the initial position for all joints. After each trial, feedback control
drives all joints back to their initial positions.
Fig. 1 shows the magnitude responses of the approximate s0.5

and approximate 1/(−s)0.5. They are reciprocal and their product
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Fig. 2. Phase responses of the two semi-filters.

Fig. 3. Phase compensation effects for joint 5.

is one. Fig. 2 illustrates the phase response of the approximate
s0.5. The phase response of the approximate 1/(−s)0.5 is exactly
the same as the phase response of the approximate s0.5. The phase
response of the approximate s0.5/(−s)0.5, which is double of that
of the approximate s0.5, is also shown in Fig. 2. Figs. 1 and 2
clearly demonstrate the unit-gain phase compensation effect of
the combination of the two semi-filters. Joint 5 is taken as an
example to illustrate the design procedure. Noting that joint 5
is a non-minimum phase system whose phase is 360◦ at dc, i
is set as −1 in (7). θp(ω) − 360◦ of joint 5 is plotted in Fig. 3.
ωh is simply set as the Nyquist frequency, i.e., 500 Hz, because
phase compensation is unnecessary after the Nyquist frequency.
The selection of ωl is to make the overall phase close to zero
within a frequency band as wide as possible, so that we can have
a fast convergence rate. ωl is tuned to 1.5 Hz. Fig. 3 summarizes
the intermediate and final effects of phase compensation by
the approximate 0.5-order derivative and all-pass derivative. The
utmost learnable bandwidth where the −90◦ crosses the phase
characteristics increases significantly, from about 4 Hz to about
9 Hz, and to about 35 Hz, respectively.
The same ωh and ωl are used for all the other joints. To find the

cutoff frequency, we plot
∣∣1− Γ Gp(jω)Φc(jω)∣∣ with 6 Φc(jω) =

26 DN(jω) and |Φc(jω)| = 1, as shown in Fig. 4. Starting from
the frequency points where

∣∣1− Γ Gp(jω)Φc(jω)∣∣ = 1, the cutoff
frequencies are tuned in the experiments so that long-term slow
divergence will not happen. The final tuning results are listed in
Table 1. Figs. 5(a) and 6(a) are the rms error histories of 150
iterations for the unit-gain D-type ILC. The rms errors have reached
close to the reproducibility level of the robot.
Fig. 4. Convergence conditions for joint 5.

Table 1
Cutoff frequencies (Hz).

J1 J2 J3 J4 J5 J6

Unit-gain D 36 27 100 15 27 34
Approximate D 7 7 10 5 7 4
Conventional D 2 3 3 2 2 3

Fig. 7 depicts the output profiles of joint 5 at iteration 0, 5, 10,
and 20. At iteration 20, the difference between y20 and the desired
trajectory is very small.
Fig. 8 depicts the input profiles of joint 5 at iteration 0, 5, 10,

50, and 150 (input u0(t) = yd(t)). At iteration 50, the difference
between u50 and u150 is tiny which means the input converges
towards its final profile.

Remark 7. The proposed scheme can actually be model-free.
One can tune ωl (and possibly ωh) and the cutoff frequency in
experiments until good performance is achieved.

Remark 8. It is worth noting that it is possible to use sα/(−s)α
with α > 0.5 instead of s0.5/(−s)0.5 to introduce more phase
compensation. The learnable band can be further extended. Since
the rms errors have reached the reproducibility level of the
robot, there will be no significant improvement in the tracking
errors for this desired trajectory. For trajectories rich in high
frequency components and systems with high relative degree,
further extension of the learnable band may be necessary.

For comparison, the conventional D-type ILC is also performed.
Even under very small learning gains Γ1 = Γ2 = Γ3 = Γ4 = Γ5 =
Γ6 = 0.05, the cutoff frequencies have to be set very low to ensure
stability of the learning control, see Table 1. Moreover, the robot
generates a loud noise. The tracking performance is rather poor,
Fig. 9.
One may think to approximate s using (18) with α = 1

to replace the severe action of the conventional differentiation
to improve the performance. Fig. 10 shows that the phase
characteristics ofDN(s)withα = 1, is nearly the same as that of the
all-pass DN(s)/DN(−s) with α = 0.5, given N = 3, ωl = 1.5 Hz,
and ωh = 500 Hz for both cases. The learning law can be written
as

Uk(s) = Uk−1(s)+ Γ DN(s)Ek−1(s) (23)

where DN(s) is defined by (18) given α = 1, N = 3, ωl = 1.5 Hz,
and ωh = 500 Hz. The learning gains are again chosen as Γ1 =
0.5,Γ2 = 0.5,Γ3 = 0.5,Γ4 = 0.2,Γ5 = 0.2,Γ6 = 0.2. The
tuning results of the cutoff frequencies are also listed in Table 1.
This intuitive scheme performsmuch better than the conventional



262 Y. Ye et al. / Automatica 45 (2009) 257–264
(a) Unit-gain D (J1, J2, J3). (b) Approximate D (J1, J2, J3).

Fig. 5. RMS error histories of unit-gain D/approximate D-type ILC, J1–3.
(a) Unit-gain D (J4, J5, J6). (b) Approximate D (J4, J5, J6).

Fig. 6. RMS error histories of unit-gain D/approximate D-type ILC, J4–6.
Fig. 7. Output profiles of joint 5.

D-type ILC. But the rms errors are still one to two orders higher
than their counterparts in the unit-gain D-type case, Fig. 5(b) and
Fig. 6(b). Moreover, the learning is much slower than that of the
unit-gain D-type.
The magnitude plot of the approximate s, shown by the solid

curve in Fig. 11, can help to understand the performance dif-
ference. At low frequencies, the approximate derivative attenu-
ates its input significantly. The attenuation makes the curve of∣∣1− Γ Gp(jω)Φc(jω)∣∣ (joint 5) close to 1 in Fig. 4, and results in
Fig. 8. Input profiles of joint 5.

a slow learning speed. While at high frequencies, the approximate
derivative largely amplifies its input, and in turn, violates the con-
vergence condition and brings in noise. Themagnitude of s is much
larger than that of the approximate derivative at high frequencies,
as shown by the dash curve in Fig. 11.
The convergence condition for the conventional D-type ILC

(joint 5) is also depicted in Fig. 4. The learnable band is rather
narrowand the cutoff frequency has to be set very low. Comparison
shows that, below 10 Hz, the curve of

∣∣1− Γ Gp(jω)Φc(jω)∣∣ for the
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Fig. 9. RMS error histories of conventional D-type ILC.

Fig. 10. Phase characteristics of approximate D and all-pass D.

unit-gain D-type ILC is much more away from 1 than the other
two curves, leading to good convergence rate for the unit-gain D-
type ILC. It is demonstrated that the unit-gain feature does keep
the learning speed unattenuated.
Fig. 12 compares e(t), ė(t), and ˙̄e(t) (i.e., the filtered result of

e(t) by DN(s)with α = 1), and the all-pass derivative e4(t) in (14)
after iteration 0.
It is noted that ė(t), ˙̄e(t), and the all-pass derivatives e4(t) are

all phase-lead-shifted with respect to e(t). The signal ė(t) is noisy
and its amplitude is large.

6. Conclusion

In this paper, the freedom of noncausal operation in ILC is
exploited to achieve the unit-gain compensation feature which is
highly desirable in ILC applications. It is found that the realization
of a noncausal all-pass filter is as straightforward as that of a
zero-phase filter. A method to generate a noncausal unit-gain
learning compensator that can provide phase lead compensation
is proposed. As an illustrative example, an all-pass unit-gain
derivative is formulated. Based on this, a unit-gain D-type ILC is
proposed. Experiments performed on a 6 DOF robot manipulator
verify the advantages of the proposed approach. Future work
will address the issues of a more general unit-gain learning
compensator.
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