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Abstract

Based on a combination of a PD controller and a switching type two-parameter compensation force, an iterative learning controller with a
projection-free adaptive algorithm is presented in this paper for repetitive control of uncertain robot manipulators. The adaptive iterative learning
controller is designed without any a priori knowledge of robot parameters under certain properties on the dynamics of robot manipulators with
revolute joints only. This new adaptive algorithm uses a combined time-domain and iteration-domain adaptation law allowing to guarantee the
boundedness of the tracking error and the control input, in the sense of the infinity norm, as well as the convergence of the tracking error to zero,
without any a priori knowledge of robot parameters. Simulation results are provided to illustrate the effectiveness of the learning controller.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Classical PD and PID linear controllers are widely used in
robotics applications due to their implementation simplicity. In
the early works (Arimoto, 1996; Spong & Vidyasagar, 1989;
Takegaki & Arimoto, 1981), most of the controllers were
designed to asymptotically stabilize the joint positions of rigid
robot manipulators at a given set point. Owing to the phys-
ical property that the robot parameters enter linearly in the
Lagrange equation, adaptive control strategies (Slotine & Li,
1991; Tomei, 1991) have been derived for trajectory tracking
instead of set-point regulation.

Taking advantage of the fact that robot manipulators are gen-
erally used in repetitive tasks, several iterative learning control
(ILC) schemes have been proposed for robot manipulators in
the past two decades. The main objective of ILC approach is
to enhance the tracking accuracy from operation to operation
for systems executing repetitive tasks. Initially, ILC algorithms
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for robot manipulators were developed based on the contrac-
tion mapping theory and required a certain a priori knowledge
of robot dynamics (Bondi, Casalino, & Gambardella, 1988;
Horowitz, 1993; Kawamura, Miyazaki, & Arimoto, 1988;
Norrlöf, 2002; Wang, Son, & Cheah, 1995). In the past
decade, another type of ILC algorithms, namely adaptive
iterative learning control (AILC), has been widely studied
in the literature. Substantial efforts, in the area of AILC
design for robot manipulators, have been deployed during
the last decade (see, for instance, Choi & Lee, 2000; Kuc
& Han, 2000; Park, Kuc, & Lee, 1996; Tayebi, 2004; Xu &
Wiswanathan, 2000). The main feature of AILC is to itera-
tively estimate the uncertain parameters, which are in turn
used to generate the current control input. Because of the it-
eration based control problem, the adaptive learning laws for
the estimation of the unknown parameters are mostly designed
in the iteration domain. In general, projection or deadzone
mechanisms are necessary to construct the iteration-domain
based adaptive laws in order to guarantee the tracking error
convergence as well as the boundedness of all internal sig-
nals. In Choi and Lee (2000) both time-domain and iteration-
domain adaptations were used. A time-domain adaptive law
estimates the robot parameters so that the upper bounds on
these parameters are not necessary. However, the iteration-
domain learning law which learns the desired input and
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disturbances still needs the upper bound and the projection
mechanism. Recently, in Tayebi (2004), three AILC schemes
have been proposed for the tracking problem of rigid robot
manipulators without any a priori knowledge of the robot
dynamics.

Based on Tayebi (2004), a combination of a PD controller
and a two-parameter switching type compensation force, a new
adaptive law using mixed time-domain and iteration-domain
adaptation is developed in this paper for repetitive control of
uncertain robot manipulators. This adaptive ILC system guar-
antees the boundedness of all signals in the sense of the infinity
norm without using a projection mechanism in the adaptive
law—note that in Tayebi (2004), the boundedness of the con-
trol input is guaranteed in the sense of the L2 norm. From
time-domain point of view, this adaptive law introduces a term
similar to the typical �-modification (Ioannou & Sun, 1996)
which provides certain robust characteristics. Based on this new
design the projection mechanism, which is widely applied in
those related works (Choi & Lee, 2000; Kuc & Han, 2000; Park
et al., 1996; Tayebi, 2004; Xu & Wiswanathan, 2000) can be
relaxed such that the upper bounds on the unknown parameters
are not required. Under some suitable properties on the dynam-
ics of robot manipulators with revolute joints only, the adap-
tive iterative learning controller can be designed without any
a priori knowledge of the robot dynamics. Due to the switching
type control force and the robust projection-free adaptive law,
the perfect tracking control performance of the robot manipu-
lators can be achieved under an uncertain random disturbance
environment. The adaptive law will become a pure time-domain
learning law or iteration-domain learning law if a weighting
gain is suitably chosen. Comparisons of advantages and disad-
vantages among the pure time domain, pure iteration-domain
and mixed adaptive laws will be presented. A rigorous proof
based on the Lyapunov-like approach is given to guarantee the
stability and convergence of the closed-loop learning system.
It is shown that all adjustable parameters as well as internal
signals are bounded in time domain for each iteration. Further-
more, the position and velocity tracking error will asymptoti-
cally converge to zero in the iteration domain.

2. Problem formulation

In this paper, we consider an n degrees-of-freedom rigid
manipulator with the equations of motion expressed, using the
Lagrangian formulation, by

M(qk(t))q̈k(t) + C(qk(t), q̇k(t))q̇k(t) + G(qk(t))

= �k(t) + dk(t), (1)

where t ∈ [0, T ] denotes the time index and k ∈ Z+ denotes
the iteration number. The signals qk(t), q̇k(t), q̈k(t) ∈ Rn are
the joint position, joint velocity and joint acceleration vectors,
respectively, at the kth iteration. M(qk(t)) ∈ Rn×n is the inertia
matrix, C(qk(t), q̇k(t))q̇k(t) ∈ Rn is a vector resulting from
Coriolis and centrifugal forces, and G(qk(t)) ∈ Rn is the vector
resulting from the gravitational forces. �k(t) ∈ Rn is the control
input vector containing the torques and forces to be applied at

each joint. dk(t) ∈ Rn is the vector containing the unknown
external disturbances.

Assuming that the joint positions and velocities are measur-
able for feedback design, the control objective is to design a
bounded adaptive iterative learning controller �k(t) ensuring
the boundedness of qk(t), q̇k(t), q̈k(t), ∀t ∈ [0, T ] and ∀k ∈
Z+ and the convergence of qk(t), q̇k(t) to the desired refer-
ence position and velocity trajectories qd(t), q̇d (t) ∀t ∈ [0, T ]
as k tends to infinity. To achieve the control objective, we
make the following assumptions (Tayebi, 2004) for the robot
manipulators:

(A1) The reference trajectory qd(t) is achievable for the robot
manipulators considered.

(A2) qd(t), q̇d (t) and q̈d (t), as well as the external disturbance
dk(t) are bounded ∀t ∈ [0, T ] and ∀k ∈ Z+.

(A3) The resetting initial condition is satisfied, i.e., q̇d (0) −
q̇k(0) = qd(0) − qk(0) = 0, ∀k ∈ Z+.

We also need the following properties the same as those stated
in Tayebi (2004), which are common to robot manipulators.

(P1) M(qk) ∈ Rn×n is symmetric, bounded, and positive def-
inite.

(P2) The matrix Ṁ(qk)−2C(qk, q̇k) is skew symmetric, hence
x�(Ṁ(qk) − 2C(qk, q̇k))x = 0, ∀x ∈ Rn.

(P3) ‖C(qk, q̇k)‖�kc‖q̇k(t)‖, ‖G(qk)‖�kg , and ‖dk(t)‖�kd ,
∀qk, q̇k , ∀t ∈ [0, T ] and ∀k ∈ Z+, where kc, kg and kd

are unknown positive parameters.

Under Assumption (A2) and Property (P1), there exists an
unknown positive constant kmd such that ‖M(qk)q̈d(t)‖�
kmd ∀t ∈ [0, T ], ∀k ∈ Z+. If we define the tracking joint
position error and joint velocity error as q̃k(t) = qd(t) − qk(t)

and ˙̃qk(t) = q̇d (t) − q̇k(t), respectively, then we have

˙̃q�
k (t)(M(qk)q̈d(t) + C(qk, q̇k)q̇d(t) + G(qk) − dk(t))

�‖ ˙̃qk(t)‖(kmd + kg + kd + kc‖q̇d (t)‖ ‖q̇k(t)‖)
�‖ ˙̃qk(t)‖(kmd + kg + kd + kc‖q̇d (t)‖2

+ kc‖q̇d (t)‖ ‖ ˙̃qk(t)‖)
��‖ ˙̃qk(t)‖2 + �′‖ ˙̃qk(t)‖, (2)

where � = kc supt∈[0,T ]‖q̇d (t)‖, �′ = kmd + kg + kd +
kc supt∈[0,T ]‖q̇d (t)‖2. Note that there exists a positive con-

stant � such that �′‖ ˙̃qk(t)‖��‖ ˙̃qk(t)‖1 = � ˙̃q�
k (t) sgn( ˙̃qk(t))

where ‖ ˙̃qk(t)‖1 is the one-norm of ˙̃qk(t) and sgn( ˙̃qk(t)) =
[sgn( ˙̃q1,k(t)), . . . , sgn( ˙̃qn,k(t))]�. This implies that inequality
(2) can be rewritten as

˙̃q�
k (t)(M(qk)q̈d(t) + C(qk, q̇k)q̇d(t) + G(qk) − dk(t))

� ˙̃q�
k (t)(� ˙̃qk(t) + � sgn( ˙̃qk(t)))

≡ ˙̃q�
k (t)�( ˙̃qk)�, (3)
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where �( ˙̃qk) = [ ˙̃qk(t), sgn( ˙̃qk(t))] ∈ Rn×2, and � =
[�, �]� ∈ R2.

3. Iterative learning controller with hybrid adaptive
algorithm

To achieve the error convergence of q̃k(t) and ˙̃qk(t) with all
the internal signals being bounded, we propose a projection-
free hybrid adaptive iterative learning controller as follows:

�k(t) = Kpq̃k(t) + KD
˙̃qk(t) + �( ˙̃qk(t))�̂k(t), (4)

where Kp ∈ Rn×n, KD ∈ Rn×n are symmetric positive definite,
and the adaptive law

(1 − �) ˙̂�k(t) = −�̂�k(t) + �̂�k−1(t) + 	��( ˙̃qk(t))
˙̃qk(t), (5)

where 0 < � < 1, 	 > 0 are defined as the weighting gain and
learning gain, respectively. The initial value of the parameter
vector is set to be �̂k(0) = �̂k−1(T )∀k ∈ Z+, and the initial
parameter profile for k = 0 is chosen as �̂0(t) = �ini, ∀t ∈
[0, T ] where �ini is a constant parameter vector. In general, the
adaptive law (5) will become a pure time-domain adaptive law
if � = 0, or a pure iteration-domain adaptive law if � = 1. In
addition to the convergence of q̃k(t) and ˙̃qk(t) to zero when
k tends to infinity, we will also guarantee the boundedness
of all the internal signals, especially the boundedness of the
parameter vector �̂k(t) and control torque �k(t). To study the
stability and convergence of the proposed adaptive iterative
learning controller for robot manipulators, we use the concept
of Lpe[0, T ] in the subsequent discussions to denote the set
of Lebesgue measurable (or piecewise continuous) real valued
(vector) functions with Lpe norm (Tayebi, 2004)

‖x(t)‖pe =

⎧⎪⎨
⎪⎩

(∫ T

0 ‖x(t)‖p dt
)1/p

if p ∈ [1, ∞),

sup
0� t �T

‖x(t)‖ if p = ∞.

We say that x(t) ∈ Lpe[0, T ] when ‖x(t)‖pe exists (i.e., when
‖x(t)‖pe is finite).

At first, we will derive the boundedness of q̃1(t), ˙̃q1(t), �̂1(t),
�1(t) at the first iteration in a way different from that for q̃k(t),˙̃qk(t), �̂k(t), �k(t) with k�2.

Proposition 1. Consider the robot manipulator system (1) with
properties (P1)–(P3) under the control torque (4) and param-
eter adaptive law (5). If assumptions (A1)–(A3) are satisfied,
then we have q̃1(t), ˙̃q1(t), �̂1(t), �1(t) ∈ L∞e[0, T ].

Proof. Let us consider the following Lyapunov-like positive
definite function:

Vk(t) = 1

2
˙̃q�
k (t)M(qk) ˙̃qk(t) + 1

2
q̃k

�(t)Kpq̃k(t)

+ 1 − �

2	
�̃k

�(t )̃�k(t), (6)

where �̃k(t) = �̂k(t) − � is the parameteric estimation error. Its
derivative with respective to time t along (1) can be computed
as follows1 :

V̇k = ˙̃q�
k M(qk) ¨̃qk + 1

2
˙̃q�
k Ṁ(qk) ˙̃qk + ˙̃q�

k Kpq̃k + 1 − �

	
�̃�
k

˙̃�k

= ˙̃q�
k (−M(qk)q̈k + M(qk)q̈d)

+ 1

2
˙̃q�
k Ṁ(qk) ˙̃qk + ˙̃q�

k Kpq̃k + 1 − �

	
�̃�
k

˙̃�k

= ˙̃q�
k (M(qk)q̈d + C(qk, q̇k)q̇d + G(qk) − dk)

− ˙̃q�
k �k + ˙̃q�

k Kpq̃k + 1 − �

	
�̃�
k

˙̃�k , (7)

where property (P2) is applied. Substituting inequality (3) and
the control torque (4) into (7), we have

V̇k � − ˙̃q�
k KD

˙̃qk − ˙̃q�
k �( ˙̃qk)̃�k + 1 − �

	
�̃�
k

˙̃�k . (8)

Using the adaptive law (5) and the fact that −�̂�k + �̂�k−1 =
−�̃�k + �̃�k−1, Eq. (8) leads to

V̇k � − ˙̃q�
k KD

˙̃qk − ˙̃q�
k �( ˙̃qk)̃�k

+ 1

	
�̃k

�(−�̃�k + �̃�k−1 + 	��( ˙̃qk)
˙̃qk)

= − ˙̃q�
k KD

˙̃qk − �

	
�̃�
k �̃k + �

	
�̃�
k �̃k−1

= − ˙̃q�
k KD

˙̃qk + �

4	
�̃�
k−1̃�k−1

− �

	

(̃
�k − 1

2
�̃k−1

)� (̃
�k − 1

2
�̃k−1

)

� �

4	
�̃�
k−1̃�k−1. (9)

Now, consider the first iteration of k = 1. Since �̂0(t) in the
adaptive law (5) is chosen as a constant vector �ini ∀t ∈ [0, T ],
we have �̃0(t) = �̂0(t) − � = �ini − � ≡ �0 and �̃1(0) = �̂1(0) −
� = �̂0(T ) − � = �ini − � ≡ �0. This implies that the initial
condition of V1(0) = 1

2
˙̃q�

1 (0)M(q1) ˙̃q1(0) + 1
2 q̃�

1 (0)Kpq̃1(0) +
1−�
2	 �̃

�
1 (0)̃�1(0) = 1−�

2	 ��
0 �0 is bounded due to Assumption (A2).

The Lyapunov-like function (6) at the first iteration will now
satisfy

V̇1(t)�
�

4	
�̃
�
0 (t )̃�0(t) = �

4	
��

0 �0 (10)

which readily concludes that V1(t), q̃1(t), ˙̃q1(t), �̃1(t) ∈
L∞e[0, T ] and hence, �1(t) ∈ L∞e[0, T ]. �

Based on the results given in Proposition 1, we next prove
the boundedness of q̃k(T ), ˙̃qk(T ), �̂k(T ) at the end of each

iteration and the convergence of ˙̃q�
k

˙̃qk in the sense of L1e norm.

1 Throughout this proof, the argument t will be omitted if it does not
lead to any confusion.
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Proposition 2. Consider the problem set-up in Proposition 1.
The proposed adaptive iterative learning system ensures that
˙̃qk(T ), q̃k(T ), �̃k(T ),

∫ T

0 �̃�
k �̃k dt , and

∫ T

0
˙̃q�
k

˙̃qk dt are bounded
∀k ∈ Z+ and

lim
k→∞

˙̃qk(T ) = lim
k→∞ q̃k(T ) = lim

k→∞

∫ T

0

˙̃q�
k

˙̃qk dt = 0.

Proof. Define a positive definite functional Wk(T ) as

Wk(T ) =
∫ T

0

�

	
�̃�
k �̃k dt + 1 − �

2	
�̃�
k (T )̃�k(T ). (11)

The difference between Wk(T ) and Wk−1(T ) can be derived
by using integration by parts and the fact that �̃k(0) = �̃k−1(T )

as follows:

�Wk(T ) = Wk(T ) − Wk−1(T )

=
∫ T

0

�

2	
[̃��

k �̃k−̃��
k−1̃�k−1] dt+1−�

2	
�̃�
k (T )̃�k(T )

− 1 − �

2	
�̃�
k−1(T )̃�k−1(T )

=
∫ T

0

�

2	
[̃��

k �̃k−̃��
k−1̃�k−1] dt+1−�

	

∫ T

0
�̃�
k

˙̃�k dt

+ 1 − �

2	
�̃�
k (0)̃�k(0) − 1 − �

2	
�̃�
k−1(T )̃�k−1(T )

=
∫ T

0

�

2	
[̃��

k �̃k − �̃�
k−1̃�k−1] dt

+ 1

	

∫ T

0
�̃�
k [−�̃�k + �̃�k−1 + 	�( ˙̃qk)

� ˙̃qk] dt

=
∫ T

0
− �

2	
(̃�k − �̃k−1)

�(̃�k − �̃k−1) dt

+
∫ T

0
�̃�
k ��( ˙̃qk)

˙̃qk dt . (12)

Now, define another positive definite function Uk as

Uk = 1
2
˙̃q�
k M(qk) ˙̃qk + 1

2 q̃�
k Kpq̃k ,

i.e., Vk = Uk + ((1 − �)/2	)̃��
k �̃k . The time derivative of Uk

with respective to time t will satisfy

U̇k � − ˙̃q�
k KD

˙̃qk − ˙̃q�
k �( ˙̃qk)̃�k (13)

according to the result of (8). Integrating (13) from 0 to T gives

Uk(T ) − Uk(0)� −
∫ T

0

˙̃q�
k KD

˙̃qk dt −
∫ T

0

˙̃q�
k �( ˙̃qk)̃�k dt ,

which implies that∫ T

0
�̃�
k ��( ˙̃qk)

˙̃qk dt =
∫ T

0

˙̃q�
k �( ˙̃qk)̃�k dt

� − Uk(T ) −
∫ T

0

˙̃q�
k KD

˙̃qk dt , (14)

where we use the fact that Uk(0) = 0 due to Assumption (A2).
Substituting (14) into (12), yields

�Wk(T ) = Wk(T ) − Wk−1(T )

� − Uk(T ) −
∫ T

0

˙̃q�
k KD

˙̃qk dt

−
∫ T

0

�

2	
(̃�k − �̃k−1)

�(̃�k − �̃k−1) dt (15)

� − Uk(T ) −
∫ T

0

˙̃q�
k KD

˙̃qk dt �0. (16)

The boundedness of Wk(T ) and hence, �̃�
k (T )̃�k(T ) and∫ T

0 �̃�
k �̃k dt , is guaranteed ∀k ∈ Z+ since W1(T ) is bounded

according to Proposition 1. Furthermore, Eq. (16) implies that

Uk(T ) +
∫ T

0

˙̃q�
k KD

˙̃qk dt �Wk−1(T ) − Wk(T )

�W1(T ) (17)

which ensures the boundedness of Uk(T ), ˙̃qk(T ), q̃k(T ) and∫ T

0
˙̃q�
k

˙̃qk dt , ∀k ∈ Z+. Note that Eq. (16) also gives

Wk(T )�W1(T ) −
k∑

j=2

Uj(T ) −
k∑

j=2

∫ T

0

˙̃q�
j KD

˙̃qj dt (18)

or equivalently

k∑
j=2

Uj(T ) +
k∑

j=2

∫ T

0

˙̃q�
j KD

˙̃qj dt �W1(T ) − Wk(T )

�W1(T ). (19)

Hence, we conclude from (16), (17) and (19) that ˙̃qk(T ), q̃k(T ),
�̃k(T ),

∫ T

0 �̃�
k �̃k dt , and

∫ T

0
˙̃q�
k

˙̃qk dt are bounded ∀k ∈ Z+ and

lim
k→∞ Uk(T ) = lim

k→∞
˙̃qk(T ) = lim

k→∞ q̃k(T )

= lim
k→∞

∫ T

0

˙̃q�
k

˙̃qk dt = 0. � (20)

In Propositions 1 and 2, we have shown that all the internal
signals for the first iteration are bounded, and ˙̃qk(T ), q̃k(T ),
�̃k(T ), or equivalently ˙̃qk(0), q̃k(0), �̃k(0), are bounded ∀k ∈
Z+. In the following theorem, the boundedness of all the in-
ternal signals at each iteration and convergence of ˙̃qk(t), q̃k(t)

will be established.

Theorem. Consider the same problem set-up in Proposi-
tion 1. If Assumptions (A1)–(A3) are satisfied, then we have
q̃k(t), ˙̃qk(t), �̂k(t),�k(t) ∈ L∞e[0, T ] for all k ∈ Z+ and
limk→∞ q̃k(t) = limk→∞ ˙̃qk(t) = 0, ∀t ∈ [0, T ].

Proof. Consider the Lyapunov-like function Vk(t) in (6) again
and note that its time derivative satisfies (9). Integrating (9)
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from 0 to t for any t ∈ [0, T ], we have

Vk(t)�Vk(0) +
∫ t

0

�

4	
�̃�
k−1(t

′)̃�k−1(t
′) dt ′

�Vk(0) +
∫ T

0

�

4	
�̃�
k−1(t )̃�k−1(t) dt . (21)

As Vk(0)=((1−�)/2	)̃��
k (0)̃�k(0)=((1−�)/2	)̃��

k−1(T )̃�k−1

(T ) and
∫ T

0 (�/4	)̃��
k−1(t )̃�k−1(t) dt are finite for all k ∈ Z+

as shown in Proposition 2, the finiteness of Vk(t), q̃k(t), ˙̃qk(t),
�̃k(t) and �k(t) is guaranteed by (21) ∀t ∈ [0, T ] and ∀k ∈ Z+.
Moreover, ¨̃qk(t) is also bounded due to the equation of motion
(1) for robot manipulators. Now, we have q̃k(t), ˙̃qk(t),

¨̃qk(t) ∈
L∞e[0, T ] and

lim
k→∞

∫ T

0

˙̃q�
k (t) ˙̃qk(t) dt = 0. (22)

Consequently, limk→∞ ˙̃qk(t) = 0, ∀t ∈ [0, T ] by using similar
argument for Barbalat’s lemma (e.g., Ioannou & Sun, 1996,
Lemma 3.2.6). Finally, it is easy to show that limk→∞q̃k(t)=0,
∀t ∈ [0, T ] since q̃k(0) = 0 and q̃k(t) is uniformly continuous
over [0, T ], ∀k ∈ Z+ by (22). This completes the proof. �

Remark 1. In this paper, we present a general adaptive learning
algorithm combining time-domain and iteration-domain adap-
tation for adaptive ILC of robot manipulators. In the main the-
orem, we show that ˙̃qk(t) and q̃k(t) converge to zero for all
t ∈ [0, T ] as the iteration number k → ∞ with all the internal
signals belonging to L∞e[0, T ]. For the extreme case of � = 1,
the adaptive law (5) becomes a pure iteration-domain adaptive
law as that in Tayebi (2004) as follows:

�̂k(t) = �̂k−1(t) + 	��( ˙̃qk(t))
˙̃qk(t) (23)

with �̂0(t) being some specified initial vector. The main ad-
vantage of (23) is that it can be applied to systems with time-
varying parameters and the learning convergence speed is in
general faster than the case of � ∈ [0, 1). But, without a projec-
tion mechanism, only L2 boundedness of control parameters is
guaranteed. On the other hand, another extreme case of � = 0
results in a pure time-domain adaptive law

˙̂�k(t) = 	��( ˙̃qk(t))
˙̃qk(t), (24)

where �̂k(0) = �̂k−1(T ), ∀k ∈ Z+ and �̂1(0) = �ini for some
specified constant vector �ini. The technical results shown
in our theorem are still valid for the case of � = 0. In fact,
Eq. (24) is similar to the adaptive law presented in French and
Rogers (2000). The main feature of (24) is that the previous
parameter profile during the time interval [0, T ] is no longer
needed. However, the convergence speed of the learning error
is in general slow, especially when compared with the cases of
� �= 0. This can be easily seen from (15), where larger values
of � contribute to generate a more negative term in the right-
hand side. By increasing � will result in Wk much smaller than
Wk−1 indicating higher convergence rates.

Remark 2. It is worth noting that the updating term
	��( ˙̃qk(t))

˙̃qk(t) is always positive. This implies that a possi-
ble parameter drift may occur for both pure iteration-domain
adaptive law (23) and pure time-domain adaptive law (24)
when the velocity tracking error ˙̃qk(t) cannot be exactly zero
in a real physical environment. To solve the possible parameter
drift, it is necessary to introduce a certain mechanism such as
a projection or a deadzone for a practical realization. The com-
bined adaptive law (5), however, is stable in time domain as the
eigenvalue −�/(1 − �) < 0. Once the control parameters at the
previous trial and the velocity tracking error are both bounded,
the control parameters at the current trial will be bounded.

Remark 3. For the problem of nonzero initial position or
velocity errors at the beginning of each iteration, a possible
solution is to apply the technique such as that in Chien and Yao
(2004) where a time-varying boundary layer based saturation
function approach is utilized to compensate for the uncertain-
ties from initial errors. As the position and velocity variables
are measurable, a rectifying action such as that in Xu and Yan
(2005) can also be applied to solve the problem. More precisely,
let the reference position and velocity trajectories be revised as

q∗
d (t) =

{
qd(t) if t ∈ [h, T ],
qr (t) if t ∈ [0, h),

q̇∗
d (t) =

{
q̇d (t) if t ∈ [h, T ],
q̇r (t) if t ∈ [0, h),

where h ∈ [0, T ] can be chosen arbitrary. Here qr(t) and q̇r (t)

are certain smooth functions that connect qk(0) and qd(h) as

0 5 10 15 20 25 30 35 40 45 50

10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

0 5 10 15 20 25 30 35 40 45 50

Fig. 1. Convergence of the tracking errors. (a) supt∈[0,1]q̃k(t) (rad) versus
iteration number k; · · · for link 1, ◦◦◦ for link 2, �=0.5. (b) supt∈[0,1]q̃1,k(t)
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Fig. 2. Responses at the 50th iteration (k = 50) under adaptive learning controller (4), (5) with sign function. (a) q̃1,k(t) versus time t, (b) q̃2,k(t) versus time

t, (c) �1,k(t) versus time t, (d) �2,k(t) versus time t, (e) �̂1,k(t) versus time t, (f) �̂2,k(t) versus time t.

well as q̇k(0) and q̇d (h) at the time moment t = h. The
less the h, the closer the trajectories q∗

d (t) and q̇∗
d (t) to the

original reference trajectories. Under these conditions, we
have q∗

d (0) − qk(0) = q̇∗
d (0) − q̇k(0) = 0 so that the tech-

nique proposed in this paper can be directly applied without
modifications.

4. Simulation results

To demonstrate the effectiveness of the proposed adaptive
learning controller, we consider a two degrees-of-freedom pla-
nar manipulator with revolute joints described by (1). The ma-
trix M = [mij ]2×2 is given by m11 = m1�

2
c1 + m2(�

2
1 + �2

c2 +
2�1�c2 cos q2)+I1+I2, m12=m21=m2(�

2
c2+�1�c2 cos q2)+I2,

and m22 = m2�
2
c2 + I2. The matrix C = [cij ]2×2 is given by

c11 = hq̇2, c12 = hq̇1 + hq̇2, c21 = −hq̇1, and c22 = 0 where
h = −m2�1�c2 sin q2. The vector G = [G1, G2]� is given by
G1 = (m1�c1 +m2�1)g cos q1 +m2�c2g cos(q1 +q2) and G2 =
m2�c2g cos(q1 + q2). The robot parameters shown above are
given by m1 = m2 = 1 kg, �1 = �2 = 0.5 m, �c1 = �c2 = 0.25 m,

I1 = I2 = 0.1 kg m2, g = 9.81 m/s2. The disturbances are as-
sumed to be d1 =d2 =rand(k) sin(t) where rand(k) is a random
function taking its value between 0 and 1. The formulation of
the disturbances implies that they are time-varying and varying
from iteration to iteration. The desired trajectories for q1 and
q2 are chosen as q1,d (t)= sin(2
t) and q2,d (t)= cos(2
t) over
the time interval is [0, 1] s.

At first, we investigate the convergence of the sup-norm for
the joint position tracking errors versus the iteration number k.
The PD control gains are set to be Kp = KD = 20I2×2 where
I2×2 is a 2 ×2 identity matrix and the learning gain is set to be
	 = 20, respectively. These parameters are easily chosen. Ac-
cording to the technical analysis, we understand that Kp, KD

should be chosen as positive definite matrices and 	 should be
chosen as a positive constant. In general, when the eigenvalues
of Kp, KD and the value of 	 are larger, the convergence speed
will be faster. Fig. 1(a) shows the evolutions of supt∈[0,1]q̃1,k(t)

and supt∈[0,1]q̃2,k(t) versus the iteration number k when �=0.5.
After 50th trials, the sup-norm of position error is less than
0.0008 rad for joint one and less than 0.00033 rad for joint two.



836 C.-J. Chien, A. Tayebi / Automatica 44 (2008) 830–837

0 0.2 0.4 0.6 0.8 1

−40

−20

0

20

40

0 0.2 0.4 0.6 0.8 1

−20

−10

0

10

20

0 0.2 0.4 0.6 0.8 1

−0.01

−0.005

0

0.005

0.01

0 0.2 0.4 0.6 0.8 1

−0.01

−0.005

0

0.005

0.01

0 0.2 0.4 0.6 0.8 1

14.94

14.96

14.98

15

15.02

0 0.2 0.4 0.6 0.8 1

34.6

34.8

35

35.2

35.4

Fig. 3. Responses at the 50th iteration (k = 50) under adaptive learning controller (4), (5) with saturation function (25). (a) q̃1,k(t) versus time t, (b) q̃2,k(t)

versus time t, (c) �1,k(t) versus time t, (d) �2,k(t) versus time t, (e) �̂1,k(t) versus time t, (f) �̂2,k(t) versus time t.

In order to study the effect of the parameter �, we choose the
sup-norm of the position error at joint one for comparisons.
Fig. 1(b) illustrates the evolution of supt∈[0,1]q̃1,k(t) versus
the iteration number k with � = 0, 0.5 and 1, respectively. In
other words, the pure time domain, combined domain and pure
iteration-domain adaptive laws are applied for simulation. No
matter what the value of � is, the error convergence is guaran-
teed once 0���1. However, the convergence speed is faster
if � is larger.

Finally, the trajectories of position tracking errors q̃1,k(t),

q̃2,k(t), input torques �1,k(t), �2,k(t) as well as the control
parameters �̂1,k(t) and �̂2,k(t) for the case of � = 0.5 at
50th iteration are presented in Fig. 2(a)–(f), respectively.
The chattering problem in the input torque �k(t) which is
inherent to the use of the sign function (as in most ro-
bust control techniques) can be reduced by substituting the
sign function by a saturation function leading to a prac-
tical convergence to a compact domain around zero. In
Fig. 3, we performed the same simulations where the sign
function has been substituted by the following saturation

function:

sat( ˙̃qi,k) =

⎧⎪⎪⎨
⎪⎪⎩

1 if ˙̃qi,k �0.01,

100 ˙̃qi,k if | ˙̃qi,k| < 0.01,

−1 if ˙̃qi,k � − 0.01.

(25)

With this modification, we obtained a more practical control
signal without chattering.

5. Conclusion

For repetitive control of robot manipulators, a new AILC
strategy is proposed in this paper. The main feature of this learn-
ing control scheme is a switching-type robust controller and a
mixed time-domain and iteration-domain adaptation law. Un-
der this adaptive learning controller, the projection mechanism
is not required in the adaptive law to ensure the boundedness
of all signals involved in the control scheme. A rigorous proof,
via a Lyapunov-like approach, is given to show the finiteness
of tuning control parameters, rejection of the random input
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disturbance and the asymptotic error convergence along the
iteration axis. Simulation results show that the error conver-
gence and the bounded internal signals can be achieved. In
the future work, we will study the implementation and experi-
ment of the proposed approach for robot manipulators. We also
would like to improve the adaptive iterative learning controller
with simpler control structure using only one control parame-
ter and without using sign function. The relaxation of identical
initial resetting condition can also be considered.

Acknowledgments

This work is supported by the National Science Council,
ROC, under Grant NSC95-2221-E-211-006 and by the Natural
Sciences and Engineering Research Council (NSERC), Canada,
under Grant RGPIN/238701-2001.

References

Arimoto, S. (1996). Control theory of non-linear mechanical systems. Oxford,
UK: Oxford Science Publications.

Bondi, P., Casalino, G., & Gambardella, L. (1988). On the iterative learning
control theory for robotic manipulators. IEEE Journal of Robotics and
Automation, 4, 14–22.

Chien, C. J., & Yao, C. Y. (2004). An output based adaptive iterative learning
controller for high relative degree uncertain linear systems. Automatica,
40, 145–153.

Choi, J. Y., & Lee, J. S. (2000). Adaptive iterative learning control of uncertain
robotic systems. IEE Proceedings D, Control Theory Application, 147,
217–223.

French, M., & Rogers, E. (2000). Non-linear iterative learning by an adaptive
Lyapunov technique. International Journal of Control, 73, 840–850.

Horowitz, R. (1993). Learning control of robot manipulators. ASME Journal
of Dynamic Systems Measurements and Control, 115, 402–411.

Ioannou, P. A., & Sun, J. (1996). Robust adaptive control. Englewood Cliffs,
NJ: Prentice-Hall.

Kawamura, S., Miyazaki, F., & Arimoto, S. (1988). Realization of robot
motion based on a learning method. IEEE Transactions on Systems, Man
and Cybernetics, Part-B, 18, 126–134.

Kuc, T. Y., & Han, W. G. (2000). An adaptive PID learning control of robot
manipulators. Automatica, 36, 717–725.

Norrlöf, M. (2002). An adaptive iterative learning control algorithm with
experiments on an industrial robot. IEEE Transactions on Robotics and
Automation, 18, 245–251.

Park, P. H., Kuc, T. Y., & Lee, J. S. (1996). Adaptive learning control of
uncertain robotic systems. International Journal of Control, 65, 725–744.

Slotine, J. J., & Li, W. (1991). Applied nonlinear control. Englewood Cliffs,
NJ: Prentice-Hall.

Spong, M. W., & Vidyasagar, M. (1989). Robot dynamics and control. New
York: Wiley.

Takegaki, M., & Arimoto, S. (1981). A new feedback method for dynamic
control of manipulators. Journal of Dynamic Systems, Measurement and
Control, 103, 119–125.

Tayebi, A. (2004). Adaptive iterative learning control for robot manipulators.
Automatica, 40, 1195–1203.

Tomei, P. (1991). Adaptive PD controller for robot manipulators. IEEE
Transactions on Robotics and Automation, 7, 565–570.

Wang, D., Son, Y. C., & Cheah, C. C. (1995). Robust motion and force
control of constrained manipulators by learning. Automatica, 31, 257–262.

Xu, J. X., & Wiswanathan, B. (2000). Adaptive robust iterative learning
control with dead zone scheme. Automatica, 36, 91–99.

Xu, J. X., & Yan, R. (2005). On initial conditions in iterative learning control.
IEEE Transactions on Automatic Control, 50, 1349–1354.


	Further results on adaptive iterative learning control of robot manipulators62626262
	Introduction
	Problem formulation
	Iterative learning controller with hybrid adaptive algorithm
	Simulation results
	Conclusion
	Acknowledgments
	References


