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Abstract—In this paper, we propose an iterative con-
trol strategy for the transient performance improvement of
model reference adaptive control (MRAC) for continuous-
time single-input single-output (SISO) linear time-invariant
(LTI) systems with unknown parameters. The transient
improvement is achieved through the introduction of a sup-
plementary discrete-type parametric adaptation law along
the iteration-axis, which is obtained in a straightforward
manner from the continuous-time parametric adaptation law
used in the MRAC scheme. This approach is referred to
as the iterative model reference adaptive control (IMRAC).
Initially, a standard MRAC scheme is applied to the system
under consideration. Thereafter, the parameters are updated
iteratively in order to enhance the tracking performance from
iteration to iteration. In the case of systems with relative
degree one, we obtain a pointwise convergence of the tracking
error to zero, over the whole finite time-interval, when the
number of iterations tends to infinity. In the general case,
i.e., systems with arbitrary relative degree, we show that
the tracking error converges to a prescribed small domain
around zero, over the whole finite time interval, when the
number of iterations tends to infinity. Simulation results are
also carried out to support the theoretical development.

I. Introduction

Adaptive control is one of the most popular control
techniques that has been fascinating the automatic con-
trol community for several years [6], [9]. In the standard
adaptive control framework, the parametric adaptation
rule is generally an integration along the time-axis which
is commonly designed using the Lyapunov method in or-
der to achieve asymptotic tracking. Hence, the tracking
objective is achieved along an infinite time interval, and
a transient tracking error will always be present. Model
reference adaptive control is among the famous adaptive
techniques that have been around for more than three
decades. The major problem that one can attribute
to this technique is the bad transient performance.
To overcome this drawback, other alternatives, such as
the backstepping approach [7], have been proposed in
the literature. However, the benefit brought by those
techniques (e.g., backstepping), in terms of transient
improvement, is often eclipsed by the control law imple-
mentation complexity. On the other hand, in practical
applications, the designed controller can be applied
more than once to the plant under consideration, over
a finite time interval. In this case, one can benefit from
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the information collected at the previous operations
in order to enhance the transient performance for the
subsequent operations. This technique is known as the
iterative learning control (ILC) [1]. Most of the existing
ILC schemes in the literature are based upon the
contraction mapping technique and require a certain
a priori knowledge of the system parameters as well
as the use of the output time derivatives for systems
with high relative degree (see, for instance, [2], [8], [13],
[14]). Recently, a growing interest has been given to the
energy-based approach which takes its essence from the
Lyapunov theory [3], [4], [5], [15], [16], [17], [18].

In this paper, we propose an iterative control strategy
for the transient performance improvement of MRAC
schemes. The proposed IMRAC scheme achieves a
global asymptotic tracking along the time horizon at
the first iteration, and a point-wise convergence of the
tracking error to zero (in the case of systems with
relative degree one) or to a prescribed small domain
around zero (for systems with higher relative degree),
over the whole finite time-interval, when the number of
iterations tends to infinity. In fact, at the first itera-
tion, we use a continuous-time integral-type parametric
adaptation law, while for the subsequent iterations, we
use a discrete integral-type parametric adaptation law
along the iteration-axis, which is obtained in a straight-
forward manner from the continuous-time parametric
adaptation law used in standard MRAC schemes. The
proof is based upon the use of a Lyapunov-like sequence
which is shown to be monotonically decreasing along
the iterative process. Basically, the role of the discrete
integral-type parametric adaptation law is to refine the
transient response from iteration to iteration in order to
achieve a ‘perfect tracking’ (in the case where the initial
tracking error is zero) over a finite time horizon after
an infinite number of iterations. In contrast to existing
contraction mapping-based ILC schemes, the proposed
control strategy does not require the use of the output
time-derivatives for systems with a high relative degree.

II. Problem formulation

In this paper we consider SISO-LTT systems described

by
ZP(S)

(1) = Gy(o) (0] = by B o

@ @

and operated repeatedly over a finite time-interval [0,T].
The nonnegative integer k € Zy denotes the iteration

644



or trial number. The desired trajectory yq(t) is given
by a reference model as follows

Ya(t) = Gm(s)[rs(t)] = km Ron(3) [re@®)],  (2)

where 7¢(t) is a bounded reference input.

Assuming that the system parameters are unknown
(except the sign of the high-frequency-gain k,), our
objective is to design an adaptive iterative learning
controller guaranteeing the boundedness of the tracking
error V¢ € [0,T] and Vk € Z,, and the convergence of
the tracking error to zero Vt € [0,7] when k tends to
infinity. To this end, we will assume that y4(0) = yx(0)
and without any loss of generality we will assume that
ya(0) = yx(0) = 0. We will use the £, norm defined as
follows

1/p

. (/Otnxmnpcw) if pe o)

[2(8)]pe= ,
sup [lz(7)|| if p=oo
0<r<t

where ||z]| denotes any norm of z, and ¢ belongs to the
finite interval [0,T]. We say that x € L, when ||zpe
exists (i.e., when ||z||pe is finite).

We will also make the following classical assumptions
related to the MRAC technique:
B1)
B2)

Z, is a monic Hurwitz polynomial of degree m,,
An upper bound n of the degree n, of R,(s) is
available

The relative degree r = n, —m, of G, is known
The sign of the high frequency gain &, is known
Zm and R, are monic Hurwitz polynomial of
degree m,, and n,, respectively, with n,, <n
The relative degree 1, = n,, — m,, of G, is the
same as that of Gp.

B3)
B4)
B5)

B6)

III. Preliminaries

Let us define A(s) = Ag(8)Zm(s), which is a monic
Hurwitz polynomial of degree n— 1. Define also a(s) as
follows

o(s) _{ Gt

As shown in [6], [9], there exists a set of parameters
s €ER, 05 € R, 07 € R*! and 05 € R"! such that
the following control law

T
U = 9* Qk,

;5,17 form > 2

forn=1

where 0* = [QIT,HST,@,CS]T, Q. = [wfk,wgk,yk,rj']T
(s)
A(s

)

Q2

[ug] and woj = as) leads to

(s)
A(S) [yk]7
= Gon(9)lrg) = b 22 17

W1,k =

~—

The parameters can be obtained from the following
relationships

ko
CO—

k_pa

(A—0:"a)R, — kpZy(05" a4+ 057) = ZyAo Ry

The signals w;j and wsyy are the outputs of the
following systems

wy,(0) =0
w;,]I:(O) =0, (3)

a(s)'

The state space representation of the overall closed-loop
system is given by the following nonminimal realization

Fwy i + gug
Fws i + gyk

Wi =
w2 =

where (F, g) is a state space realization of

Yor =
Y =

ACYC)]C + BCCST.f
Oc}/c,ka (4)

with Yo, = [2f, 0T, wl,]T € R +2"=2 where
denotes the state vector associated with system (1),
and

A+ Bo;C  Bo;T BesT
A, = 9050 F 4907 go3T |,
C 0 F
g B (5)
B.=1| g |,C.=]C,0,0].
0

Hence, the transfer function from r¢ to y; is given by

e = Gn(s) = Cu(sI — A) "' Bect.
rf
Therefore, the reference model can also be described by
Yo =
Ya =

AcYr, + Bechrs
OcYm7

Note that A, is a stable matrix, since det(sl — A.) =
A(8)Z,(s)Ao(s)Rm(s).

Let e =Y, —Y,, be the state error and ey = Yx — Ya
be the output tracking error. It follows that

Acek

ér =
Cceku (6)

€1k =

which shows that the tracking error converges exponen-
tially to zero.

Since the system parameters are unknown, the vector
f* cannot be obtained and hence, the control law
ug(t) = 0*TQy(t) cannot be applied. In this case, the
MRAC technique consists of applying a control law of
the form ug(t) = 0F (£)Qx(t), where 0y (t) is generated
by an appropriate adaptive law.

In our approach, at the first iteration, i.e., for k = 0, the
vector 6y(t) is generated by a continuous-time integral-
type adaptive law as in the usual MRAC framework,
whereas for k > 1, the vector 6y (t) is generated by a
discrete integral-type adaptive law (iterative law along
the iteration axis).
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IV. Iterative-SPR-Lyapunov Lemma

In this section, we propose a modified version of the
strictly positive real(SPR)-Lyapunov approach [6], [12],
which is the key in the derivation of our IMRAC in the
next section. Our result can be stated as follows:

Lemma 1: Let the signals ej(t) and ~YWZ(t)vy(t)
be related by a strictly positive real (SPR) transfer
function H(s) as follows:

er(t) = H(s)[yWx (t)vr(t)],

(
where t belongs to the finite time-interval [0, T, ex(t)
R, 7 is an unknown constant with known sign, vy (t)
R™ is a measurable vector. The vector Uy (t) € R™ is
generated by

\I/k(t) = \I/k_l(t)

and

7)

€
€

—Tu(t)ex for k>1, (8)

(t)sgn(v)

Uo(t) = —Two(t)eo(t)sgn (), 9)

where I' € R™*™ is a symmetric positive definite
matrix. Then

o The state vector Xj € Loce, €r(t) € Looe and
\I/k(t) S EQE, for all k£ € Z+.
. lem er(t) =0, for all ¢ € [0,T].
Proof: Because of space limitation, we will skip
some calculation details in the proof.
Let the state space representation of (7) be

Xi = AX.+BOUL(Mu(t), Xu(0)=0
€L = OXk
Since H(s) is SPR then, from Meyer-Kalman-

Yakubovich (MKY) lemma [6], [12], for any given
symmetric positive definite matrix L there exist a
symmetric positive definite matrix P, a vector ¢ and
a strictly positive scalar v such that
ATP + P/:l = quT —vL
PB = CT.

Consider the following Lyapunov-like function candi-
date

Wi ( Xy, U) = —X,”;FPX + I;I (T~ 0y (7)dr,

i (10)
Using the fact that H(s) is SPR, and using MKY-
lemma, in view of (7) and (8), one can show that the
difference of the Lyapunov-like function is given by

AW, Wi — Wi—1
1 o . _
——XI PXp 1 — l UIr=10dr
2 2 Jo
0.

IA

IN

(11)

where W), = U, — ¥;_;. Hence Wj(t) is nonincreas-
t

ing and consequently Xy(t), [ I (r)T~'W(7)dr and

er(t) are bounded if Wy(t) is bounded.

Now, to prove the boundedness of Wy(t), we use the
following Lyapunov function
_ 1_ _

So(Xo, ¥g) = 5XOTPX0 + M\IJTF Ly, (12)
whose time derivative along the system trajectories can
be shown to be negative semi-definite, which means that
Xo(t) and Wo(t) are globally bounded. Hence, Wy (t) is
bounded over the finite time interval [0, T].

Moreover, one can show that

i:fﬂ ()PX;-1(t) < 2(Wo(t) — Wi(t)) < 2Wo(t).

(13)
Since Wo(t) and Xy (t) are bounded for all k € Z and
€ [0,T], one can conclude that lim Xj(t) = 0 and

consequently klingo ex(t) =0, ¥Vt € [(])C,_) TO]O. O
Remark 1: Note that by virtue of Barbalat lemma,

and under the assumption that vg(¢) is bounded for all

t € RT, one can easily show that tlggo eo(t) = 0.
Remark 2: If vy (t) € Looe for any finite non-negative

integer k, one can show that W (t) € Looe for any finite
non-negative integer k.

V. IMRAC for systems with relative degree one

For systems with relative degree r = 1, the design of
an IMRAC is straightforward from Lemmal as stated
in the following theorem

Theorem 1: Assume that (B1-B6) are satisfied and
Gn(s) is SPR. Consider system (1), with a relative
degree r = 1, under the following control law

ug(t) = 0F ()Qx(t), for k>0 (14)

with
Or(t) = Op—1(t) — TQr(t)erx(t)sgn(p*), for Ek>1
(15)

and
0o (t) = =T (t)e1o(t)sgn(p*), (16)

k
where p* = —2 and I' € R?2n*2"

is a symmetric positive
definite matrix. Then,

o The state vector Yo, € Loce, e11(t) = (y
yd(t)) € Looe and Hk( ) S EQE, for all k£ € Z
. klim e1k(t) =0, for all t € [0,T].
Proof: Since (6) is obtained with uy () = 0*7 Q. (),
one has

()

ér = Acer+ Bc(uk — H*TQ;C)

eix = Ceex, (17)
which under the control law (14) becomes
ér = Acer+ Bcéng
eix = Ceep, (18)
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with x(t) = x(t) — 6*. Since Co(sI — A.) " 'Becl =
G (3), system (18) leads to

e1k = G ()"0 ()% (1)) (19)

where p* = 1/¢f. Finally, under the adaptive laws (15)
and (16), the result follows directly from Lemma 1. O

Remark 3: Since r¢, ey 1, Ye i € Looe Vk € Z, One can
conclude that Qf, € Lo Vk € Z,. Hence, one can show
that 0 (t) € Looe for any finite non-negative integer k.
Consequently, uy(t) € Looe for any finite non-negative
integer k.

Remark 4: Note that, for £k = 0, the control scheme
proposed in theorem 1 is nothing else but a standard
MRAC. It turns out that the second term of the right
hand side of the discrete-type adaptation law (15)
is similar to the right hand side of the continuous-
time adaptation law (16). For systems with a relative
degree r > 1 direct application of the Iterative-SPR-
Lyapunov lemma is not possible. Nevertheless, it is
possible to obtain IMRAC schemes, in a straightforward
manner, from the standard MRAC algorithms dealing
with higher relative degrees (see for instance [6], [9] and
references therein), by associating to each continuous-
time integral-type adaption law a discrete integral-type
adaption law with saturation, along the iteration axis
as shown in the next section.

VI. IMRAC for systems with relative degree r > 1

In this section, we propose an IMRAC scheme for
systems with an arbitrary relative degree » > 1. Our
result is based on the extension of the MRAC schemes
proposed in [6], [9].

Theorem 2: Assume that (B1-B6) are satisfied. Con-
sider system (1), with a relative degree r > 1, under
the following control law over [0, T:

ugp(t) = 0F ()Qx(t), for k>0 (20)
with
Ok—1(t) — Tex () ok (t)sgn(p*), if sup |ex—1| >0
Or(t) = ' te[0,77]
k Op—1(T) if sup lep_1| <o
te[0,77]
(21)
Pr—1(t) +vep(t)éx(t), for sup |ex_1(t)] >0
_ t€(0,T]
pr(t) = pr—1(T) for sup leg_1(t)] <o
t€[0,T)
(22)
for k > 1, and
0o(t) = —Teo(t)do(t)sgn(p*), (23)
po(t) = veo(t)&o(t), (24)

where, p* = k_p’ I' € R?"*27 ig a symmetric positive

definite matrix and v is a positive parameter. The
signals ¢, €, and & are evaluated for all k € Z, as

follows:
o = e1r — €1k
mj,
e = prée
& = ux—0Fgy
o = Gm(s)[U]
U = Gm(s)[uk] o
. {1+ui+¢§§¢kor1+¢£¢kfork=0
k Kk for k>1

(25)
where & is a positive parameter, ¢ = G, (5)[Q], with
Q= [wi w3y, ye] "

Then, all signals are bounded Vk € Z,, Vt € [0,T],
and klim lerx(t)| < ko, ¥t € [0,T].

— 00
Proof: The proof is omitted for space limitation.

Remark 5: Note that, for kK = 0, the control scheme
proposed in theorem 2 reduces to the standard MRAC
schemes proposed in [6], [9]. In fact, m2 = 14+ a3+ &% ¢o
has been used in [6] and m3 = 1+ ¢{ ¢y has been used
in [9].

Remark 6: It is worth noting that the saturation used
for 6y is required for a technical reason in the proof.
It allows to ensure that 6x(¢) becomes constant when
the augmented tracking error ¢, is sufficiently small. In
this case, the augmented tracking error becomes the real
tracking error ej j since &x(¢) = 0. On the other hand,
the saturation used for pj is not necessary. In fact, we
stop the learning for p; because it has no effect on the
system behavior once 6 is constant.

Remark 7: It is worth noting that a simple and inter-
esting approach to adaptive iterative learning control
has been proposed in [3], where a standard Lyapunov
design is used to solve ILC problems. The idea consists
to use a standard adaptive controller and to start the
parameter estimates with their final values obtained
at the preceding iteration. However, as in standard
adaptive control, this technique requires the unknown
system parameters to be constant. In contrast to the
approach of [3], the ILC framework used in the present
paper, although applied here in the case of unknown
constant parameters, is able to handle systems with
time-varying parameters [18]. On the other hand, our
approach does not require an integration every iteration
to obtain the parameters estimates. The parameters
are adjusted point-wisely in an iterative manner with a
tunable learning gain.

VII. Simulation results

In this section, we consider two examples.
Example 1:

s+1 1

G0 =01 O =
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with 7;(t) being a unit step input. The auxiliary
variables wy ; and ws j are given by

1 1

= srro v = g
The matrix I' is chosen as a I' = 101444. The time
interval is taken as [0, 8s] and the initial conditions for
the adaptive law at the first iteration are chosen to be
Zero.

Figure 1 shows the evolution of the Sup-norm of the
tracking error with respect to the iteration number.
Figure 2 shows the performance of the standard MRAC,
for Gp1. Figures 3 and 4, show the transient performance
improvement over the iterations.

Example 2:

w1 (Y]

2545 Gon(s) = 2545
34652 +T7s—4" " 53 +6s2+11s+6
with 7;(¢t) being a unit step input. The auxiliary
variables wy ; and ws j are given by

Gp(s) =

s 1 T[ ]
w = u
Lk 252 + 155 + 25 252 + 155 + 25 kls

T
s 1
W2k = (252 + 155+ 25" 252 + 155 + 25) L

k =0.1, I' = 10lgxg, v = 0.1 and o = 0.05. The time
interval is taken as [0, 8s] and the initial conditions for
the adaptive law at the first iteration are chosen to
be zero. At the first iteration, i.e., for k& = 0, we use
mg =1+ a2+ ¢ bo

Figure 5 shows the evolution of the Sup-norm of the
tracking error with respect to the iteration number
using our approach.

3

25 b

sup, Iy, |
=
i

0 Il Il Il I T T t t
0 10 20 30 40 50 60 70 80 90 100

Ilteration number

Fig. 1.  Ezamplel : sup |yq(t) — yx(t)| with respect to the
te[0,8]

iteration number k.

reference trajectory

output

reference trajectory and system output

-1

2 I I I I I I I
0 1 2 3 4 5 6 7 8

time (s)

Fig. 2. Examplel: Reference trajectory and system output with
the MRAC (i.e., k=0).

o
@
T
I

reference trajectory

oS
3
T
I

output for k=5

o
>
T
I

o
=~
T
I

o
w
T
I

reference trajectory and system output for k=5
o
o
T
i

o
[
T
I

0.1 q

0 I I I I I I I
0 1 2 3 4 5 6 7 8

time (s)

Fig. 3. Examplel: Reference trajectory and system output at
the 5th iteration.

VIII. Conclusion

In this paper, a two-dimensional adaptive control
strategy has been proposed for SISO-LTI systems
with arbitrary relative degree. Two different types of
parametric adaptation laws are used. The first one is
performed only at the first iteration, i.e., for £k =0, as a
continuous-time integral-type adaptive law derived us-
ing a standard Lyapunov function in order to guarantee
global boundedness and asymptotic convergence to zero
of the tracking error in the time domain. The second
one is a discrete integral-type adaptive law designed to
make a Lyapunov-like function monotonically decreas-
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: \ reference trajectory

output for k=20

o
w

reference trajectory and system output for k=20
o
o

0.2

0.1

0 1 2 3 4 5 6 7 8
time (s)
Fig. 4. Examplel: Reference trajectory and system output at

the 20th iteration.

S
[}
B .
T
[0}
08 B
06 .
04r B
o.z—Lg
0 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Ilteration number
Fig. 5. Ezample2 : sup |yq(t) — yx(t)| with respect to the

t€[0,8]
iteration number k.

ing along the iteration axis. Basically, the role of the
later is to refine the output response from iteration to
iteration in order to achieve a pointwise convergence of
the tracking error to zero (in the case of systems with
relative degree one), or to a prescribed small domain
around zero (for systems with higher relative degree),
over the whole finite time-interval, when the number
of iterations tends to infinity. In contrast to existing
contraction mapping-based ILC schemes, the proposed
control strategy does not require the use of the output
time-derivatives.
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