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Abstract

In this paper, two adaptive iterative learning control schemes, proposed by A. Tayebi [2004, Automatica, 40(7), 1195–1203], are

tested experimentally on a five-degrees-of-freedom (5-DOF) robot manipulator CATALYST5. The control strategy consists of using

a classical PD feedback structure plus an additional iteratively updated term designed to cope with the unknown parameters and

disturbances. The control implementation is very simple in the sense that the knowledge of the robot parameters is not needed, and

the only requirement on the PD and learning gains is the positive definiteness condition. Furthermore, in contrast with classical ILC

schemes where the number of iterative variables is generally equal to the number of control inputs, the adaptive control schemes

tested in this paper involve just one or two iterative variables.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that robot manipulators are generally
used in repetitive tasks (e.g., automotive manufacturing
industries). Therefore, it is interesting to take advantage
of the fact that the reference trajectory is repeated over a
given operation time. In this context, iterative learning
control (ILC) techniques can be applied in order to
enhance the tracking performance from operation to
operation. Since the early works of Arimoto et al.
(1984), Casalino and Bartolini (1984) and Craig (1984),
several ILC schemes for robot manipulators have been
proposed in the literature (see for instance Arimoto,
1996; Bondi et al., 1988; Luca et al., 1992; Horowitz,
e front matter r 2005 Elsevier Ltd. All rights reserved.
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1993; Kavli, 1992; Kawamura et al., 1988; Moon et al.,
1997). These ILC algorithms, whether developed for the
linearized model or the nonlinear model, are generally
based upon the contraction mapping approach and
require a certain a priori knowledge of the system
dynamics.

On the other hand, another type of ILC algorithms
have been developed using Lyapunov and Lyapunov-
like methods. In fact in French and Rogers (2000), a
standard Lyapunov design is used to solve ILC
problems. The idea consists to use a standard adaptive
controller and to start the parameter estimates with their
final values obtained at the preceding iteration. In the
same spirit, Choi and Lee (2000) proposed an adaptive
ILC for uncertain robot manipulators, where the
uncertain parameters are estimated along the time
horizon whereas the repetitive disturbances are compen-
sated along the iteration horizon. However, as in
standard adaptive control design, this technique
requires the unknown system parameters to be constant.
In Ham et al. (1995), Ham et al. (2000), Kuc et al.
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(1991), Xu (2002), Xu et al. (2000) and Xu and Tan
(2001), several ILC algorithms have been proposed
based upon the use of a positive-definite Lyapunov-like
sequence which is made monotonically decreasing along
the iteration axis via a suitable choice of the control
input. In contrast with the standard adaptive control,
this technique is shown to be able to handle systems with
time-varying parameters since the adaptation law in this
case is nothing else but a discrete integration along the
iteration axis. Based on this approach, Kuc et al. (1991)
proposed an ILC scheme for the linearized robot
manipulator model, while in (Ham et al., 2000; Xu et
al., 2000) nonlinear ILC schemes have been proposed
for the nonlinear model. Again these control laws
require a certain a priori knowledge of the system
dynamics.

In Tayebi (2004), a simple ILC scheme, for the
position tracking problem of rigid robot manipulators
without any a priori knowledge on the system para-
meters, has been proposed. The control strategy consists
of a PD term plus an additional iterative term
introduced to cope with the unknown parameters and
disturbances. The proof of convergence is based upon
the use of a Lyapunov-like positive definite sequence,
which is made monotonically decreasing through an
adequate choice of the control law and the iterative
adaptation rule. In contrast with classical ILC schemes
where the number of iterative variables is generally
equal to the number of control inputs, the proposed
control strategy uses one or two iterative variables,
which is interesting from a practical point of view since
it contributes considerably to memory space saving. In
this framework, the acceleration measurements and the
bounds of the robot parameters are not needed and the
only requirement on the control gains is the positive
definiteness condition.

In this paper, we present some experimental results on
a 5-DOF robot manipulator CATALYST5, confirming
the effectiveness of the control strategy proposed in
Tayebi (2004).
2. Equations of motion and problem statement

Using the Lagrangian formulation, the equations of
motion of a n degrees-of-freedom rigid manipulator may
be expressed by

MðqkÞ €qk þ Cðqk; _qkÞ _qk þ GðqkÞ ¼ tkðtÞ þ dkðtÞ, (1)

where t 2 Rþ denotes the time and the non-negative
integer k 2 Zþ denotes the operation or iteration
number. The signals qk 2 Rn, _qk 2 R

n and €qk 2 Rn are
the joint position, joint velocity and joint acceleration
vectors, respectively, at the iteration k. MðqkÞ 2 Rn�n is
the inertia matrix, Cðqk; _qkÞ _qk 2 Rn is a vector resulting
from Coriolis and centrifugal forces. GðqkÞ 2 Rn is the
vector resulting from the gravitational forces. tk 2 Rn is
the control input vector containing the torques and
forces to be applied at each joint. dkðtÞ 2 Rn is the vector
containing the unmodeled dynamics and other unknown
external disturbances.

Assuming that the joint positions and the joint
velocities are available for feedback, our objective is to
design a bounded control law tkðtÞ guaranteeing the
boundedness of qkðtÞ, 8t 2 ½0;T � and 8k 2 Zþ, and the
convergence of qkðtÞ to the desired reference trajectory
qd ðtÞ for all t 2 ½0;T � when k tends to infinity.
Throughout this paper, we will use the Lpe norm
defined as follows:

kxðtÞkpe¼
4

R t

0 kxðtÞk
p dt

� �1=p
if p 2 ½0;1Þ;

sup
0ptpt

kxðtÞk if p ¼ 1;

8><
>:

where kxk denotes any norm of x, and t belongs to the
finite interval ½0;T �. We say that x 2Lpe when kxkpe

exists (i.e., when kxkpe is finite).
We assume that all the system parameters are

unknown and we make the following reasonable
assumptions:
(A1)
 The reference trajectory and its first and second
time-derivatives, namely qdðtÞ, _qd ðtÞ and €qd ðtÞ, as
well as the disturbance dkðtÞ are bounded 8t 2
½0;T � and 8k 2 Zþ.
(A2)
 The resetting condition is satisfied, i.e., _qdð0Þ�
_qkð0Þ ¼ qdð0Þ � qkð0Þ ¼ 0, 8k 2 Zþ.
We will also make use of the following properties, which
are common to robot manipulators
(P1)
 MðqkÞ 2 Rn�n is symmetric, bounded, and positive
definite.
(P2)
 The matrix _MðqkÞ � 2Cðqk; _qkÞ is skew symmetric,
hence xTð _MðqkÞ � 2Cðqk; _qkÞÞx ¼ 0; 8x 2 Rn.
(P3)
 kCðqk; _qkÞkpkck _qkk and kGðqkÞkokg, 8t 2 ½0;T �
and 8k 2 Zþ, where kc and kg are unknown
positive parameters.
3. Adaptive ILC

Let us consider system (1) under the following control
law (Fig. 1):

tkðtÞ ¼ KP ~qkðtÞ þ KD
_~qkðtÞ þ Zð_~qkÞŷkðtÞ (2)

with

ŷkðtÞ ¼ ŷk�1ðtÞ þ GZTð_~qkÞ
_~qkðtÞ, (3)

where ŷ�1ðtÞ ¼ 0, ~qkðtÞ ¼ qdðtÞ � qkðtÞ and _~qkðtÞ ¼
_qd ðtÞ � _qkðtÞ. The matrices KP 2 Rn�n and KD 2 Rn�n

are symmetric positive definite.
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Fig. 1. Adaptive ILC structure.
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According to the choice of Zð_~qkÞ, we have two
different control laws CL1 and CL2:
(CL1)
 Using two iterative variables (i.e., ŷkðtÞ 2 R2):
Zð_~qkÞ ¼ ½

_~qk sgnð_~qkÞ� 2 Rn�2 where sgnð_~qkÞ is the
vector obtained by applying the signum function
to all elements of _~qk. G 2 R2�2 is symmetric
positive definite.
(CL2)
 Using a single iterative variable (i.e., ŷkðtÞ 2 R):
Zð_~qkÞ ¼ sgnð_~qkðtÞÞ 2 Rn. G is a positive scalar
and ðKD � aIÞ is positive semi-definite, with
a ¼ kc supt2½0;T �k _qdðtÞk.
Then, under assumptions (A1 and A2) and properties
(P1–P3), one has
�
 ~qkðtÞ 2L1e, _~qkðtÞ 2L1e, tkðtÞ 2L2e for all k 2 Zþ.

�

Fig. 2. CRS-255 Robot manipulator.
limk!1 ~qkðtÞ ¼ limk!1
_~qkðtÞ ¼ 0, 8t 2 ½0;T �.

The proof of this statement can be found in Tayebi
(2004).

Remark 1. Generally, in contraction-mapping-based
ILC schemes, the number of iterative parameters is
equal to the number of the control inputs which is equal
to the number of degrees of freedom n. For instance, for
a P-type ILC of the form ukþ1 ¼ uk þ K ~qk or a D-type
ILC of the form ukþ1 ¼ uk þ K _~qk, we need to save the
signals ukðtÞ and ( ~qkðtÞ or _~qkðtÞ) in the memory in order
to be able to generate ukþ1ðtÞ. Therefore, at each
sampling time, we need to save 2n parameters in the
memory. In our approach, we use only two iterative
parameters in CL1 which is an interesting fact from the
practical point of view since it contributes considerably
to memory space saving (i.e., at each sampling time just
two parameters are saved in the memory). In CL2, we
bring down the number of iterative parameters to one at
the expense of a certain knowledge of the system
parameters (i.e., the parameter kc defined in P3 is
needed).

Remark 2. The tracking error and its time derivative, at
the first iteration, can be made arbitrarily small, over the
finite time interval ½0;T �, by increasing the minimum
eigenvalues of the control and learning gains KP, KD

and G.
Remark 3. The ILC schemes CL1 and CL2 can be used
in a straightforward manner for industrial robot
manipulators already functioning under a PD controller
by just adding the iterative term to the control input in
order to enhance the tracking performance from
operation to operation.

Remark 4. The sign function used in the control laws
CL1 and CL2 might lead to the chattering phenomenon.
In practical applications, the sign function can be
replaced by a continuous approximation (e.g., satura-
tion or sigmoid) in order to smooth out the control
input and reduce the chattering.
4. Experimental results

In this section, the two adaptive ILC algorithms (CL1
and CL2) are implemented and evaluated on the 5-DOF
robot manipulator CRS255 (CATALYST5) shown in
Fig. 2.

The CRS255 is a 5-DOF open-chain articulated robot
arm. The arm is constructed of high tensile strength
aluminum alloy components. It has five revolute joints
powered by five DC motors. At each joint, an
incremental encoder is employed for joint position
measurement. As the gravity forces are not counter
balanced, motors for vertical joints are equipped
with automatic brakes to prevent the collapse of the
manipulator configuration if the power supply to the
joint motors is interrupted. This robot comes with the
CRS-C500 controller, which contains five PID feedback
controllers operating about each motor and their
structures cannot be modified. In order to implement
our control strategy, we have to by-pass the CRS-C500
controller through the Quanser open-architecture mode
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which allows to use Simulink for real-time control
implementation. In order to do so, a Quanser–MultiQ
acquisition board is used together with a Quanser–Win-
Con software (allowing to generate real-time code from
Simulink). A switch mounted on the CRS-C500 control
box allows us to switch back and forth from the
Quanser-open-architecture mode to the CRS mode. For
real-time implementation of our control algorithm using
the Quanser open-architecture mode, the following
components are installed in our host/supervisor
Pentium III PC: MATLAB/Simulink/Realtime Work-
Fig. 3. ILC imple
shop/Control systems toolbox, WinCon, Visual C++
professional.

Our objective consists to track a circle in the ðY–ZÞ-
plane, described by the following equations:

yðtÞ ¼ 10þ
ffiffiffiffiffiffiffiffi
200
p

cos 0:1t ðmmÞ,

zðtÞ ¼ 10þ
ffiffiffiffiffiffiffiffi
200
p

sin 0:1t ðmmÞ, (4)

where t 2 ½0; 63s�. To realize this motion, only joints 1, 2
and 3 are needed. From the world coordinates xðtÞ, yðtÞ

and zðtÞ, we generate the desired joint variables q1
dðtÞ,
mentation.
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q2
dðtÞ and q3

d ðtÞ using the inverse kinematics. In order to
smooth out the control input and reduce the chattering,
the sign function has been replaced by a saturation
function defined as follows:

satð_~qkÞ ¼ ½satð_~q1; kÞ; . . . ; satð_~q3; kÞ�
T
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Fig. 4. Experiment 1: Sup-norm of the tracking error (in degrees)

versus the number of iterations for links 1, 2 and 3 under CL1.
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Fig. 5. Experiment 1: Desired and actual trajectories at the first and

25th iteration under CL1.
with

satð_~qi; kÞ ¼

_~qi;k if j_~qi; kjo0:01;

1 if _~qi; kX0:01;

�1 if _~qi; kp� 0:01

8>><
>>:

(5)

for i 2 f1; 2; 3g.
0 10 20 30 40 50 60 70
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

C
on

tr
ol

 in
pu

t

joint 3 

joint 1 

joint 2 

Fig. 7. Experiment 1: Control action for joints 1, 2 and 3 at the 25th

iteration under CL1.
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Fig. 6. Experiment 1: Control action for joints 1, 2 and 3 at the first

iteration under CL1.



ARTICLE IN PRESS
A. Tayebi, S. Islam / Control Engineering Practice 14 (2006) 843–851848
On the other hand, the joint velocities are not
measured but estimated from the joint positions using
a filtered derivative (i.e., substituting _~qk in the control
and adaptation laws by ðs=ð1þ Tf sÞÞ ~qk, with
Tf ¼ ð1=2pf cÞ, where the cut-off frequency
f c ¼ 0:08Hz). The sampling period is taken as 1ms.

In order to investigate the effect of the learning gain,
we performed two experiments with each control law.
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Fig. 9. Experiment 1: Desired and actual trajectories at the first and

25th iteration under CL2.
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Fig. 8. Experiment 1: Sup-norm of the tracking error (in degrees)

versus the number of iterations for links 1, 2 and 3 under CL2.
Experiment 1. The control and learning gains for CL1
are taken as follows: Kp ¼ diagð1; 1; 4Þ, KD ¼

diagð0:05; 0:05; 0:05Þ and G ¼ diagð8; 8Þ. The control
and learning gains for CL2 are taken as follows:
Kp ¼ diagð1; 1; 4Þ, KD ¼ diagð0:05; 0:05; 0:05Þ and G ¼ 8.

Experiment 2. The control and learning gains for
CL1 are taken as follows: Kp ¼ diagð1; 1; 4Þ,
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Fig. 11. Experiment 1: Control action for joints 1, 2 and 3 at the 25th

iteration under CL2.
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Fig. 10. Experiment 1: Control action for joints 1, 2 and 3 at the first

iteration under CL2.
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KD ¼ diagð0:05; 0:05; 0:05Þ and G ¼ diagð2; 2Þ. The con-
trol and learning gains for CL2 are taken as follows:
Kp ¼ diagð1; 1; 4Þ, KD ¼ diagð0:05; 0:05; 0:05Þ and G ¼ 2.

Figs. 4–11 are obtained for experiment 1. The ILC
implementation block diagram is depicted in Fig. 3.
Fig. 4 shows the evolution of the sup-norm of the
tracking error with respect to the iteration number,
under CL1. Fig. 5 shows the reference trajectory and the
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Fig. 13. Experiment 2: Desired and actual trajectories at the first and

50th iteration under CL1.
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Fig. 12. Experiment 2: Sup-norm of the tracking error (in degrees)

versus the number of iterations for links 1, 2 and 3 under CL1.
actual trajectory at the first and 25th iteration under
CL1. Figs. 6 and 7 show the control inputs at the first
and the 25th iterations, respectively, under CL1. Fig. 8
shows the evolution of the sup-norm of the tracking
error with respect to the iteration number, under CL2.
Fig. 9 shows the reference trajectory and the actual
trajectory at the first and 25th iteration under CL2.
Figs. 10 and 11 show the control inputs at the first and
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Fig. 15. Experiment 2: Control action for joints 1, 2 and 3 at the 50th

iteration under CL1.
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Fig. 14. Experiment 2: Control action for joints 1, 2 and 3 at the first

iteration under CL1.
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Fig. 19. Experiment 2: Control action for joints 1, 2 and 3 at the 50th

iteration under CL2.
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Fig. 18. Experiment 2: Control action for joints 1, 2 and 3 at the first

iteration under CL2.
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Fig. 17. Experiment 2: Desired and actual trajectories at the first and

50th iteration under CL2.
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Fig. 16. Experiment 2: Sup-norm of the tracking error (in degrees)

versus the number of iterations for links 1, 2 and 3 under CL2.
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the 25th iterations, respectively, under CL2. Figs. 12–19
are obtained similarly for experiment 2.
5. Conclusion

Two adaptive ILC schemes, proposed in Tayebi
(2004), have been successfully tested on a 5-DOF robot
manipulator CATALYST5. The control schemes consist
of a PD feedback plus an additional adaptive term
introduced to cope with the unknown parameters and
disturbances. The overall control strategy is very simple
to implement since no a priori knowledge of the robot
parameters is needed, and the only requirement on the
control gains is the positive definiteness condition.
Another clear advantage of this approach is the fact
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that it uses just one or two iterative variables, which
helps to reduce the memory space requirements in
practical implementations.

During our several tests, we noticed that the cut-off
frequency of the low pass filter, used to generate the
joint velocities from the joint positions, plays a crucial
role. In fact, from a theoretical point of view, a high cut-
off frequency would result in a good approximation of
the derivative action and hence would lead to a good
performance. However, according to our experiments,
we noticed that at high cut-off frequencies the robot
joints start to vibrate after a certain number of iterations
forcing us to stop the learning process. This is mainly
due to the fact that the noise amplification, caused by
the derivative action, is accumulating through the
iterative process (see Figs. 6, 7, 10 and 11). By gradually
reducing the cut-off frequency, we noticed a consider-
able improvement in the tracking performance in terms
of measurement noise rejection. However, a very low
cut-off frequency would result in a bad approximation
of the joint velocity and therefore the stability and
convergence of the iterative process are not guaranteed
any more.

We also noticed that the convergence rates could be
improved by increasing the learning gain as seen from
the results of experiments 1 and 2. However, the noise
level increases with the learning gain causing the joints
to vibrate earlier in the iteration domain as evidenced by
the two experiments. In fact, in the first experiment we
had to stop the learning process at the 25th iteration
while for the second experiment we were able to go to
the 50th iteration without any problem.

A potential solution to this crucial problem, related to
the use of the filtered derivative also known as the ‘‘dirty
derivative’’, is to design P-type iterative parametric
updating rules that do not require the joint velocities
measurements. In this case, the noise effect will be
reduced considerably, but will not be totally eliminated
since the joint positions measurements are also noisy,
and there will be an accumulation of noise from
iteration to iteration. Consequently, it is important to
stop the learning process after a certain number of
iterations once the tracking error reaches a certain
acceptable level. The theoretical implications of this
crucial problem will be investigated in our future
research work.
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