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First, observe that wheh,,, = 0 the ellipsoidF x collapses onto a
segment with extremal points= h.. & Ly/vi. Then, one hafjz* —
hl|* = L3, + 42, and hence from (28) and (2B).,.]/E[h..] >
Lyr 4+ d/+/L%; + d? as stated in the upper part of (18).

Now, let us examine the case, > 0. A generic point on the
boundary ofF x can be written ag& = h. + ayvy + -+ + anvn,
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Then
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where the last equality has been obtained by using (30). Exploiting the

f ti d . th imizati - Bl with t Abstract—This note demonstrates that the design of a robust iterative
aforemen |9ne expressmn, e max!mlza iof} of — h || with respec learning control is straightforward for uncertain linear time-invariant sys-
to h € Fn is a straightforward exercise that leads to

tems satisfying the robust performance condition. It is shown that once a
controller is designed to satisfy the well-known robust performance condi-
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tion, a convergent updating rule involving the performance weighting func-
tion can be directly obtained. It is also shown that for a particular choice
2 of this weighting function, one can achieve a perfect tracking. In the case

Lom  © where this choice is not allowable, a sufficient condition ensuring that the
least upper bound of theL . -norm of the final tracking error is less than the
least upper bound of theL,-norm of the initial tracking error is provided.
This sufficient condition also guarantees that the infinity-norm of the final
tracking error is less than the infinity-norm of the initial tracking error.
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Then, (18) is an immediate consequence of (28), (29), and (31).
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Fig. 1. Feedback system. +

In this note, we show that once a feedback controllér) is
designed to guarantee the robust performance condition, there is no
need to design the ILC filters, and a convergent updating rule involvingy. 2.  Feedback-based ILC.
the performance weighting functidi'; (s) can be directly obtained.

It IS al_so show_n that for a part_lcular choice of th'_s performanclﬁﬁnity, for all ¢ within a given time-interval. The subscriptis intro-
weighting function, one can achieve a perfect tracking. In the Cag8eed to designate the variable at b operation

where this choice is not allowable, a sufficient condition ensuring thatThroughout this note, we assume that0) = y.(0), and without
the final tracking error is most likely to be less than the initial tra(:klngny loss of generality, we consider that0) = y.(0) = 0.

error—obtained with the feedback controller alone—is provided. Our main result can be stated as follows: If one is able to design a

l? this approtzi(;]h, fW et ire stlimultan;: oustlr?/ blige.f |t|ngtfr?fm :h e rob %dback controlle€: (s) guaranteeing the robust performance condi-
per ormanpe atthe first iteration—w ?“ 9 IS not eftec |ve—_a on (2), then the design of the iterative updating rule:fpis straight-
guaranteeing the convergence of the iterative process. Another iMRQtvard and is given by

tant advantage of this approach is that it allows to establish the con-

nection between the ILC convergence condition and the well known Viwr(s) =W (s) (Vi(s) + C(s)Ex(s))

robust performance condition. This fact permits to the ILC designer to —TW\(5) (V] + U(s)) 3)
benefit from the wide range of tools from robust control theory, such as =Wils) (Vls) k1S,
loop shaping, model matchingl.., andy-synthesis approaches [2], yith v, (s) = 0. WhereW, (s) is the performance weighting function

[9], [16], to solve ILC problems. For the sake of simplicity, single-inpu{.,oived in the robust performance condition (2), abig(s), Vi.(s)
single-output plants are considered, but the results can be generalizeld;e",) are, respectively,

multivariable systems. Finally, two illustrative examples are provid 4 ().
to demonstrate the effectiveness of the proposed ILC scheme. '

the Laplace transformsegft), v, (¢) and

The control scheme in Fig. 2 ensures the boundedness and the
convergence, in the sense of the-norm, of the tracking error when

Il. MAIN RESULT k tends to infinity. Moreover, the tracking error converges to zero if
Consider the feedback system in Fig. 1, where the ptais de- W1 =1. _
scribed in the following multiplicative uncertain form: Summarizing, we have the following theorem.
Theorem 1: Consider the iterative control scheme in Fig. 2.
G = (1+AW,)G, (1) If there existsC'(s) such that the robust performance condition (2) is

satisfied, then the tracking error is bounded fokadl N and converges
whereG,, is the nominal plant model} is a known stable transfer uniformly to
function, andA is an unknown stable transfer function satisfying i
Alle < 1. The reference signals(t) is assumed to be bounded . _ (¢) = lim e,(t) = £} ( _ 1-W ; yd>
within the tracking interval. k—o0 1=Wi+ CGu(1+AW:)

In the sequel, the Laplace variablavill be omitted when this does 4)
not lead to any confusion. To derive our results, we will need the f
lowing lemma [9].

Lemma 1: Consider the feedback system in Fig. 1, withas de- by

O\{\!henk — oo, in the sense of th€z-norm.
Proof: From Fig. 2, the tracking error at tl¢h iteration is given

scribed in (1). The robust performance condition is then , Y, (s G(s\Vils
Euls) = Yals) = Vi(s) = ——al8)___ Gy )
1 14+ C(s)G(s) 14 C(s)G(s)
[WaTloe < 1and HLH 1
B 1+ AWLT || Hence, the tracking error at g + 1)th iteration is given by
which is equivalent to B — Y GVita ©6)
) ] MUTIR0GE T 140G
[IW1S| + [WaT ||| < 1 (2) ,
Using (3), (5), and (6), one has
where W; and W, are known stable transfer functions, . .
S = (1/1+ CG,) is the sensitivity function and® = 1 — S Eiy1 = <W _aam ) o 1-T Y, %)
the complementary sensitivity function. O 1+CG 1+CG
If the system in Fig. 1 is operated repeatedly, the application of t)&\i-h in view of (1), becomes
same control input at every operation will lead to the same tracking ’
error over and over again. The main idea in ILC techniques is to a%d _ Wy £
another iteratively updated control input to the feedback control ~*** 14+ CG.(14+ AWy) k
variableuy, as shown in Fig. 2, in order to ensure that the tracking n 1-W Y. (®)

errore (t) converges to a small neighborhood of zero wheands to 14+ CG.(1+AWy) d
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Since(W1/1+ CG,.(1 4+ AWy)) = (W1.S/1+ AWLT), (8) be- all k and the final tracking error is given by
comes .
1-W, v
WS 1-wW, T— Wi+ CGn(1+AW,) °
EFyvyr=—-—— ) Ex Ya.
e <1 + AW2T> tirca.atam ¢ © __a-wps o (16)
TI-WAS+AWLT "

The initial tracking error, obtained by settifg = 0 in (5), is given as

WS 1-—W, follows:
‘ (1 ¥ AW}T) crtircaaramy 49 1 S
B .

= : A 7 }d = / 7,
From (9) and (10), one has 1+ CG.(14 AWS) 14+ AWLT

F :klim Ep =

Hence

Yy a7

whereS andT are defined in Lemma 1.

Eipr— B = (%) (Ex = Ers) (11)  Hence, it is clear thallew|ls = [[Ewlls < a1, and|e]ls =
- [|E1|l2 < a2, wherea; andas being the least upper bounds [9]
which leads to ;
1-Wi)s
m = | Az | I 8)
| Ext1(s) = Ex(s)llz =llexa(t) = ex(®)]l2 =
wis | and
o FEeNTA S
tlleal®) - el (12 o= ||l )

Using (5) withV;, = 0, one can easily conclude, under the robust pe€ondition (15) implies that
formance condition (2) and the fact that is bounded, that, (¢) is ) )
bounded. Therefore, sind&, is stable, one can also conclude from 1= [WiS| = [WeT| >21-Wi| Vuw. (20)

(8) thate, (¢) is bounded for alk. Hence, from (12), it is clear that if
On the other hand, one has

H%Hx <1 (13) L=l + WiS + AWLT — Wi S — AWLT|

S|WLS| + [WoT| + |1 — WS + AWLT (21)
the tracking error converges to.(t) = £~ '{E..(s)} given in (4),
whenk tends to infinity, in the sense of th& -norm. The limitE ()
can be obtained from (8) by substitutidly ; andE by E. Finally,
accordingto Lemma 1, (13) is guaranteed under the robust performance

which leads to

1= [WiS|— [WoT| < |1 = WiS + AWLT|  Yw.  (22)

condition. _ _ N B Hence, from (20) and (22), one has
Now, we would like to determine a condition under which one can
ensure that the tracking error, whénends to infinity, is most likely |1 — WS + AWLT| > 2|1 — W] vV w. (23)
to be less than the initial tracking error. This condition is given in the
following theorem. Since (2) is satisfied, one hdd>T| < 1,V w, which implies that

Theorem 2: Consider the iterative control scheme in Fig. 2Iiff |1 + AW,T| < 2,V w. Consequently, (23) implies that
is such that|1 — W1 || < 1/2 and if there exist€’'(s) such that

|1 — Wi S 4+ AWLT| > |1+ AWLT||1 — W, (24)
WiS|+ |WsT <1 14
st + W= Tl (14) which implies that
with W7 = (W1 /1=2|[1=Wi||o), W3 = (W2/1=2[1=Wi]lw), (1-Wi)S (1—-Wn)Ss 25
then H1 - WiS + AWZTHOC < H (L+AWT)(1 - W) ||, (25)
i) the tracking error is bounded for &l € N and converges uni- )
formly to the value given in (4), wheh — oc, in the sense of thatis
ii ::(S fazsrloljm;er bound of th&,-norm of the final tracking error (L= W)S s (26)
) PP 2" g T-Wis+ AWRT || < ||T+amT |

is less than the least upper bound of thenorm of the initial

| TIraCkilng errc|)|r, i-ﬁ-l|6oo||2 <au, fler]lz € az, withar <23 which means thak; < a.. From (24), one can also conclude that
i) ||Eos|lee < [|E1]]|oo-

Proof: If W, = 1, (14) s nothing else but the robust performance (1 - Wi)SYq ‘ H (1—-W.)SYa H @7)

condition (2) and the proof of convergence of the tracking errorto zero || 1 — W15 + AW,T || (1+AWLT)H(L = Wa) ||,

is exactly the same as the proof of Theorem 1. that is
Now, let us consider the case whéfg@ # 1. Since||l — Wil <
1/2, (14) implies that (1—W1)SYy SY, 28
H 1—W1S + AWLT H% H 1+ AWLT || (28)
WS|4 [WoT|[leo <1 —2[|1 = Wil (15) \

which means that B ||o < || E1]|co- O

which also implies that the robust performance condition (2) is satis-Remark 1: According to Theorem 1, it is appropriate to takg =
fied. Hence, according to Theorem 1, the tracking error is bounded foto ensure zero tracking error whéntends to infinity, and design
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iterations, withA varying randomly between 0 and 1 along the iteration axis. Fregquancy i1d:si

Fig. 4. Example 1|W, S| 4+ |W,T| versus frequency.
the controllerC'(s) satisfying the robust performance condition (2)
using the loop shaping, model matching methods [9], ortkeyn-
thesis approach [15], [16]. In this case (i.B/(s) = 1), itis clear
that the proposed control scheme is able to completely eliminate th
effect of repetitive exogenous disturbances. If the problem is not solv
ableé with W, = 1, then according to Theorem 2, we have to take
Wi # 1, but close to one within the tracking bandwidth, such that __
[[1 = Willes < 1/2, and solve the modified robust performance con- 3
dition (14) to determine the controlléf(s) guaranteeing that the final
tracking error is less than the initial tracking error. ; ¥ ; ; ‘ ;

Remark 2: Generally, the problem of slow convergence occurs 2°[~"""~ A [ :
when the time weighted norm (o+-norm) is used to prove the ILC : ; : : ' :
convergence in time domain. In this paper, we prove the exponentic 1°
convergence of thel.-norm—which is more effective than the
A-norm—of the tracking error. In the simulation results, one can 9;
see that the tracking error converges after a reasonable number ttaration Number
iterations.

Remark 3: This note deals with uncertain linear time-invarian
(LTI) systems, where the system parameters are assumed to
unknown but constant. Since the system parameters are not affected
by the time evolution, then it is more likely that these parameters will Example 1:
not be affected along the iteration axis. That is why we have assumed

40 --\-poaon- beeeee Foome- boaee- booee- pome-- booo-- b

30 f-----

Sup, 1¥4- ¥y

Fig. 5. Example 1, Sup-norm of the tracking error versus the number of
|t%rgtions.

s+1

thatA(s) is invariant from iteration to iteration. The case whergs) Guls) = s 4 1453 + T1s2 4 2545 4+ 120
is varying from iteration to iteration is a much more challenging

problem which must be considered when dealing with time-varying Wi(s) = 1 Wa(s) = 0.02s i
systems. A nonrepetitivA (s) is an interesting and challenging case, 0.1s+1 0.01s+1

which is out of the scope of this paper, and will be investigated igsing theyu-Analysis and Synthesis Toolbox of Matlab [2], one can
future research work. Nevertheless, without any theoretical suppalve the robust performance condition to obtain the controller shown
we have performed a simulation for example 2, wihvarying along at the bottom of the page. This controller leads to
the iteration axis as a random function taking its values between 0 and
1, and the results are shown in Fig. 3.
([|W1 S| + [W2T||| = 0.7052
Ill. SIMULATION RESULTS
. . ) . . as shown in Fig. 4.

In this section, we consider two illustrative examples. We perform a simulation with(t) = 100sin(0.1), ¢ € [0, 20x].

1The problem is not always solvable as explained in [9, Ch. 6]. One necess_gllg' 5‘ shows the evom_tlon of the traCk_mg error \_N'th respect to the
condition for robust performance is thatin{ |W, (jw)|, |W»(jw)|} < It€ration number, and Fig. 6 shows the time evolution of the reference
1,V w. trajectory (star) and the output (solid) fer= 1, ¥ = 3 andk = 10.

_2.50e — 45" + 3.53e55° + 9.44e7s” + 1.09e9s* + 5.33¢9s” + 1.33e10s” + 1.65¢10s + 8.24¢9
- sT 4+ 197.865% 4+ 1.86e45° 4+ 6.98¢55% + 1.89¢7s3 + 9.70e752 4+ 1.68¢8s 4+ 8.97¢7 ’

C(s)
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Using thep-Analysis and Synthesis Toolbox of Matlab [2], one can = 4,
solve the robust performance condition to obtain the following con'g
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providing 54 2.4 107 voslo . g \k _____ L L L L L ]
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as shown if Flg 7. Iteration Number

. . . 4 - .
We perform as.lmulatlon Wltbd.(t) =1 © .1 €[0,10], Flg.' 8, Fig. 8. Example 2, Sup-norm of the tracking error versus the number of
shows the evolution of the tracking error with respect to the iteratigql . ions.

number, and Fig. 9 shows the time evolution of the reference trajectory
(star) and the output (solid) for = 1, ¥ = 3 andk = 6. In this ' '
example one can see that the tracking error converges to zero sir k=6

W, = 1. ’
1} 1 S~

IV. CONCLUSION o ,I=3
0.8 -
Inthis note, we have presented a straightforward derivation of arobu g
iterative learning controller for uncertain LTI systems satisfying the ro- 3
bust performance condition. Itis shown thatonce acontrolleris designe 8 0-6 I T
5 =1

to satisfy the well known robust performance condition, a converger <
updating rule involving the performance weighting functiéh can be
directly obtained. Furthermore, a sufficient condition ensuring that th @
least upper bound of th&, -norm of the final tracking error is less than
the least upper bound of thi& -norm of the initial tracking error is pro-
vided. The initial tracking error is obtained with the feedback controllel

alone, i.e., wherv; = 0, whereas the final tracking error is obtained 3 4 5 o 7 5 s 10
when the number of iterations tends to infinity. time(s)

One of the main objectives of this paper is to establish a connection ) )
between ILC and robust control theory. In fact, a relationship betwe§r$3,9é Example 2, reference trajectory (star) and output (solid)efor=
the ILC convergence condition and the well known robust performance
condition has been derived. This fact will allow the ILC designer to
benefit from the wide range of tools from robust control theory to solwthe proposed approach guarantees robust performance for the feedback
ILC problems. The ILC filted¥, appearing in the robust performancesystem performing without ILC at the firstiteration (i.e., whén= 0).
condition can be set by the designer according to the ILC performar@ensequently, with the design of a single controll&rs ), one can si-
requirements, i.e., equal or close to one within the tracking bandwidtiultaneously guarantee robust performance at the first iteration and the
in order to minimize the tracking error whén — oc. Moreover, convergence of the iterative process.

eference
o
B

0.2
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