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First, observe that whenLm = 0 the ellipsoidFN collapses onto a
segment with extremal pointsh = hc � LMv1. Then, one haskz� �
hk2 = L2M + d2, and hence from (28) and (29)E[hcp]=E[hcc] �
LM + d= L2M + d2 as stated in the upper part of (18).

Now, let us examine the caseLm > 0. A generic point on the
boundary ofFN can be written ash = hc + �1v1 + � � � + �NvN ,
where

�21
L2M

+
1

L2m

N

i=2

�2i = 1: (30)

Then

kz� � hk2 =khc � d vN � hc � �1 v1 � � � � � �N vNk
2

=�21 + �22 + � � �+ (�N + d)2

=�21
L2M � L2m

L2M
+ 2�N d+ L2m + d2

where the last equality has been obtained by using (30). Exploiting the
aforementioned expression, the maximization ofkz��hkwith respect
to h 2 FN is a straightforward exercise that leads to

sup
h2F

kz� � hk =
LM 1 + d

L �L
; if d <

L �L

L

Lm + d; if d �
L �L

L
:

(31)

Then, (18) is an immediate consequence of (28), (29), and (31).
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Robust Iterative Learning Control Design is
Straightforward for Uncertain LTI Systems
Satisfying the Robust Performance Condition

A. Tayebi and M. B. Zaremba

Abstract—This note demonstrates that the design of a robust iterative
learning control is straightforward for uncertain linear time-invariant sys-
tems satisfying the robust performance condition. It is shown that once a
controller is designed to satisfy the well-known robust performance condi-
tion, a convergent updating rule involving the performance weighting func-
tion can be directly obtained. It is also shown that for a particular choice
of this weighting function, one can achieve a perfect tracking. In the case
where this choice is not allowable, a sufficient condition ensuring that the
least upper bound of the -norm of the final tracking error is less than the
least upper bound of the -norm of the initial tracking error is provided.
This sufficient condition also guarantees that the infinity-norm of the final
tracking error is less than the infinity-norm of the initial tracking error.

Index Terms—Linear time-invariant (LTI) systems, robust performance,
robust iterative learning control (ILC).

I. INTRODUCTION

Iterative learning control (ILC) has been recently generating a con-
siderable amount of interest in the automatic control community. A
more detailed discussion about this control technique, which applies
to systems that operate repeatedly, can be found in the survey papers
[13] and [14]. The main idea behind ILC techniques is to take advan-
tage of the previous operations in order to adjust the control signal to
be applied to the system in the upcoming operations. This allows the
controller to perform progressively better with every new operation in
order to achieve accurate tracking after a certain number of iterations.
The ILC control scheme was initially developed as a feedforward ac-
tion applied directly to the open-loop system (see, for example, [1], [3],
[5], and [11]). However, this control scheme may generate harmful ef-
fects if the open-loop system is unstable or an inappropriate initial con-
trol law is chosen. To overcome this drawback, several feedback-based
ILC and learning feedforward control (LFFC) algorithms have been
proposed in the literature, e.g., [4], [6]–[8], [10], and [12]. To the best
of our knowledge, all of the existing feedback-based ILC schemes in
the literature are based upon the design of the ILC filters and the feed-
back controller separately.
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Fig. 1. Feedback system.

In this note, we show that once a feedback controllerC(s) is
designed to guarantee the robust performance condition, there is no
need to design the ILC filters, and a convergent updating rule involving
the performance weighting functionW1(s) can be directly obtained.
It is also shown that for a particular choice of this performance
weighting function, one can achieve a perfect tracking. In the case
where this choice is not allowable, a sufficient condition ensuring that
the final tracking error is most likely to be less than the initial tracking
error—obtained with the feedback controller alone—is provided.

In this approach, we are simultaneously benefiting from the robust
performance at the first iteration—when the ILC is not effective—and
guaranteeing the convergence of the iterative process. Another impor-
tant advantage of this approach is that it allows to establish the con-
nection between the ILC convergence condition and the well known
robust performance condition. This fact permits to the ILC designer to
benefit from the wide range of tools from robust control theory, such as
loop shaping, model matching,H1, and�-synthesis approaches [2],
[9], [16], to solve ILC problems. For the sake of simplicity, single-input
single-output plants are considered, but the results can be generalized to
multivariable systems. Finally, two illustrative examples are provided
to demonstrate the effectiveness of the proposed ILC scheme.

II. M AIN RESULT

Consider the feedback system in Fig. 1, where the plantG is de-
scribed in the following multiplicative uncertain form:

G = (1 +�W2)Gn (1)

whereGn is the nominal plant model,W2 is a known stable transfer
function, and� is an unknown stable transfer function satisfying
k�k1 � 1. The reference signalyd(t) is assumed to be bounded
within the tracking interval.

In the sequel, the Laplace variables will be omitted when this does
not lead to any confusion. To derive our results, we will need the fol-
lowing lemma [9].

Lemma 1: Consider the feedback system in Fig. 1, withG as de-
scribed in (1). The robust performance condition is then

kW2Tk1 < 1 and
W1S

1 + �W2T
1

< 1

which is equivalent to

kjW1Sj + jW2T jk1 < 1 (2)

where W1 and W2 are known stable transfer functions,
S = (1=1 + CGn) is the sensitivity function andT = 1 � S
the complementary sensitivity function.

If the system in Fig. 1 is operated repeatedly, the application of the
same control input at every operation will lead to the same tracking
error over and over again. The main idea in ILC techniques is to add
another iteratively updated control inputvk to the feedback control
variableuk, as shown in Fig. 2, in order to ensure that the tracking
errorek(t) converges to a small neighborhood of zero whenk tends to

Fig. 2. Feedback-based ILC.

infinity, for all t within a given time-interval. The subscriptk is intro-
duced to designate the variable at thekth operation.

Throughout this note, we assume thatyk(0) = yd(0), and without
any loss of generality, we consider thatyk(0) = yd(0) = 0.

Our main result can be stated as follows: If one is able to design a
feedback controllerC(s) guaranteeing the robust performance condi-
tion (2), then the design of the iterative updating rule forvk is straight-
forward and is given by

Vk+1(s) =W1(s) (Vk(s) + C(s)Ek(s))

=W1(s) (Vk(s) + Uk(s)) (3)

with V1(s) = 0. WhereW1(s) is the performance weighting function
involved in the robust performance condition (2), andEk(s), Vk(s),
Uk(s) are, respectively, the Laplace transforms ofek(t), vk(t) and
uk(t).

The control scheme in Fig. 2 ensures the boundedness and the
convergence, in the sense of theL2-norm, of the tracking error when
k tends to infinity. Moreover, the tracking error converges to zero if
W1 = 1.

Summarizing, we have the following theorem.
Theorem 1: Consider the iterative control scheme in Fig. 2.
If there existsC(s) such that the robust performance condition (2) is

satisfied, then the tracking error is bounded for allk 2 and converges
uniformly to

e1(t) = lim
k!1

ek(t) = L�1
1�W1

1�W1 + CGn(1 + �W2)
Yd

(4)
whenk ! 1, in the sense of theL2-norm.

Proof: From Fig. 2, the tracking error at thekth iteration is given
by

Ek(s) = Yd(s)� Yk(s) =
Yd(s)

1 + C(s)G(s)
�

G(s)Vk(s)

1 + C(s)G(s)
: (5)

Hence, the tracking error at the(k + 1)th iteration is given by

Ek+1 =
Yd

1 + CG
�

GVk+1
1 + CG

: (6)

Using (3), (5), and (6), one has

Ek+1 = W1 �
CGW1

1 + CG
Ek +

1�W1

1 + CG
Yd (7)

which, in view of (1), becomes

Ek+1 =
W1

1 + CGn(1 + �W2)
Ek

+
1�W1

1 + CGn(1 + �W2)
Yd: (8)
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Since (W1=1 + CGn(1 + �W2)) = (W1S=1 + �W2T ), (8) be-
comes

Ek+1 =
W1S

1 + �W2T
Ek +

1�W1

1 + CGn(1 + �W2)
Yd: (9)

Hence

Ek =
W1S

1 + �W2T
Ek�1 +

1�W1

1 + CGn(1 + �W2)
Yd: (10)

From (9) and (10), one has

Ek+1 � Ek =
W1S

1 + �W2T
(Ek � Ek�1) (11)

which leads to

kEk+1(s)� Ek(s)k2 =kek+1(t)� ek(t)k2

�
W1S

1 + �W2T

k�1

1

� ke2(t)� e1(t)k2: (12)

Using (5) withV1 = 0, one can easily conclude, under the robust per-
formance condition (2) and the fact thatyd is bounded, thate1(t) is
bounded. Therefore, sinceW1 is stable, one can also conclude from
(8) thatek(t) is bounded for allk. Hence, from (12), it is clear that if

W1S

1 +�W2T
1

< 1 (13)

the tracking error converges toe1(t) = L�1fE1(s)g given in (4),
whenk tends to infinity, in the sense of theL2-norm. The limitE1(s)
can be obtained from (8) by substitutingEk+1 andEk byE1. Finally,
according to Lemma 1, (13) is guaranteed under the robust performance
condition.

Now, we would like to determine a condition under which one can
ensure that the tracking error, whenk tends to infinity, is most likely
to be less than the initial tracking error. This condition is given in the
following theorem.

Theorem 2: Consider the iterative control scheme in Fig. 2. IfW1

is such thatk1�W1k1 < 1=2 and if there existsC(s) such that

kjW �

1 Sj+ jW �

2 T jk1 < 1 (14)

with W �

1 = (W1=1�2k1�W1k1),W �

2 = (W2=1�2k1�W1k1),
then

i) the tracking error is bounded for allk 2 and converges uni-
formly to the value given in (4), whenk ! 1, in the sense of
theL2-norm;

ii) the least upper bound of theL2-norm of the final tracking error
is less than the least upper bound of theL2-norm of the initial
tracking error, i.e.,ke1k2 � �1, ke1k2 � �2, with �1 < �2;

iii) kE1k1 < kE1k1.
Proof: If W1 = 1, (14) is nothing else but the robust performance

condition (2) and the proof of convergence of the tracking error to zero
is exactly the same as the proof of Theorem 1.

Now, let us consider the case whereW1 6= 1. Sincek1�W1k1 <
1=2, (14) implies that

kjW1Sj + jW2T jk1 < 1� 2k1�W1k1 (15)

which also implies that the robust performance condition (2) is satis-
fied. Hence, according to Theorem 1, the tracking error is bounded for

all k and the final tracking error is given by

E1 = lim
k!1

Ek =
1�W1

1�W1 + CGn(1 + �W2)
Yd

=
(1�W1)S

1�W1S +�W2T
Yd: (16)

The initial tracking error, obtained by settingV1 = 0 in (5), is given as
follows:

E1 =
1

1 + CGn(1 + �W2)
Yd =

S

1 + �W2T
Yd (17)

whereS andT are defined in Lemma 1.
Hence, it is clear thatke1k2 = kE1k2 � �1, andke1k2 =

kE1k2 � �2, where�1 and�2 being the least upper bounds [9]

�1 =
(1�W1)S

1�W1S +�W2T
1

kydk2 (18)

and

�2 =
S

1 +�W2T
1

kydk2: (19)

Condition (15) implies that

1� jW1Sj � jW2T j > 2j1�W1j 8 !: (20)

On the other hand, one has

1 =j1 +W1S +�W2T �W1S ��W2T j

�jW1Sj + jW2T j+ j1�W1S +�W2T j (21)

which leads to

1� jW1Sj � jW2T j � j1�W1S +�W2T j 8 !: (22)

Hence, from (20) and (22), one has

j1�W1S +�W2T j > 2j1�W1j 8 !: (23)

Since (2) is satisfied, one hasjW2T j < 1, 8 !, which implies that
j1 + �W2T j < 2, 8 !. Consequently, (23) implies that

j1�W1S +�W2T j > j1 + �W2T jj1�W1j (24)

which implies that

(1�W1)S

1�W1S +�W2T
1

<
(1�W1)S

(1 + �W2T )(1�W1)
1

(25)

that is

(1�W1)S

1�W1S +�W2T
1

<
S

1 + �W2T
1

(26)

which means that�1 < �2. From (24), one can also conclude that

(1�W1)SYd
1�W1S +�W2T

1

<
(1�W1)SYd

(1 + �W2T )(1�W1)
1

(27)

that is

(1�W1)SYd
1�W1S +�W2T

1

<
SYd

1 + �W2T
1

(28)

which means thatkE1k1 < kE1k1.
Remark 1: According to Theorem 1, it is appropriate to takeW1 =

1 to ensure zero tracking error whenk tends to infinity, and design
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Fig. 3. Example 2, Sup-norm of the tracking error versus the number of
iterations, with� varying randomly between 0 and 1 along the iteration axis.

the controllerC(s) satisfying the robust performance condition (2)
using the loop shaping, model matching methods [9], or the�-syn-
thesis approach [15], [16]. In this case (i.e.,W1(s) = 1), it is clear
that the proposed control scheme is able to completely eliminate the
effect of repetitive exogenous disturbances. If the problem is not solv-
able1 with W1 = 1, then according to Theorem 2, we have to take
W1 6= 1, but close to one within the tracking bandwidth, such that
k1�W1k1 < 1=2, and solve the modified robust performance con-
dition (14) to determine the controllerC(s) guaranteeing that the final
tracking error is less than the initial tracking error.

Remark 2: Generally, the problem of slow convergence occurs
when the time weighted norm (or�-norm) is used to prove the ILC
convergence in time domain. In this paper, we prove the exponential
convergence of theL2-norm—which is more effective than the
�-norm—of the tracking error. In the simulation results, one can
see that the tracking error converges after a reasonable number of
iterations.

Remark 3: This note deals with uncertain linear time-invariant
(LTI) systems, where the system parameters are assumed to be
unknown but constant. Since the system parameters are not affected
by the time evolution, then it is more likely that these parameters will
not be affected along the iteration axis. That is why we have assumed
that�(s) is invariant from iteration to iteration. The case where�(s)
is varying from iteration to iteration is a much more challenging
problem which must be considered when dealing with time-varying
systems. A nonrepetitive�(s) is an interesting and challenging case,
which is out of the scope of this paper, and will be investigated in
future research work. Nevertheless, without any theoretical support,
we have performed a simulation for example 2, with� varying along
the iteration axis as a random function taking its values between 0 and
1, and the results are shown in Fig. 3.

III. SIMULATION RESULTS

In this section, we consider two illustrative examples.

1The problem is not always solvable as explained in [9, Ch. 6]. One necessary
condition for robust performance is thatmin ( ) ( )
1, .

Fig. 4. Example 1, + versus frequency.

Fig. 5. Example 1, Sup-norm of the tracking error versus the number of
iterations.

Example 1:

Gn(s) =
s+ 1

s4 + 14s3 + 71s2 + 254s+ 120

W1(s) =
1

0:1s+ 1
W2(s) =

0:02s

0:01s+ 1
:

Using the�-Analysis and Synthesis Toolbox of Matlab [2], one can
solve the robust performance condition to obtain the controller shown
at the bottom of the page. This controller leads to

kjW1Sj+ jW2T jk1 = 0:7052

as shown in Fig. 4.
We perform a simulation withyd(t) = 100 sin(0:1t), t 2 [0; 20�].

Fig. 5, shows the evolution of the tracking error with respect to the
iteration number, and Fig. 6 shows the time evolution of the reference
trajectory (star) and the output (solid) fork = 1, k = 3 andk = 10.

C(s) =
2:50e� 4s7 + 3:53e5s6 + 9:44e7s5 + 1:09e9s4 + 5:33e9s3 + 1:33e10s2 + 1:65e10s+ 8:24e9

s7 + 197:86s6 + 1:86e4s5 + 6:98e5s4 + 1:89e7s3 + 9:70e7s2 + 1:68e8s+ 8:97e7
:
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Fig. 6. Example 1, reference trajectory (star) and output (solid) for=
1 3 10.

Example 2:

Gn(s) =
24s+ 70

s2 + 25s+ 350
W1(s) = 1

W2(s) =
0:5s+ 5

s+ 100
:

Using the�-Analysis and Synthesis Toolbox of Matlab [2], one can
solve the robust performance condition to obtain the following con-
troller:

C(s) =
4 106s+ 1:9912 108

s+ 2:4 107providing

kjW1Sj+ jW2T jk1 = 0:6

as shown if Fig. 7.
We perform a simulation withyd(t) = 1� e�2t, t 2 [0; 10]. Fig. 8,

shows the evolution of the tracking error with respect to the iteration
number, and Fig. 9 shows the time evolution of the reference trajectory
(star) and the output (solid) fork = 1, k = 3 andk = 6. In this
example one can see that the tracking error converges to zero since
W1 = 1.

IV. CONCLUSION

In this note, we havepresented astraightforward derivationof a robust
iterative learning controller for uncertain LTI systems satisfying the ro-
bustperformancecondition. It is shown thatonce acontroller isdesigned
to satisfy the well known robust performance condition, a convergent
updating rule involving the performance weighting functionW1 can be
directly obtained. Furthermore, a sufficient condition ensuring that the
least upper bound of theL2-norm of the final tracking error is less than
the least upper bound of theL2-norm of the initial tracking error is pro-
vided. The initial tracking error is obtained with the feedback controller
alone, i.e., whenV1 = 0, whereas the final tracking error is obtained
when the number of iterations tends to infinity.

One of the main objectives of this paper is to establish a connection
between ILC and robust control theory. In fact, a relationship between
the ILC convergence condition and the well known robust performance
condition has been derived. This fact will allow the ILC designer to
benefit from the wide range of tools from robust control theory to solve
ILC problems. The ILC filterW1 appearing in the robust performance
condition can be set by the designer according to the ILC performance
requirements, i.e., equal or close to one within the tracking bandwidth
in order to minimize the tracking error whenk ! 1. Moreover,

Fig. 7. Example 2, + versus frequency.

Fig. 8. Example 2, Sup-norm of the tracking error versus the number of
iterations.

Fig. 9. Example 2, reference trajectory (star) and output (solid) for=
1 3 6.

the proposed approach guarantees robust performance for the feedback
system performing without ILC at the first iteration (i.e., whenV1 = 0).
Consequently, with the design of a single controllerC(s), one can si-
multaneously guarantee robust performance at the first iteration and the
convergence of the iterative process.
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Exponentially Stabilizing Division Controllers for Dyadic
Bilinear Systems

Min-Shin Chen, Yean-Ren Hwang, and Yu-Jeng Kuo

Abstract—It is difficult to asymptotically stabilize a dyadic bilinear
system with only multiplicative control inputs when the open-loop
dynamics are unstable. The previous approach of cascading a division
controller with a constant-size dead zone can only stabilize butnot
asymptotically stabilize the system. This note proposes a new control
design which cascades a division controller with a modified dead zone
whose size is proportional to the modulus of the system state. It is shown
that this new division controller can globally and exponentially stabilize
any open-loop unstable dyadic bilinear system as long as it is controllable.

Index Terms—Asymptotic stability, dead zone, division controller,
dyadic bilinear system, exponential stability.

I. INTRODUCTION

A division controller is one whose control input is a quotient of two
state functions

u =
�(x)

�(x)
: (1)

Such a control structure can be found in the feedback linearization con-
trol for nonlinear systems [1], and in the control for dyadic bilinear sys-
tems [2]. In the division controller (1), if�(x) = 0 at some singular
pointx, the control signal becomes infinitely large atx. In the case of
feedback linearization control, the singularity problem arises when the
nonlinear system has no well-defined relative degree [3]. In the case of
dyadic bilinear system control [2], the singularity problem is avoided
by cascading the division controller (1) with a dead zone

u =

�(x)
�(x)

; j�(x)j > �

0; j�(x)j � �

(2)

where� > 0 is the size of the dead zone. The use of a dead zone is first
proposed in the control [4] of a dyadic bilinear system whose control
input is both multiplicative and additive

_x = Ax + b(y + d0)u; y = cx: (3)

wherex 2 Rn is the state vector,u 2 R is a single control input,
A 2 Rn�n is a constant matrix,b andcT are constant vectors, andd0
is a nonzero constant. The division controller (2) becomes

u =
� kx

y+d
; jy + d0j > �

0; jy + d0j � �
(4)

where� > 0 is the size of the dead zone, and the state feedback gain
k 2 R1�n is chosen such thatA � bk is a stable matrix. It is proved
that asymptotic stability is achieved by the division controller (4) if the
open-loop trajectories satisfy a geometric condition [4].
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