- [14] T. C. Lee, C. Y. Tsai, and K. T. Song, "A motion planning approach to fast parking control of mobile robots," in *Proc. 2003 IEEE Int. Conf. Robotics and Automation*, Taipei, Taiwan, 2003, pp. 905–910.
- [15] E. Lefeber, "Tracking Control of Nonlinear Mechanical Systems," Ph.D. dissertation, Univ. Twente, Twente, The Netherlands, 2000.
- [16] E. Panteley and A. Loria, "On global uniform asymptotic stability of nonlinear time-varying systems in cascade," *Syst. Control Lett.*, vol. 33, pp. 131–138, 1998.
- [17] K. Y. Pettersen and E. Lefeber, "Way-point tracking control of ships," in *Proc. 40th IEEE Conf. Decision Control*, Orlando, FL, 2001, pp. 940–945.
- [18] K. Y. Pettersen and H. Nijmeijer, "Tracking control of an underactuated surface vessel," in *Proc. 37th IEEE Conf. Decision Control*, Tampa, FL, 1998, pp. 4561–4566.
- [19] O. J. Sordalen and O. Egeland, "Exponential stabilization of nonholonomic chained systems," *IEEE Trans. Automat. Contr.*, vol. 40, pp. 802–819, July 1995.

Authors' Reply to "Comments on 'Robust iterative learning control design is straightforward for uncertain LTI systems satisfying the robust performance condition"

A. Tayebi and M. B. Zaremba

Index Terms—Iterative learning control (ILC), robust performance, uncertain linear time-invariant (LTI) systems.

The authors appreciate Dr. Doh's comment [2], which basically states that the condition in [5, Th. 1] is not just sufficient but is also necessary.

First of all, we would like to point out that the proof presented in [2] [with actually an error in (4), where a factor $1/(2\pi)$ is missing] is not new; it has been already used *verbatim* in [3].

We agree with [2] that the condition in [5, Th. 1] is necessary in the case where the trial-time is of infinite length and we disagree with it in the case where the trial-time is finite. Of course, a finite trial-time is a more realistic scenario, since, in practice, iterative learning control (ILC) algorithms are applied for systems performing the same task repeatedly over a finite time interval.

In fact, our result stated in [5, Th. 1] holds for the infinite-time case (since the robust performance condition is evaluated for all frequencies), and therefore holds for the finite-time case by the truncation argument.

It is worth noting that the finite-time case does not require to satisfy the convergence condition for all frequencies, but only for $\omega \to \infty$ (see [1]). Consequently, the robust performance condition used in [5, Th. 1] is too strong and is not necessary for the finite-time case. On the other hand, over a finite-time interval, even though the closed-loop system is

Manuscript received November 17, 2003; revised October 7, 2004. Recommended by Associate Editor Hong Wang. For reasons beyond the authors' control, it was not possible to publish this reply in the same issue as [2].

A. Tayebi is with the Department of Electrical Engineering, Lakehead University, Thunder Bay, ON P7B 5E1, Canada (e-mail: tayebi@ieee.org).

M. B. Zaremba is with the Département d'Informatique et d'Ingénierie, Université du Québec, Hull, QC J8X 3X7, Canada (e-mail: zaremba@uqo.ca). Digital Object Identifier 10.1109/TAC.2004.839233 unstable, the tracking error remains bounded and the iterative process may converge.

Finally, we would like to highlight the fact that our result, stated in [5, Th. 1], has been introduced in [4]. We would like also to point out that we were not aware of [3] at the time we submitted our paper for publication. Nevertheless, our design approach is different from the one proposed in [3]. In fact, it is assumed in [3] that the feedback controller C is available and satisfies the robust stability condition (see [3, Ass. A3]), and the weighting function W_1 is designed in order to satisfy

$$\left\|\frac{W_1S}{1+\Delta W_2Te^{-j\omega\hat{\theta}}}\right\|_{\infty} < 1.$$
⁽¹⁾

In our approach, we set W_1 as close as possible to 1 and design the feedback controller C to satisfy the robust performance condition

$$|||W_1S| + |W_2T|||_{\infty} < 1.$$
⁽²⁾

Moreover, in order to guarantee that the least upper bound of the \mathcal{L}_2 -norm of the final tracking error is less than the least upper bound of the \mathcal{L}_2 -norm of the initial tracking error, we propose to design the feedback controller C satisfying a modified robust performance condition as stated in [5, Th. 2].

REFERENCES

- [1] N. Amann, D. H. Owens, E. Rogers, and A. Wahl, "An \mathcal{H}_{∞} approach to linear iterative learning control design," *Int. J. Adapt. Control Signal Processing*, vol. 10, pp. 767–781, 1996.
- [2] T.-Y. Doh, "Comments on 'Robust iterative learning control design is straightforward for uncertain LTI systems satisfying the robust performance condition'," *IEEE Trans. Automat. Contr.*, vol. 49, pp. 629–630, Apr. 2004.
- [3] Q. Hu, J.-X. Xu, and T. H. Lee, "Iterative learning control design for Smith predictor," Syst. Control Lett., vol. 44, pp. 201–210, 2001.
- [4] A. Tayebi and M. B. Zaremba, "Internal model-based robust iterative learning control for uncertain LTI systems," in *Proc. 39th IEEE Conf. Decision and Control*, Sydney, Australia, 2000, pp. 3439–3444.
- [5] A. Tayebi and M. B. Zaremba, "Robust iterative learning control design is straightforward for uncertain LTI systems satisfying the robust performance condition," *IEEE Trans. Automat. Contr.*, vol. 49, pp. 101–106, Jan. 2003.

Correction to "Quadratic Stability of a Class of Switched Nonlinear Systems"

Jun Zhao and Georgi M. Dimirovski

The correct affiliation of the first author in [1] should read as follows: J. Zhao is with the School of Information Science and Engineering, Northeastern University, Shenyang 110004, China.

REFERENCES

 J. Zhao and G. M. Dimirovski, "Quadratic stability of a class of switched nonlinear systems," *IEEE Trans. Automat. Contr.*, vol. 49, pp. 574–578, Apr. 2004.