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Attitude Stabilization of a VTOL Quadrotor Aircraft
Abdelhamid Tayebi and Stephen McGilvray

Abstract—In this paper, we propose a new quaternion-based
feedback control scheme for exponential attitude stabilization of
a four-rotor vertical takeoff and landing aerial robot known as
a quadrotor aircraft. The proposed controller is based upon the
compensation of the Coriolis and gyroscopic torques and the use
of a PD2 feedback structure, where the proportional action is
in terms of the vector quaternion and the two derivative actions
are in terms of the airframe angular velocity and the vector
quaternion velocity. We also show that the model-independent
PD controller, where the proportional action is in terms of the
vector-quaternion and the derivative action is in terms of the air-
frame angular velocity, without compensation of the Coriolis and
gyroscopic torques, provides asymptotic stability for our problem.
The proposed controller as well as some other controllers have
been tested experimentally on a small-scale quadrotor aircraft.

Index Terms—Attitude stabilization, nonlinear control,
quadrotor, rigid body in space, vertical takeoff and landing
(VTOL) aircraft.

I. INTRODUCTION

UNMANNED vehicles are important when it comes to per-
forming a desired task in a dangerous and/or unacces-

sible environment. Unmanned indoor and outdoor mobile robots
have been successfully used for some decades. More recently, a
growing interest in unmanned aerial vehicles (UAVs) has been
shown among the research community. Being able to design a
vertical takeoff and landing (VTOL)-UAV, which is highly ma-
neuverable and extremely stable, is an important contribution
to the field of aerial robotics since potential applications are
tremendous (e.g., high buildings and monuments investigation,
rescue missions, film making, etc.). In practical applications, the
position in space of the UAV is generally controlled by an op-
erator through a remote-control system using a visual feedback
from an onboard camera, while the attitude is automatically sta-
bilized via an onboard controller. The attitude controller is an
important feature since it allows the vehicle to maintain a de-
sired orientation and, hence, prevents the vehicle from flipping
over and crashing when the pilot performs the desired maneu-
vers.

The attitude control problem of a rigid body has been investi-
gated by several researchers and a wide class of controllers has
been proposed (see, for instance, [3], [7], [10], [17], and [19],
and the list is not exhaustive). This is a particularly interesting
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problem in dynamics since the angular velocity of the body
cannot be integrated to obtain the attitude of the body [7]. The
paper [17] contains an interesting list of references and proposes
several control algorithms guaranteeing asymptotic stability
and, under certain initial conditions, local exponential stability
is shown. Most of the existing attitude controllers in the litera-
ture are based upon the use of the quaternion representation to
describe the attitude of the body. This particular representation
allows avoiding the singularities inherent to the direction cosine
matrix obtained from Euler rotations [6], [8]. To the best of our
knowledge, most of the proposed controllers in the available
literature in this field are tested in simulation. In [12], a com-
plete description of an experimental four-rotor aerial robot has
been presented without any experimental results. In [2], a com-
mercially available gyro-stabilized quadrotor (Draganflyer III)
has been used to test their controller without bypassing the gyro-
stabilization feature.

In this paper, we consider the attitude stabilization problem
of the quadrotor aircraft. The dynamical model describing the
attitude of the quadrotor aircraft contains an additional gyro-
scopic term caused by the combination of the rotations of the
airframe and the four rotors, as well as four additional equations
describing the dynamics of the four rotors. In the case where
the gyroscopic term is set to zero, and the airframe torques are
taken as the actual control inputs, this dynamical model reduces
to the well-known model used in the literature concerning the
attitude control of a rigid body. Despite the additional gyro-
scopic term, we show that the classical model-independent pro-
portional derivative (PD) controller can asymptotically stabilize
the attitude of the quadrotor aircraft. Moreover, using a new
Lyapunov function, we derive an exponentially stabilizing con-
troller based upon the compensation of the Coriolis and gyro-
scopic torques and the use of a PD feedback structure, where
the proportional action is in terms of the vector-quaternion and
the two derivative actions are in terms of the airframe angular
velocity and the vector-quaternion velocity. The global expo-
nential stability property of our new controller, due mainly to
the introduction of the derivative action in terms of the quater-
nion vector and the compensation of the Coriolis and gyroscopic
torques, offers a great advantage in practical applications in
terms of transient performance and disturbance rejection espe-
cially for large angles and high-speed maneuvers. The proposed
controller as well as some other controllers have been tested ex-
perimentally on a small-scale quadrotor aircraft. A preliminary
version of this paper has been presented in [16].

II. MATHEMATICAL MODEL

The quadrotor aircraft under consideration consists of a rigid
cross frame equipped with four rotors as shown in Fig. 1. The
up (down) motion is achieved by increasing (decreasing) the
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Fig. 1. Quadrotor aircraft.

total thrust while maintaining an equal individual thrust. The
forward/backward, left/right and the yaw motions are achieved
through a differential control strategy of the thrust generated
by each rotor. In order to avoid the yaw drift due to the reac-
tive torques, the quadrotor aircraft is configured such that the
set of rotors (right–left) rotates clockwise and the set of ro-
tors (front-rear) rotates counterclockwise. There is no change
in the direction of rotation of the rotors (i.e., ,

). If a yaw motion is desired, one has to reduce the
thrust of one set of rotors and increase the thrust of the other
set while maintaining the same total thrust to avoid an up–down
motion. Hence, the yaw motion is then realized in the direc-
tion of the induced reactive torque. On the other hand, forward
(backward) motion is achieved by pitching in the desired direc-
tion by increasing the rear (front) rotor thrust and decreasing
the front (rear) rotor thrust to maintain the total thrust. Finally,
a sideways motion is achieved by rolling in the desired direc-
tion by increasing the left (right) rotor thrust and decreasing
the right (left) rotor thrust to maintain the total thrust. Let

denote an inertial frame, and de-
note a frame rigidly attached to the aircraft as shown in Fig. 1.
The dynamical model described in [4], ignoring aerodynamic
effects,1 with a slight modification of the gyroscopic torques ex-
pression due to the fact that the pair of rotors 1–3 rotate in op-
posite direction of the pair 2–4, is given as follows:

(1)

(2)

(3)

(4)

(5)

where denotes the mass of the airframe, denotes the accel-
eration due to gravity, denotes the unit vector

1This is justified since our experiment involves a small-scale quadrotor fixed
to a ball joint base designed to test the attitude control.

in the frame , the vector denotes the position
of the origin of the body-fixed frame with respect to the in-
ertial frame , the vector denotes the linear
velocity of the origin of expressed in , denotes the an-
gular velocity of the airframe expressed in the body-fixed frame

. The orientation of the airframe is given by the orthogonal ro-
tation matrix depending on the three Euler angles

, , and denoting, respectively, the roll, the pitch, and the
yaw [16]. is a symmetric positive–definite constant
inertia matrix of the airframe with respect to the frame whose
origin is at the center of mass. The speed and moment of inertia
of the rotor are denoted, respectively, by and . The matrix

is a skew-symmetric matrix such that for
any vector , where denotes the vector cross-product.

The reactive torque generated, in free air, by the rotor due
to rotor drag is given by

(6)

and the total thrust generated by the four rotors is given by

(7)

where is the lift generated by the rotor in free
air (expressed in ), and , are two parameters
depending on the density of air, the size, shape, and pitch angle
of the blades, as well as other factors (see [11] and [13] for more
details).

The vector contains the gyroscopic torques due to the
combination of the rotation of the airframe and the four rotors,
and is given by

(8)

The airframe torques generated by the rotors are given by
, with

(9)

where represents the distance from the rotors to the center of
mass of the quadrotor aircraft.

Finally, the four control inputs of the system are ,
, which represent the torques produced by the rotors.

Remark 1: Some comparative points with respect to a tra-
ditional helicopter can be given as follows: In traditional heli-
copters, the yaw motion, due to the reactive torque of the main
rotor, is compensated by the torque produced by the tail rotor.
The energy spent on the tail rotor makes no contribution to the
upward thrust of the helicopter. Comparatively, in the quadrotor
design, if the four rotors rotate at the same speed, there will be
no yaw motion since the reactive torques are cancelled out, as
one pair of rotors rotates in the opposite direction of the other
pair. In this case, all of the energy spent on the four rotors con-
tributes to generate the upward thrust. The same upward thrust
generated by a single rotor in traditional helicopters can be gen-
erated by four smaller rotors for the quadrotor; and the fact of
using rotors with smaller size helps to reduce the induced me-
chanical vibrations comparatively to a single large main rotor.
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On the other hand, traditional helicopters have somewhat com-
plicated mechanisms for achieving controlled flight, while for
the quadrotor, controlled flight is achieved in a quite intuitive
manner by differential thrust control of the four rotors as ex-
plained in the previous section.

III. ATTITUDE CONTROL DESIGN

In this section, we aim to design a feedback control scheme
for the attitude stabilization of the quadrotor aircraft. To this
end, we will make use of (3)–(5). Equations (1)–(2) describing
the position and the linear velocity of the center of the body-at-
tached frame are not used. Our approach consists of two parts.
In the first part, we design the desired airframe torques for
the attitude stabilization. In this part, we present two control
schemes; the first one is model dependent and guarantees ex-
ponential stability while the second one is model independent
but guarantees only asymptotic stability. In the second part, we
design the rotor torques required to obtain the desired airframe
torques designed in the first part.

One of the drawbacks related to the use of the direction cosine
matrix is the inherent geometric singularity. This drawback
can be avoided by using the four-parameter description of the
orientation called the quaternion representation [6]–[9], [17],
which is based upon the fact that any rotation of a rigid body can
by described by a single rotation about a fixed axis [15]. This
globally nonsingular representation of the orientation is given
by the vector with

(10)

where is the equivalent rotation angle about the axis described
by the unit vector , subject to the constraint

(11)

The rotation matrix is related to the quaternion through the
Rodriguez formula [5], [15], and an algorithm for the quater-
nion extraction is presented in [9]. Although the quaternion rep-
resentation is nonsingular, it contains a sign ambiguity (i.e.,

and lead to the same orientation) which can
be resolved by choosing the following differential equations [5],
[17]:

(12)

where is a 3 3 identity matrix.

A. Step 1: Airframe Torques Design

In this part, we consider as a control input to be designed
for the attitude stabilization of the quadrotor aircraft. Without
the gyroscopic term, the dynamical model (3)–(4) is similar to
the well-known model used in the literature concerning the at-
titude control of a rigid body. Our objective is to stabilize the
equilibrium point , or . This can
be achieved by the stabilization of the two equilibrium points

for (12) and (4). Since
corresponds to and corresponds to ,
it is clear that correspond to the same physical point.
Hence, the two equilibrium points are,

in reality, a unique physical equilibrium point corresponding to
. In the sequel, the Euler angles and the equiva-

lent rotation angle are taken between and , which imply
that .

Now, one can state the following result:
Theorem 1: consider (3) and (4) under the following control

law:

(13)

where , , and
, with is a 3 3 symmetric

positive definite matrix and

• , are 3 3 diagonal positive definite matrices in the
case where is diagonal;

• is a 3 3 symmetric positive definite matrix and
, where is a positive scalar, in the case where is not

diagonal.
Then, the equilibrium point is exponentially
stable.

Proof: Let us consider the following Lyapunov function
candidate:

(14)

whose time derivative, in view of (4) and (11)–(13) is given by

(15)

which implies that the state variables of (4) and (12) are
bounded and . This implies that

. Hence, from (11), one can con-

clude that (note that is excluded

since the angles are taken such that ).
Now, let us show the exponential stability. From the fact that

and (11), we have

(16)

Consequently, can be bounded from above as follows:

(17)

On the other hand, can be bounded from above as follows:

(18)

Hence, from (17) and (18), one can conclude that ,
where

with and denoting, respectively, the minimum
and maximum eigenvalue of .

Remark 2: If we consider the system such that is suffi-
ciently small and close to identity, the Coriolis and gyroscopic
terms can be neglected in the control law (13) to obtain the fol-
lowing reduced-complexity locally stabilizing controller:

(19)

Note that the control law (13) requires the compensation of the
Coriolis and gyroscopic torques involving the airframe inertia

and the rotor inertia . Now, we will show that the clas-
sical PD feedback control without compensation of the Coriolis
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and gyroscopic torques (i.e., model-independent control) can
asymptotically stabilize the attitude of the quadrotor aircraft.

Theorem 2: Consider (3) and (4) under the following control
law:

(20)

where is a 3 3 symmetric positive definite matrix and is a
positive parameter. Then, the equilibrium point
is globally asymptotically stable.

Proof: The time derivative of the following Lyapunov
function candidate:

(21)

in view of (4), (11), (12), and (20), and using
the fact that and

, is given by

(22)

which implies that , and are bounded. Using
La Salle’s invariance theorem, one can easily show that

and . Therefore,

the equilibrium point is globally asymptoti-
cally stable.

Remark 3: It is easy to show the following controller with
Coriolis and gyroscopic torques compensation:

(23)

with

• and are 3 3 diagonal positive definite matrices in
the case where is diagonal;

• is a 3 3 symmetric positive-definite matrix and
, where is a positive scalar, in the case where is

not diagonal, provides global asymptotic stability for our
problem. In fact, in contrast to the control law (20), this
controller allows to use a matrix gain for the quaternion
feedback.

Remark 4: The control law (13) can be written in the fol-
lowing form:

(24)

which is basically a PD feedback with Coriolis and gyroscopic
torques compensation. The two derivative actions are related to
the angular velocity ( ) and the “quaternion velocity” ( ). Note
that is obtained explicity from (12). The control law (20) is
a classical PD feedback, where the derivative action is related
to the angular velocity ( ). It is similar to the control laws pro-
posed in [7], [10], and [19]. The main advantage of the control
law (20) with respect to the control law (13) is the fact that the
model parameters are not required and the control law is much
simpler to implement. The main advantages of the control law
(13) with respect to the control law (20) are:

1) the ability to use a matrix gain instead of a scalar gain
in the quaternion feedback;

2) the exponential convergence property mainly due to the
compensation of the Coriolis and gyroscopic terms and the
use of the vector-quaternion time-derivative .

Remark 5: It is worth noting that the set-point regulation
problem is implicitly included in the previous results. In fact, if
we want to stabilize the quadrotor at an arbitrary configuration,
we have to define the error vector as
and obtain the corresponding quaternion to be used in the
previous control laws. Note that the desired attitude angles ,

, and can be specified by the pilot to control the motion of
the quadrotor in space.

B. Step 2: Motor Torques Design

In reality, the control inputs in (1)–(5) are the four rotor
torques , . To design the rotor torques, one has
to find the desired speed of each rotor , , cor-
responding to the desired airframe torques
obtained from (13) or (20). To this end, we must specify the
desired total thrust or, for instance, obtain it from the altitude
feedback controlling the -position of the quadrotor aircraft
as discussed later in Remark 7. The desired speed for the four
motors can be obtained from (7) and (9). That is, ,
with , and

(25)

where is nonsingular as long as .
Note that in certain cases, some elements of resulting

from might be negative, suggesting the reversal of the
rotors direction, which is not feasible in our case. This case is
not likely to occur if the desired total thrust is sufficiently
large with respect to the required airframe torques.

Now, having , , one can design as fol-
lows:

(26)

where , are four positive parameters, and
. In fact, applying (26) to (5) leads to

(27)

which shows the exponential convergence of to and,
hence, the convergence of the airframe torques to the desired
values leading to the attitude stabilization of the quadrotor
aircraft.

In our application, the dc motors are voltage controlled, so
we need to obtain the voltage input to each motor. Assuming
that the motor inductance is small and taking into consideration
the gear ratio, one can obtain the voltage to be applied to each
motor as follows:

(28)

where is the motor resistance, is the motor torque-con-
stant, and is the gear ratio. Since we are using the same mo-
tors, all of the parameters are the same for the four motors. Fi-
nally, the voltage is used to generate the pulsewidth-modu-
lated (PWM) signal for the control of the motor .

Intuitively, for better transient performance, one has to en-
sure that the convergence of to is faster than the conver-
gence of the attitude to zero. This could be realized by taking



566 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 3, MAY 2006

, where is defined in the proof of Theorem 1.
Remark 6: In the control law (26), the derivative of the de-

sired rotors speed is required. It is possible to derive the analyt-
ical expression for , using as follows:

(29)

where , , and
. If we consider that the

desired total thrust is a constant, and , one can obtain
from (29), using . The derivative of the desired air-

frame torque can be obtained explicitly from (13) or (20). For
the control law in Theorem 2, one can obtain , using (4), (12),
and (20), as follows:

(30)

However, to simplify our control implementation and avoid
the singularity occuring at , in our experiments, we
will obtain from using a filtered derivative also called
the “dirty derivative” (i.e., , with

, where is the cutoff frequency).
Remark 7: As stated before, the total thrust can be

designed in order to control the altitude ( -position) of the
quadrotor aircraft. Assuming that the -position is available
for feedback, one can use (1) and (2) to design in order to
make the altitude converge to the desired setpoint . For the
sake of simplicity, one can consider the hover (or near to hover)
case (i.e., ). In this case, one can easily design a linear
feedback controller using the tools from linear control theory.

Remark 8: In practice, the motion of the quadrotor aircraft
in space is achieved by the pilot (onboard or through a remote
control) by specifying the desired total thrust, roll, pitch and
yaw, while the attitude is automatically controlled according to
the algorithms proposed in the previous section. The pilot can
also use an automatic altitude controller discussed in Remark 7,
in order to hover at a constant desired altitude. In the box
“Pilot/Remote control” shown in Fig. 2, an adequate strategy
could be implemented to generate the desired attitude angles
and the desired total thrust.

IV. EXPERIMENTAL RESULTS

Our experimental quadrotor aircraft is an “in-house” modi-
fied version of the Draganflyer III from RC Toys (http://www.
rctoys.com). In fact, we kept the airframe, the motors, and the
blades of the Draganflyer III and added our own “low-cost” sen-
sors and electronic circuitry. Since, our objective was to safely
test our attitude controller, we decided to use a stationary ball
joint base, as shown in Fig. 3. This base gives the aircraft unre-
stricted yaw movement and around of pitch and roll, while
restricting the aircraft to a fixed point in the three-dimensional
space.

Experimental testing has been performed, with a sampling
frequency of 2 kHz, using a dSPACE DS1104 R&D controller
board. The dSPACE ControlDesk software in combination with

Fig. 2. Control implementation.

Fig. 3. Quadrotor aircraft experimental setup.

Matlab, Simulink, and Real-Time Workshop allows an easy im-
plementation of the control algorithm in block diagram format
via simulink, with real-time adjustments of the control gains.

The four dc permanent-magnet mini motors are geared to
each rotor by a speed reduction ratio of 5.6:1. The motors are
current amplified with a power metal-oxide semiconductor
field-effect transistor and driven by PWM signals.

The rotor velocities , are obtained from Hall
Effect sensors in combination with earth magnets.

The desired acceleration of each rotor
required for the motor torques

control design has been obtained by using a filtered derivative
of the form where
represents a cutoff frequency of 20 Hz. The angular velocity
of the aircraft is obtained from three orthogonally mounted
gyroscopes. High-frequency noise is sufficiently removed from
the measurement by adding first-order low-pass software
filters each with a cutoff frequency of 20 Hz.

Attitude estimation of the aircraft has proven to be a chal-
lenge. Accurate measurements of the roll, pitch and yaw an-
gles in real-time over a wide range of operating conditions are
not easily achieved. Real-time attitude estimation has required
fusing measurements from the gyroscopes with measurements



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 3, MAY 2006 567

TABLE I
QUADROTOR AIRCRAFT MODEL PRAMETERS

Fig. 4. Aircraft angles, controller (13), Experiment 1.

Fig. 5. Angular velocity, controller (13), Experiment 1.

from accelerometers. Configuring accelerometers2 along the
and the axes as tilt-meters and fusing this data with the

2A dual axis low-power device manufactured with microelectromechan-
ical-system (MEMS) technology on a single integrated circuit (IC) weighs
less than 1 g.

Fig. 6. Aircraft angles, controller (19), Experiment 1.

Fig. 7. Angular velocity, controller (19), Experiment 1.

measurements from the two gyroscopes mounted along the
same axes by complementary filtering yields relatively accurate
and drift free pitch and roll angle measurements [1]. Similar
results are also possible for the yaw angle by fusing compass
data with the yaw gyro signal, but have not been realized due
to difficulties with compass readings.

In fact, the roll and pitch, for relatively small variations
around the equilibrium point, are obtained through the fusion
process, as follows , where denotes

or . The signal is obtained from the tilt-meter and
is obtained from the gyroscope. The transfer functions and

are calculated such that the following equality is satisfied:

(31)

where and denote the transfer functions describing the
dynamics of the tilt-meter and the gyroscope, respectively.
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Fig. 8. Aircraft angles, controller (20), Experiment 1.

Fig. 9. Angular velocity, controller (20), Experiment 1.

Including the known dynamics for the tilt-meter, and assuming
ideal dynamics for the gyroscope, we have

(32)

Therefore, we can choose the filter-transfer functions as

(33)

The high-pass filter on the gyro branch effectively removes the
low-frequency signal components at 40 dB per decade, suffi-
ciently reducing the effects of drift at lower frequencies. Sim-
ilarly, the low-pass filter on the tilt-meter branch effectively
removes the high-frequency signal components at 20 dB per
decade.

Fig. 10. Aircraft angles, controller (23), Experiment 1.

Fig. 11. Angular velocity, controller (23), Experiment 1.

In fact, the need for additional filtering has been observed
and implemented on both the gyroscope and tilt-meter measure-
ments to obtain a cleaner fused signal. The first-order low-pass
filters have cutoff frequencies set at 20 Hz for the roll and pitch
gyro signals, 10 Hz for the yaw gyro signal, and 2 Hz for the
roll and pitch tilt-meter signals.

This type of angle estimation through complementary fil-
tering has proven effective for relatively small roll and pitch
aircraft angles. However, if we consider larger aircraft angles,
this method will only give accurate estimates for individual
planar rotations. More complex rotations of simultaneous roll,
pitch and yaw angles require a nonlinear fusion technique as de-
scribed in [14]. Due to the relative complexity and restrictions
of this method and the fact that our experiments are controlled
within restricted aircraft angles, we opted for the linear fusion
method for the roll and pitch angles estimation.

The yaw angle estimation , for relatively small vari-
ations around the equilibrium point, is obtained by

, where denotes the measured angular rate
from the yaw gyroscope and is a
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Fig. 12. Aircraft angles, controller (13), Experiment 2 (disturbance rejection).

Fig. 13. Angular velocity, controller (13), Experiment 2 (disturbance
rejection).

low-pass filter. The drift of the integrated yaw signal from
the gyro alone has been noted and considered acceptable, and
experimentation has continued without compensation for the
yaw drift.

Once the Euler angles have been obtained, it is necessary to
determine the equivalent Euler parameters, or quaternion repre-
senting this attitude. As shown in [18], this can be achieved as
follows:

(34)
The quadrotor aircraft model parameters are given in
Table I. , , and denote the inertia of the air-
frame in the roll, pitch and yaw rotational directions (i.e.,

).

Fig. 14. Aircraft angles, controller (19), Experiment 2 (disturbance rejection).

Fig. 15. Angular velocity, controller (19), Experiment 2 (disturbance
rejection).

To explore the performance of each controller, three sets of
experiments have been performed. Experiment 1 involves the
aircraft attitude stabilization to zero starting from some initial
configurations. In Experiment 2, we start the aircraft from an ini-
tial configuration and we stabilize its attitude to zero; thereafter,
disturbances are introduced on the pitch, roll and yaw to ex-
plore the disturbance rejection performance. Both experiment 1
and 2 are performed for the control laws (13), (19), (20), and
(23). Finally, Experiment 3 is performed only for the control law
(13). It illustrates the attitude stabilization to the desired config-
uration ( , , ), starting from
some initial angles. As shown in Figs. 4–21, for the three exper-
iments, we plotted the time-response of the yaw, pitch and roll
in one graph and the three angular velocities in another graph.

Experiments on controllers (13) and (19) were performed
with the following gains:

, , and .
Experiments on controllers (20) and (23) were performed with
the following gains and . The
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Fig. 16. Aircraft angles, controller (20), Experiment 2 (disturbance rejection).

Fig. 17. Angular velocity, controller (20), Experiment 2 (disturbance
rejection).

desired thrust and gain remained the same throughout each
experiment at , , respectively, while the
initial roll, pitch and yaw angles varied only slightly.

V. CONCLUSION

In this paper, it is shown that global exponential attitude sta-
bilization can be achieved for the quadrotor aircraft. This result
is based upon the compensation of the Coriolis and gyroscopic
torques and the use of a PD feedback structure, where the pro-
portional action is in terms of the vector-quaternion and the two
derivative actions are in terms of the airframe angular velocity
and the vector-quaternion velocity. We also showed that the
model-independent PD controller, where the proportional action
is in terms of the vector-quaternion and the derivative action is
in terms of the airframe angular velocity, without compensation
of the Coriolis and gyroscopic torques, provides global asymp-
totic stability for our problem. The proposed controllers have

Fig. 18. Aircraft angles, controller (23), Experiment 2 (disturbance rejection).

Fig. 19. Angular velocity, controller (23), Experiment 2 (disturbance
rejection).

been tested experimentally on a small-scale quadrotor aircraft
equipped with “low-cost” sensors.

According to our experimental results (Figs. 4–21), the four
controllers (13), (19), (20), and (23) provided quite similar re-
sults in terms of convergence and disturbance rejection. In fact,
the compensation of the Coriolis and gyroscopic torques did not
make much of a difference in our particular case due to the ini-
tial conditions and also to the relatively low speed. However, this
will certainly make a difference in the case of large-angle ma-
neuvers at high speed. Another important point that one should
mention is the use of low-cost sensors for the attitude estimation
as well as the linear fusion method used in our experiments. This
was justified since our experimental setup was restricted to rela-
tively small initial conditions. In fact, for large-angle maneuvers
in the real world, more rigorous methods for the attitude estima-
tion should be considered.
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Fig. 20. Aircraft angles, controller (13), Experiment 3.

Fig. 21. Angular velocity, controller (13), Experiment 3.
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