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This paper deals with the design of gain-scheduling-based iterative learning controllers for continuous-time non-linear
systems described by a blended multiple model representation. Su� cient conditions guaranteeing the convergence of the
in®nity norm as well as the ¶-norm of the tracking error are derived. The e� ectiveness of the proposed control scheme is
illustrated on an example of a non-a� ne-in-input system.

1. Introduction

Developing a systematic control design procedure

for non-linear systems is generally a hard task. In prac-

tice, the control of such systems is often achieved

through the use of a linear controller based upon the

linearization of the underlying non-linear system about

an operating point. However, the local controller will be
valid only in the neighbourhood of this operating point.

In order to describe the non-linear system behaviour in a

wide operating range, one can use a number of local

models over di� erent operating points. The combination

of all these local models by means of an adequate

smooth interpolation method leading to a global
approximating model for the non-linear system is

referred to as a blended multiple model representation

(BMMR). It is also called a local model network

(Johansen et al. 1993) or a fuzzy model (Tanaka et al.

1998) in the literature. This procedure can be viewed as a

generalization of the standard basis function networks

where, in essence, the local models are constant output
values. The approximation properties of the BMMR

have been examined by several authors in the literature,

and it has been demonstrated that, under smoothness

conditions on the non-linear function, this structure

can uniformly approximate a non-linear model (Wang

et al. 1992, Johansen et al. 1993, Shorten et al. 1999).

The idea of multiple model representation, which has
been known for several years (Poggio et al. 1990), was

extended for modelling and control purposes

(Johansen et al. 1993, Gawthrop et al. 1995, Gollee

and Hunt 1997, Hunt and Johansen 1997, Prasad et

al. 1998, Tanaka et al. 1998, Kiriakidis 1999, Sluphaug

et al. 1999).

This paper addresses the issue of designing iterative
learning control (ILC) for a class of non-linear systems
described by a blended multiple model representation.
In its principle, the iterative learning control technique
(Arimoto et al. 1984, Sugie and Ono 1991, Kuc et al.
1992, Ahn et al. 1993, Kurek and Zaremba 1993, Jang et
al. 1995, Moore 1998, Xu and Viswanathan 2000) aims
to improve the transient response and the tracking per-
formance of systems that execute the same trajectory or
operation over and over again. It consists in ®nding an
adequate rule which allows the controller to learn from
the tracking errors of the previous operations and per-
form progressively better with every new operation in
order to achieve accurate tracking when the number of
iterations increase.

In this paper, we propose two gain-scheduling-based
ILC schemes for non-linear systems described by a
BMMR. The ®rst scheme is a P-type ILC designed for
systems with direct input±output transmission, while the
second one is a D-type ILC designed for systems with-
out direct input±output transmission. Su� cient con-
ditions guaranteeing the convergence of the in®nity
norm as well as the ¶-norm of the tracking error are
derived.

The proposed approach allows for e� cient control
of non-linear systems including the class of non-a� ne-
in-input systemsÐwhich is well known as a challenging
class from the control point of view. To the best of our
knowledge, there is no ILC scheme in the literature deal-
ing with this particular class of non-linear systems. In
this paper, we address this problem through the control
of a class of non-linear systems described by a
BMMRÐwhich can be viewed as a quasi-global
approximation of non-linear systems including the
class of non-a� ne-in-input systems. ILC design for a
system belonging to that particular class is illustrated
in a numerical example in the ®nal part of the paper.

2. Problem statement

Let us consider a non-linear system operating repeat-
edly over the time interval ‰0; T Š, and described by the
following BMMR
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_xxk…t† ˆ
XN

iˆ1

…f …xe
i ; ue

i † ‡ Ai…xk…t† ¡ xe
i † ‡ Bi…uk…t†

¡ ue
i ††»i…zk…t††

yk…t† ˆ
XN

iˆ1

…ye
i ‡ Ci…xk…t† ¡ xe

i † ‡ Di…uk…t†

¡ ue
i ††»i…zk…t††

…1†

Where k is the iteration index or the operation number,
and t 2 ‰0; T Š is time. Vector xk…t† 2 X » n is the state
vector, uk…t† 2 U » m is the control vector, yk…t† 2 p

is the system output and zk…t† ˆ H…xk…t†; uk…t†† repre-
sents the actual operating point.

Parameters …xe
i ; ue

i †, i ˆ 1; . . . ; N, which might be
time-varying, are generally the operating points about
which the original non-linear system has been linearized,
ye

i is the output at the operating point i, and
f : X £ U ! n is a given non-linear function.
Matrices Ai, Bi, Ci and Di are generally obtained from
a non-linear system using a ®rst-order Taylor expansion
about …xe

i ; ue
i †.

Functions »i, generally called validity functions or
fuzzy basis functions, are used to interpolate the N
local models leading to a quasi-global approximation
in the form of (1) of a given non-linear system. The
validity functions are positive semi-de®nite with the fol-
lowing properties

(i)
PN

iˆ1 »i…zk† ˆ 1

(ii) »i…zk† ! 1 as zk ! ze
i (where the local model i is

an accurate description of the system), and

»i…zk† ! 0 elsewhere.

The function »i…zk† is usually chosen as a normalized
Gaussian function describing the distance between the
current operating point zk…t† and the local operating
point ze

i

»i…zk…t†† ˆ exp ‰¡0:5…zk…t† ¡ ze
i †T§i…zk…t† ¡ ze

i †Š
PN

iˆ1

exp‰¡0:5…zk…t† ¡ ze
i †

T§i…zk…t† ¡ ze
i †Š

…2†

where §i is a positive de®nite scaling matrix. Obviously,
the overlapping of operating regimes allows the validity
functions to assure a smooth transfer from one region of
the model to the next.

Our objective is to derive an iterative control law
uk…t†, starting from any arbitrarily continuous and
bounded input u0…t† over ‰0; T Š, such that the output
yk…t† converges to the desired output yd…t†, for all
t 2 ‰0; T Š, when the iteration index k tends to in®nity.

Throughout the paper, we will use the norm de®ned
as kVk ˆ max

1µiµn
jvij for a vector V ˆ ‰v1; . . . ; vnŠT, and as

kMk ˆ max
1µiµm

Xn

jˆ1

jmi; jj

for a matrix M ˆ ‰mi; j Š 2 m£n. We will also use the

in®nity norm de®ned as k ? …t†k1 ˆ sup
t2‰0;T Š

k ? …t†k, and

the ¶-norm de®ned as k ? …t†k¶ ˆ sup
t2‰0;T Š

e¡¶tk ? …t†k.

Note that k ? k¶ µ k ? k1 µ e¶Tk ? k¶ for any ¶ > 0.

3. Iterative learning control synthesis

In the balance of this paper, we will make use of the
following assumptions

A1. There exists a control law ud…t† leading to the
desired state xd…t† and to the desired output
yd…t†. The signals ud…t† and xd…t† are bounded
on ‰0; T Š.

A2. The initial error is equal to zero, i.e.
xk…0† ˆ xd…0†, for all k.

A3. For all …xk; uk† 2 X £ U and t 2 ‰0; T Š, there
exists a constant Ki satisfying

k»i…zd† ¡ »i…zk†k µ Kikxd ¡ xkk; i ˆ 1; . . . ; N

where zk ˆ H…xk…t†; uk…t†† and zd ˆ H…xd…t†; ud…t††.
Assumptions A1 and A2 are well known in the lit-

erature concerning iterative learning control, whereas
Assumption A3 is related to the validity functions
involved in the BMMR. This last assumption is not
very restrictive, since if we consider, for example, the
validity function given in equation (2), one can easily
check that its partial derivative with respect to zk is
uniformly continuous, and it is bounded on the bounded
set

Dr;i ˆ fzk 2 n=kzk ¡ zik µ rg 8r > 0

that is

@»i…zk†
@zk

®®®®

®®®® µ 2k§ikkzk ¡ zik

which means that »i…zk† is locally Lipschitz on Di for
any r > 0. Hence, Assumption A3 is ful®lled if H…xk; uk†
is uniformly Lipschitz with respect to xk. In conclusion,
if »i…zk† is taken as in (2), Assumption A3 will be ful®lled
if H…xk; uk† is uniformly Lipschitz with respect to xk.
This is not a restrictive condition, because H…xk; uk† is
chosen by the designer to determine the operating point.

It is worth noting that Assumptions A1±A3 will be
needed to prove the convergence to zero of the tracking
error (Theorems 1 and 3), whereas Assumption A1
alone will be needed to prove the convergence of the
tracking error to a residual domain around zero
(Theorem 2).

Let us consider the iterative controller
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uk‡1…t† ˆ uk…t† ‡
XN

iˆ1

Gi»i…zk†
Á !

ek…t† …3†

where ek…t† ˆ yd…t† ¡ yk…t† represents the tracking error
and Gi, i ˆ 1; . . . ; N are the control gains to be designed
to ensure the convergence of the iterative process when
k tends to in®nity. This scheme has a strong link with
gain scheduling control. In fact, in gain scheduling
techniques, the control gains change as a function of
an auxiliary scheduling variable (Shamma and Athans
1990, Rugh, 1991, Leith and Leithead 2000) while in the
ILC scheme (3), the control gain Gk ˆ

PN
iˆ1 Gi»i…zk†

changes smoothly according to the values of the validity
functions depending on the operating point.

Before stating Theorem 1, let us de®ne the
parameters

b ˆ
XN

iˆ1

Bi

®®®®®

®®®®®; g ˆ
XN

iˆ1

Gi

®®®®®

®®®®®; c ˆ
XN

iˆ1

Ci

®®®®®

®®®®®

a ˆ sup
t2‰0;T Š

(
XN

iˆ1

Kikf …xe
i ; ue

i † ‡ Ai…xd…t†

¡ xe
i † ‡ Bi…ud…t† ¡ ue

i †k
)

‡
XN

iˆ1

Ai

®®®®®

®®®®®

Á ˆ gb

Á
c ‡ sup

t2‰0;T Š

(
XN

iˆ1

Kikye
i ‡ Ci…xd…t† ¡ xe

i †

‡ Di…ud…t† ¡ ue
i †k

)!

¬ ˆ I ¡
XN

iˆ1

Gi»i…zk†
Á !

XN

iˆ1

Di»i…zk†
Á !®®®®®

®®®®® and

­ ˆ Á

a
…eaT ¡ 1†

Theorem 1: Consider system (1) with the ILC (3). If
Assumptions A1±A3 are ful®lled, then, for all t 2 ‰0; T Š,
the following hold:

(i) If sup
t2‰0;T Š

f¬g < 1, there exists ¶ > a ‡ Á such that

kyd…t† ¡ yk…t†k1 tends to zero when k tends to
in®nity, with a rate of convergence less than or
equal to

®1 ˆ e¶T sup
t2‰0;T Š

f¬…t†g ‡ Á

¶ ¡ a
…1 ¡ e…a¡¶†T†

Á !k

(ii) If sup
t2‰0;T Š

f¬…t†g ‡ ­ < 1, then kyd…t† ¡ yk…t†k1

converges to zero when k tends to in®nity, with a
rate of convergence less than or equal to

®2 ˆ sup
t2‰0;T Š

f¬…t†g ‡ Á

a
…eaT ¡ 1†

Á !k

Proof: Let ~uuk…t† denote the control error at the kth
iteration. Hence, the control error at the …k ‡ 1†th
iteration can be expressed as

~uuk‡1…t† ˆ ud…t† ¡ uk‡1…t† ˆ ud…t† ¡ uk…t†

¡
XN

iˆ1

Gi»i…zk†
Á !

ek…t†
…4†

which gives

~uuk‡1…t† ˆ ~uuk…t† ¡
XN

iˆ1

Gi»i…zk†
Á !

ek…t†: …5†

The tracking error can be expressed as

ek…t† ˆ
XN

iˆ1

…ye
i ‡ Ci…xd ¡ xe

i † ‡ Di…ud ¡ ue
i ††»i…zd†

¡
XN

iˆ1

…ye
i ‡ Ci…xk ¡ xe

i † ‡ Di…uk ¡ ue
i ††»i…zk†

ˆ
XN

iˆ1

…Ci ~xxk ‡ Di ~uuk†»i…zk† ‡
XN

iˆ1

…ye
i ‡ Ci…xd ¡ xe

i †

‡ Di…ud ¡ ue
i ††…»i…zd† ¡ »i…zk††

…6†

where ~xxk ˆ xd ¡ xk. Hence, equation (5) becomes

~uuk‡1…t† ˆ I ¡
XN

iˆ1

Gi»i…zk†
XN

iˆ1

Di»i…zk†
Á !

~uuk…t†

¡
XN

iˆ1

Gi»i…zk†
XN

iˆ1

Ci»i…zk†
Á !

~xxk…t†

¡
XN

iˆ1

Gi»i…zk†
XN

iˆ1

…ye
i ‡ Ci…xd ¡ xe

i †

‡ Di…ud ¡ ue
i ††…»i…zd† ¡ »i…zk††

…7†

Since
PN

iˆ1 »i…zk† ˆ 1, from the latter one can obtain the
inequality

k~uuk‡1…t†k µ ¬k~uuk…t†k ‡
XN

iˆ1

Gi

®®®®®

®®®®®
XN

iˆ1

Ci

®®®®®

®®®®®k~xxk…t†k

‡
XN

iˆ1

Gi

®®®®®

®®®®®
XN

iˆ1

kye
i ‡ Ci…xd ¡ xe

i †

‡ Di…ud ¡ ue
i †kk»i…zd† ¡ »i…zk†k

…8†
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Now, using Assumption A3, one has

k~uuk‡1…t†k µ ¬k~uuk…t†k

‡
XN

iˆ1

Gi

®®®®®

®®®®®

Á
XN

iˆ1

Ci

®®®®®

®®®®® ‡
XN

iˆ1

Kikye
i

‡ Ci…xd ¡ xe
i † ‡ Di…ud ¡ ue

i †k
!

k~xxk…t†k

…9†

In view of Assumption A2 and system (1), the state error
is given by

~xxk…t† ˆ
…t

0

… _xxd…½† ¡ _xxk…½††d½ …10†

which leads to

~xxk…t† ˆ
…t

0

XN

iˆ1

…f …xe
i ; ue

i † ‡ Ai…xd ¡ xe
i †

‡ Bi…ud ¡ ue
i ††»i…zd†d½

¡
…t

0

XN

iˆ1

…f …xe
i ; ue

i † ‡ Ai…xk ¡ xe
i †

‡ Bi…uk ¡ ue
i ††»i…zd†d½

ˆ
…t

0

XN

iˆ1

…Ai ~xxk…½† ‡ Bi ~uuk…t††»i…zk†d½

¡
…t

0

XN

iˆ1

…f …xe
i ; ue

i † ‡ Ai…xd ¡ xe
i †

‡ Bi…ud ¡ ue
i ††…»i…zd† ¡ »i…zk††d½:

…11†

In view of Assumption A1, i.e. xd and ud are bounded,
and Assumption A3, one has

k~xxk…t†k µ
…t

0

…ak~xxk…½†k ‡ bk~uuk…½†k†d½ …12†

Applying the Bellman±Gronwall Lemma we get

k~xxk…t†k µ
…t

0

bk~uuk…½†kea…t¡½†d½ …13†

Then, in view of (13), inequality (9) becomes

k~uuk‡1…t†k µ ¬k~uuk…t†k ‡ Á

…t

0

k~uuk…½†kea…t¡½†d½ …14†

which leads to

sup
t2‰0;T Š

k~uuk‡1…t†k µ sup
t2‰0;T Š

f¬g sup
t2‰0;T Š

k~uuk…t†k

‡ sup
t2‰0;T Š

Á

…t

0

k~uuk…½†kea…t¡½†d½

» ¼ …15†

and

sup
t2‰0;T Š

k~uuk‡1…t†k µ sup
t2‰0;T Š

f¬g ‡ Á sup
t2‰0;T Š

…t

0

ea…t¡½†d½

Á !

£ sup
t2‰0;T Š

k~uuk…t†k

…16†

i.e.

sup
t2‰0;T Š

k~uuk‡1…t†k µ sup
t2‰0;T Š

f¬g ‡ ­

Á !
sup

t2‰0;T Š
k~uuk…t†k …17†

Thus,

sup
t2‰0;T Š

k~uuk…t†k µ sup
t2‰0;T Š

f¬g ‡ ­

Á !k

sup
t2‰0;T Š

k~uu0…t†k …18†

Finally, if sup
t2‰0;T Š

f¬g ‡ ­ < 1, it is obvious that

k~uukk1 ! 0 as k tends to in®nity, which in terms of
Assumption A1 implies that kyd…t† ¡ yk…t†k1 ! 0 as k
tends to in®nity.

Now, let us investigate the case where the condition
0 µ ­ < 1 is not ful®lled. We will show that even if this
condition is not satis®ed, one can guarantee the conver-
gence of the ¶-norm of the tracking error.

Multiplying each side of (14) by e¡¶t, ¶ > a, and
applying the ¶-norm gives

k~uuk‡1…t†k¶ µ sup
t2‰0;T Š

f¬gk~uuk…t†k¶

‡ sup
t2‰0;T Š

e¡¶tÁ

…t

0

k~uuk…½†kea…t¡½†d½

» ¼ …19†

k~uuk‡1…t†k¶ µ sup
t2‰0;T Š

f¬gk~uuk…t†k¶

‡ sup
t2‰0;T Š

Á

…t

0

e…a¡¶†…t¡½†d½

» ¼
k~uuk…t†k¶

…20†

which leads to

k~uuk‡1…t†k¶ µ sup
t2‰0;T Š

f¬g ‡ Á

¶ ¡ a
…1 ¡ e…a¡¶†T†

Á !
k~uuk…t†k¶

…21†

that is
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k~uuk…t†k¶ µ sup
t2‰0;T Š

f¬g ‡ Á

¶ ¡ a
…1 ¡ e…a¡¶†T†

Á !k

k~uu0…t†k¶

…22†

If sup
t2‰0;T Š

f¬g < 1, then there exists ¶ > a ‡ Á such that

sup
t2‰0;T Š

f¬g ‡ Á

¶ ¡ a
…1 ¡ e…a¡¶†T†

Á !

< 1

This implies that k~uukk¶ ! 0 as k tends to in®nity,
which, according to Assumption A1, ensures that
kyd…t† ¡ yk…t†k¶ ! 0 as k tends to in®nity for all
t 2 ‰0; T Š. Considering the de®nition of the ¶-norm,
one can conclude that k~uuk…t†k1 µ ®1k~uu0…t†k1, where

®1 ˆ e¶T sup
t2‰0;T Š

f¬…t†g ‡ Á

¶ ¡ a
…1 ¡ e…a¡¶†T†

Á !k

which implies that k~uuk…t†k1 and kyd…t† ¡ yk…t†k1 con-
verge to zero when k tends to in®nity. &

Now consider the case where Assumptions A2 and
A3 are not ful®lled. In this case, one can always ensure
the convergence of the tracking error to a certain resi-
dual domain around zero depending on the system par-
ameters and the control gains Gi.

Assume that kxk…0† ¡ xd…0†k µ ¹2 for all k. Since
the validity functions »i…:† belong to ‰0; 1Š, it is clear
that k»i…zd† ¡ »i…zk†k µ ¹1, 0 µ ¹1 µ 1, for all k 2
and t 2 ‰0; T Š. Before stating Theorem 2, let us de®ne
the parameters

m1 ˆ
XN

iˆ1

Gi

®®®®®

®®®®®
XN

iˆ1

Ci

®®®®®

®®®®®; m2 ˆ
XN

iˆ1

Ai

®®®®®

®®®®®;

m3 ˆ
XN

iˆ1

Bi

®®®®®

®®®®®; m4 ˆ
m1m3

m2

…em2T ¡ 1†

m5 ˆ m1°2

m2

…em2T ¡ 1† ‡ m1¹2em2T ‡ °1

m6 ˆ °1 ‡ m1¹2 ‡ m1°2

m2

sup
t2‰0;T Š

fe…m2¡¶†t ¡ e¡¶tg

µ °1 ‡ m1¹2 ‡ m1°2

m2

°1 ˆ ¹1 sup
t2‰0;T Š

(
XN

iˆ1

Gi

®®®®®

®®®®®
XN

iˆ1

kye
i ‡ Ci…xd…t† ¡ xe

i †

‡ Di…ud…t† ¡ ue
i †k

)

°2 ˆ ¹1 sup
t2‰0;T Š

(
XN

iˆ1

kf …xe
i ; ue

i † ‡ Ai…xd…t† ¡ xe
i †

‡ Bi…ud…t† ¡ ue
i †k

)

l1 ˆ sup
t2‰0;T Š

f¬g ‡ m4

l2 ˆ sup
t2‰0;T Š

f¬g ‡ m1m3

¶ ¡ m2

…1 ¡ e…m2¡¶†T†

Theorem 2: Consider system (1) with the ILC (3). If
Assumption A1 is ful®lled and kxk…0† ¡ xd…0†k µ ¹2 for
all k, then the following hold for all t 2 ‰0; T Š:

(i) If sup
t2‰0;T Š

f¬g < 1, there exists ¶ > m2 ‡ m1m3 such

that

lim
k!1

k~uukk1 µ e¶T m6

1 ¡ l2

and

lim
k!1

k~eekk1 µ
XN

iˆ1

Ci

®®®®®

®®®®®

Á
¹2em2T ‡ m3m6e¶T

m2…1 ¡ l2† ‡ °2

m2

Á !

£ …em2T ¡ 1†
!

‡
XN

iˆ1

Di

®®®®®

®®®®®
m6

1 ¡ l2

³ ´
e¶T

‡ ¹1

®®®®®
XN

iˆ1

…ye
i ‡ Ci…xd …t† ¡ xe

i † ‡ Di…ud …t† ¡ ue
i ††

®®®®®
1

…23†

(ii) If l1 < 1, then

lim
k!1

k~uukk1 µ m5

1 ¡ l1
…24†

and

lim
k!1

k~eekk1 µ
XN

iˆ1

Ci

®®®®®

®®®®®

³
¹2em2T ‡ m3m5

m2…1 ¡ l1† ‡ °2

m2

³ ´

£ …em2T ¡ 1†
´

‡
XN

iˆ1

Di

®®®®®

®®®®®
m5

1 ¡ l1

³ ´

‡ ¹1

®®®®®
XN

iˆ1

…ye
i ‡ Ci…xd …t† ¡ xe

i † ‡ Di…ud …t† ¡ ue
i ††

®®®®®
1

…25†

Proof: From (8), one has

k~uuk‡1…t†k µ ¬k~uuk…t†k ‡ m1k~xxk…t†k ‡ °1 …26†

Furthermore, equation (10) becomes

~xxk…t† ˆ ~xxk…0† ‡
…t

0

… _xxd…½† ¡ _xxk…½††d½ …27†
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which leads to

k~xxk…t†k µ ¹2 ‡
…t

0

…m2k~xxk…½†k ‡ m3k~uuk…½†k ‡ °2†d½

…28†

which, by virtue of the Bellman±Gronwall Lemma,
gives

k~xxk…t†k µ ¹2em2t ‡
…t

0

…m3k~uuk…½†k ‡ °2†em2…t¡½†d½ …29†

Therefore, (26) becomes

k~uuk‡1…t†k µ ¬k~uuk…t†k ‡ m1¹2em2t ‡ °1

‡ m1

…t

0

…m3k~uuk…½†k ‡ °2†em2…t¡½†d½
…30†

Following the ®rst part of the proof of Theorem 1, the
following result is obtained

k~uuk‡1…t†k1 µ sup
t2‰0;T Š

f¬g ‡ m4

Á !
k~uuk…t†k1 ‡ m5 …31†

Hence, if there exist Gi, i ˆ 1; . . . ; N , such that
l1 ˆ sup

t2‰0;T Š
f¬g ‡ m4 < 1, one has

lim
k!1

k~uuk…t†k1 µ
m5

1 ¡ l1
…32†

Finally, using (6), (29) and (32), we obtain the tracking
error bounds given in (25).

Following the second part of the proof of Theorem
1, we obtain

k~uuk‡1…t†k¶ µ sup
t2‰0;T Š

f¬g ‡ m1m3

¶ ¡ m2

…1 ¡ e…m2¡¶†T †
Á !

£ k~uuk…t†k¶ ‡ m6

…33†

Hence, if ¬ < 1, there exists ¶ > m2 ‡ m1m3 such that

l2 ˆ sup
t2‰0;T Š

f¬g ‡ m1m3

¶ ¡ m2

…1 ¡ e…m2¡¶†T † < 1

Therefore, the following holds

lim
k!1

k~uuk…t†k¶ µ m6

1 ¡ l2

which, in view of the de®nition of the ¶-norm, implies
that

lim
k!1

k~uuk…t†k1 µ e¶T m6

1 ¡ l2
…34†

Using (6), (29) and (34), we obtain the tracking error
bounds given in (23). &

Now let us assume that the output of system (1)
is given by yk…t† ˆ Cxk…t† and consider the iterative
control law

uk‡1…t† ˆ uk…t† ‡
XN

iˆ1

Gi»i…zk†
Á !

_eek…t† …35†

where _eek…t† ˆ _yyd…t† ¡ _yyk…t†.
Following the same development as in the proof of

Theorem 1, we get the following expression for the con-
trol error at iteration k ‡ 1

~uuk‡1…t† ˆ ~uuk…t† ¡
XN

iˆ1

Gi»i…zk†
Á !

_eek…t† …36†

The time-derivative of the tracking error is given by

_eek…t† ˆ C… _xxd…t† ¡ _xxk…t††

ˆ C
XN

iˆ1

…f …xe
i ; ue

i † ‡ Ai…xd ¡ xe
i †

‡ Bi…ud ¡ ue
i ††»i…zd†

¡ C
XN

iˆ1

…f …xe
i ; ue

i † ‡ Ai…xk ¡ xe
i †

‡ Bi…uk ¡ ue
i ††»i…zk†

ˆ C
XN

iˆ1

Ai ~xxk ‡ Bi ~uuk†… †»i…zk†

‡ C
XN

iˆ1

…f …xe
i ; ue

i † ‡ Ai…xd ¡ xe
i †

‡ Bi…ud ¡ ue
i ††…»i…zd† ¡ »i…zk††

…37†

Hence, equation (36) becomes

~uuk‡1…t† ˆ I ¡
XN

iˆ1

Gi»i…zk†C
XN

iˆ1

Bi»i…zk†
Á !

~uuk…t†

¡
XN

iˆ1

Gi»i…zk†
Á !

C
XN

iˆ1

Ai»i…zk†
Á !

~xxk…t†

¡
XN

iˆ1

Gi»i…zk†
Á !

C
XN

iˆ1

…f …xe
i ; ue

i †

‡ Ai…xd ¡ xe
i † ‡ Bi…ud ¡ ue

i ††…»i…zd† ¡ »i…zk††
…38†

Since
PN

iˆ1 »i…zk† ˆ 1, from the latter one can obtain the
inequality
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k~uuk‡1…t†k µ ¬¤k~uuk…t†k ‡ kCk
XN

iˆ1

Gi

®®®®®

®®®®®
XN

iˆ1

Ai

®®®®®

®®®®®k~xxk…t†k

‡ kCk
XN

iˆ1

Gi

®®®®®

®®®®®
XN

iˆ1

kf …xe
i ; ue

i †

‡ Ai…xd ¡ xe
i † ‡ Bi…ud ¡ ue

i †kk»i…zd†

¡ »i…zk†k
…39†

where

¬¤ ˆ I ¡
XN

iˆ1

Gi»i…zk†C
XN

iˆ1

Bi»i…zk†

®®®®®

®®®®®

Following the steps of the proof of Theorem 1, we
obtain

sup
t2‰0;T Š

k~uuk…t†k µ sup
t2‰0;T Š

f¬¤g ‡ ­ ¤

Á !k

sup
t2‰0;T Š

k~uu0…t†k …40†

and in terms of the ¶-norm

k~uuk…t†k¶ µ sup
t2‰0;T Š

f¬¤g ‡ Á¤

¶ ¡ a
…1 ¡ e…a¡¶†T†

Á !k

k~uu0…t†k¶

…41†

where Á¤ ˆ abgkCk and ­ ¤ ˆ Á¤…eaT ¡ 1†=a. The con-
clusion of the previous development can be summarized
in the following theorem.

Theorem 3: Consider system (1) with the output
yk ˆ Cxk and the ILC (35). If Assumptions A1±A3 are
ful®lled, then, for all t 2 ‰0; T Š, the following hold:

(i) If sup
t2‰0;T Š

f¬¤g < 1, there exists ¶ > a ‡ Á¤ such

that kyd…t† ¡ yk…t†k1 tends to zero when k tends
to in®nity, with a rate of convergence less than or
equal to

®1 ˆ e¶T sup
t2‰0;T Š

f¬¤…t†g ‡ Á¤

¶ ¡ a
…1 ¡ e…a¡¶†T†

Á !k

(ii) If sup
t2‰0;T Š

f¬¤…t†g ‡ ­ ¤ < 1, then kyd…t† ¡ yk…t†k1

converges to zero when k tends to in®nity, with a
rate of convergence less than or equal to

®2 ˆ sup
t2‰0;T Š

f¬¤…t†g ‡ Á¤

a
…eaT ¡ 1†

Á !k

Now, some remarks should be pointed out.

Remarks:
(1) Note that the parameter ¶ is not needed in the

design of the learning controller. This parameter
can be viewed as an indicator for the rate of
convergence of the learning process. It is evident
that if ¶T is large, then k~uuk…t†k¶ << k~uuk…t†k1,
and the number of necessary iterations to
achieve accurate tracking will increase with ¶T .
Therefore, the convergence rates obtained
with the ¶-norm (case (i) of Theorems 1±3) will
be much lower than those obtained with the in®-
nity norm (case (ii) of Theorems 1±3). However,
the conditions obtained with the in®nity norm
are more restrictive than those obtained with
the ¶-norm in terms of the system dynamics
knowledge and the dependence on the tracking
horizon.

(2) In case (i) of Theorems 1 and 2, the su� cient
condition for the tracking error is
supt2‰0;T Šf¬…t†g < 1. This condition is related to
matrices Di, while matrices Ai, Bi and Ci are not
needed. In case (i) of Theorem 3, only matrices
Bi and C have to be known. This demonstrates
the robustness of the tracking controller, which
needs only partial knowledge of the system.

(3) The parameter ¬ depends on the validity func-
tions, which are not constant. This fact makes
the choice of the control parameters Gi quite
di� cult. Nevertheless, if we assume that for
any t 2 ‰0; T Š, there exists a unique model i
such that »i ! 1, one can conclude that »j ! 0
whenever i 6ˆ j. Under this assumption, the con-
dition supt2‰0;T Šf¬…t†g < 1 is ful®lled in Theo-
rems 1 and 2 as long as

kI ¡ GiDik < 1; i ˆ 1; . . . ; N …42†

and in Theorem 3, as long as

kI ¡ GiCBik < 1; i ˆ 1; . . . ; N …43†

4. Numerical example

In order to demonstrate the e� ectiveness of the pro-
posed control scheme, we consider the following non-
a� ne-in-input system

_xx ˆ 0:5x ‡ u2 ‡ …x ‡ 1†u

y ˆ x

9
=

; …44†

where y 2 is the output and u 2 is the control input.
The objective of the control is to track the trajectory
yd…t† ˆ 1 ¡ e¡t, over the time interval ‰0; 6Š.
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As the ®rst step of the design process, we linearize
the system about eight equilibrium points …xe

i ; ue
i †

describing the desired trajectory yd…t† to obtain eight
local models of the form

_xx ˆ aix ‡ biu; i ˆ 1; 8 …45†

where ai and bi are given in table 1.
System (44) can be approximated by

_xx…t† ˆ
X8

iˆ1

ai…x…t† ¡ xe
i † ‡ bi…u…t† ¡ ue

i †… †»i…z…t††

y…t† ˆ x…t†

9
>>=
>>;

…47†

where z…t† ˆ ‰x…t†; u…t†ŠT and »i…z…t†† is taken as in (2),
with Si ˆ 1.

The control gains Gi, i ˆ 1; 8, are chosen such that
j1 ¡ Gibij < 1. A simple choice to satisfy this condition
is to take Gi ˆ 1=bi, i ˆ 1; 8. Note that the parameters ai

are not needed anywhere in our control design.
By applying the ILC scheme (35) to system (44) we

obtained the results shown in ®gures 1 and 2. Figure 1
illustrates the evolution of the Sup-norm of the tracking
error with respect to the number of iterations. One can
see that we achieve `almost perfect’ tracking at the 13th
iteration. Figure 2 shows the time-evolution of the

desired trajectory yd…t† (star-curve) and the output
yk…t† (solid curve) for k ˆ 5, k ˆ 10 and k ˆ 15.

5. Conclusion

We have proposed two iterative learning controllers
for continuous-time non-linear systems described by a
BMMR with and without direct input transmission. The
structures of our controllers are, in fact, those of a P-
type and a D-type ILCs with a systematic gain sched-
uling as a function of the actual operating point. The
convergence of the in®nity norm and the ¶-norm of the
tracking error are investigated in the presence of an
initial state error (Theorem 2) and in the ideal case
(Theorems 1 and 3). It is shown that the rates of con-
vergence obtained with the in®nity norm are better than
those obtained with the ¶-norm. However, the con-
ditions obtained with the in®nity norm are more restric-
tive than those obtained with the ¶-norm.

It is well known that the BMMR can be viewed as a
quasi-global approximation for non-linear systems
including the class of non-a� ne-in-input systems. As
in most approximation problems, the issue of the
approximation error has to be addressed. Of course an
approximation error will always exist for a ®nite number
of models N , and the controller derived for the BMMR
will probably not achieve a `perfect’ tracking when
applied to the real non-linear system. The quanti®cation
of the tracking error with respect to the number of local
models is not an easy task. Nevertheless, under an
assumption that the approximation error can be quan-
ti®ed as a Lipschitz function in x, the error can be fairly
simply reduced through learning, which is easily
observed from equations (6)±(9). If the approximation
error is not a Lipschitz function in x or if it is a non-
a� ne function in u, it is di� cult to prove the conver-
gence to zero of the tracking error. One can only prove
that the tracking error is bounded if the approximation
error is bounded.

Iterative learning control for non-linear systems 1383

i …xe
i ; ue

i † ai bi

1 (0.05, 71.0256) 70.5256 71.0012

2 (0.1, 71.0525) 70.5525 71.0050
3 (0.3, 71.1720) 70.6720 71.0440

4 (0.4, 71.2385) 70.7385 71.0770

5 (0.5, 71.3090) 70.8090 71.1180
6 (0.6, 71.3831) 70.8831 71.1662

7 (0.8 ,71.5403) 71.0403 71.2806

8 (1, 71.7071) 71.2071 71.4142

Table 1. Local models

Figure 1. Sup-norm of the tracking error versus the number
of iterations.

Figure 2. Desired trajectory yd…t† (star), and the output yk…t†
(solid), for k ˆ 5; 10 and 15.
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