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Abstract. In this paper it is shown that a class ofn-dimensional nonholonomic chained systems can be stabilized
using the invariant manifold approach. First, we derive an invariant manifold for this class of systems and we
show that, once on it, all the closed-loop trajectories tend to the origin under a linear smooth time-invariant state
feedback. Thereafter, it is shown that this manifold can be made attractive by means of a discontinuous time-
invariant state feedback. Finally, a mobile robot is taken as an example demonstrating the effectiveness of our
study.
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1. Introduction

Wheeled mobile robots are widely involved in advanced applications such as planetary ex-
ploration, intervention in hostile and dangerous environments, and the execution of accurate
repetitive tasks. Unfortunately, this class of mechanical systems is subject to nonholonomic
kinematic constraints restricting its mobility and making its control non-trivial. The problem
of controlling nonholonomic systems has been tackled following two principal approaches [6].
The first approach uses open-loop control strategies to generate feasible trajectories; it is often
referred to as motion planning [8–10]. Although this approach is interesting from the practical
point of view (obstacles avoidance for example), it suffers from a lack of robustness with re-
spect to disturbances and modeling inaccuracies. The second approach uses feedback control
strategies, guaranteeing a certain level of robustness, to solve the following two fundamental
problems:

1. Path-following,
2. Point-stabilization (or stabilization).

The first problem consists in finding adequate feedback control laws allowing the mobile robot
to track a desired trajectory. The second problem consists in finding adequate feedback control
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laws allowing the mobile robot to reach a desired static configuration starting from any initial
configuration.

It is well known that the first problem can be solved by means of classical time-invariant
smooth state feedback [13], while the second one needs more elaborate nonlinear techniques.
The second problem is a challenging one, since it has been proven that nonholonomic systems
cannot be stabilized to an equilibrium point via any smooth time-invariant feedback [3]. To
overcome this problem, two main types of controller have been proposed in the literature:

1. Smooth time-varying controllers leading to slow (polynomial) asymptotic convergence
(see, for instance, [11, 14]).

2. Discontinuous time-invariant controllers leading to exponential convergence and gener-
ating more realistic trajectories, as shown in [1, 2, 4, 15].

In this paper we aim to provide another way to solve the point-stabilization problem forn-
dimensional nonholonomic chained systems by means of a time-invariant discontinuous state
feedback. To this end, the invariant manifold method, previously used for low order nonholo-
nomic systems [5, 12, 17], is investigated and generalized to then-dimensional nonholonomic
chained systems, as shown in [16].

The invariant manifold approach consists in finding a suitable manifold, which is invariant
under a linear state feedback, on which all the closed-loop trajectories tend to the origin.
Furthermore, this manifold is rendered attractive by adding a discontinuous state feedback to
the first linear state feedback to ensure that all the closed-loop trajectories tend to the invariant
manifold as long as they start outside a certain manifold.

The next section describes the problem we are concerned with as well as the construction of
the invariant manifold. Section 3, is devoted to the design of the discontinuous state feedback
making the invariant manifold attractive. In Section 4, our control law is applied to a mobile
robot and simulation results are given. Section 5 concludes the paper.

2. Problem Formulation and Invariant Manifold Construction

2.1. PROBLEM FORMULATION

The problem that we address in this paper is the stabilization of the class of nonholonomic
systems in chained form given by

ẋ1 = u1

ẋ2 = = u2

ẋ3 = x2u1

...

ẋn = xn−1u1, (1)

wherex = (x1x2 . . . xn)
T ∈ D1 denotes the state vector and(u1u2)

T ∈ D2 denotes the input
vector, andD1 andD2 are open subsets ofRn andR2. Such a class of nonholonomic systems
has been widely studied in the literature. Sufficient conditions under which any nonholo-
nomic mechanical system with two inputs, can be transformed, via coordinates and feedback
transformations, into a chained form, are given in [10].
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Let us first, recall the following definitions.

DEFINITION 1. Let8 : Rn→ Rp be a smooth map. A manifoldM = {x ∈ Rn/8(x) = 0}
is said to be invariant for the control systeṁx = f (x, u) if all system trajectories starting in
M at t = t0 remain in this manifold for allt ≥ t0. In other words, the Lie derivative of8
along the vector fieldf is zero(Lf8(x) = 0) for all x ∈ M.

DEFINITION 2. A manifoldM = {x ∈ Rn/8(x) = 0} is said to be asymptotically attractive
in an open domain� of Rn if for all t0 ∈ R+ such thatx(t0) ∈ �, then limt→∞ x(t) ∈ M.

Our aim is to design a discontinuous time-invariant state feedback controller(u1(x), u2(x))
T

which stabilizes system (1), where

u1(x) = ν1(x), u2(x) = ν2(x)+ w2(x). (2)

2.2. CONSTRUCTION OF THEINVARIANT MANIFOLD

First, letw2(x) = 0, and consider a linear state feedback(ν1(x)ν2(x))
T such that

u1(x) = −k1x1, u2(x) = −k2x1− k3x2, (3)

wherek2 ∈ R, k1, andk3 are strictly positive parameters, andk1 6= k3.
The resulting closed-loop system (1–3) can be integrated, step by step, to obtain

x1(t) = x10 exp(−k1t),

x2(t) =
(
x20− k2x10

Ka

)
exp(−k3t)+ k2x10

Ka
exp(−k1t),

x3(t) = k1

Kb
x10

(
x20− k2x10

Ka

)
exp(−Kbt),

+ k2

2Ka
x2

10 exp(−2k1t)+ S3(x0),

x4(t) = k2
1x

2
10

Kb(k1+Kb)
(
x20− k2x10

Ka

)
exp(−(k1+Kb)t)

+ k2x
3
10

6Ka
exp(−3k1t)+ x10S3(x0)exp(−k1t)+ S4(x0),

...

xn(t) = kn−2
1 xn−2

10

Kb(Kb + k1) · · · (Kb + (n− 3)k1)

(
x10− k2x10

Ka

)
exp(−(Kb + (n− 3)k1)t)

+ k2x
n−1
10

(n− 1)!Ka exp(−(n− 1)k1t)

+
n−3∑
i=1

xi10

i! Sn−i (x0)exp(−k1it)+ Sn(x0), (4)
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whereKa = k1−k3,Kb = k1+k3, andS3(x0), S4(x0), . . . Sn(x0) are the integration constants
which can be determined, att = 0, as a function of the initial conditionsx10, x20, . . . , xn0.

Besides, from (4), one can easily see that(x1, x2, x3, x4, . . . , xn) tends to(0,0, S3(x0),
S4(x0), . . . , Sn(x0)) when t goes to infinity. So, if we take the initial conditions such that
Sj (x0) = 0; 3 ≤ j ≤ n, then the whole state tends to the origin. Let us defineSj =
Sj (x); 3 ≤ j ≤ n such that the initial conditions are all satisfied (i.e., settingt = 0 in
(4) and determiningSj (x0) and then substitutingx0 by x).

S3(x) = x3 − k1

Kb
x1x2 + k2

2Kb
x2

1,

S4(x) = x4 − x1x3+ k1

(k1+Kb)x
2
1x2 − k2

3(k1+Kb)x
3
1,

S5(x) = x5 − x1x4+ 1

2
x2

1x3 − k1

2(2k1 +Kb)x
3
1x2+ k2

8(2k1 +Kb)x
4
1,

...

Sn(x) = xn +
n−3∑
i=1

(−1)ixi1xn−i
i! + (−1)nk1x

n−2
1

(Kb + (n− 3)k1)(n− 3)!

+ (−1)n−1k2x
n−1
1

(Kb + (n− 3)k1)(n− 3)!(n− 1)
. (5)

From (5), it appears that if the state variables belong to the two-dimensional manifoldMs =
{x ∈ Rn/Si(x) = 0; 3 ≤ i ≤ n}, then the whole statex tends to the origin, sincex1 and
x2 decay exponentially to zero. Furthermore, this manifold is invariant under the linear state
feedback(ν1 = −k1x1, ν2 = −k2x1 − k3x2), as is shown in the following result.

PROPOSITION 1.Consider the following smooth functions:

Sj (x) = xj +
j−3∑
i=1

(−1)ixi1xj−i
i! + (−1)jk1x

j−2
1 x2

(Kb + (j − 3)k1)(j − 3)!

+ (−1)j−1 k2x
j−1
1

(Kb + (j − 3)k1)(j − 3)!(j − 1)
, for j ≥ 3.

Then,Ms = {x ∈ Rn/Sj(x) = 0; 3 ≤ j ≤ n} is an invariant manifold for the closed-loop
system(1–3).

Proof. Evaluating the Lie derivatives ofSj along the vector fields of system (1) under the
linear state feedback (3), yields

Ṡj (x) = Lf Sj = (−1)j−1 x
j−3
1

(j − 3)!(Kb + (j − 3)k1)
((k3x2 + k2x1)u1− k1x1u2) ≡ 0

for all x ∈ Rn and 3≤ j ≤ n.
2
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Two remarks should be pointed out. Firstly, the transformation from(x1, x2, . . . , xn) to
(x1, x2, S3, . . . , Sn) is a diffeomorphism. Hence, the stabilization of the chained system (1)
is equivalent to the stabilization of(x1, x2, S3, . . . , Sn). Secondly, the invariance of the man-
ifold Ms means that once on it, the trajectories of the closed-loop system remain there for
all subsequent times. Hence, to stabilize system (1), it suffices to bring the state variables
(x1, x2, . . . , xn) intoMs by an additional state feedback, namely,w2(x).

3. Discontinuous State Feedback Control Synthesis

Now, we focus our objective in the determination of the second term of (2), namely
w2(x), making the manifoldMs attractive. Once on it,w2(x) vanishes and the whole state
(x1, x2, . . . , xn) tends to zero under the residual linear state feedback (3).

Simple algebraic manipulations can be used to show that

ẋ1 = u1,

ẋ2 = u2,

Ṡ3 = 1

Kb
((k3x2+ k2x1)u1− k1x1u2),

Ṡ4 = −x1

(k1+Kb)((k3x2+ k2x1)u1− k1x1u2),

Ṡ5 = x2
1

2(2k1 +Kb)((k3x2+ k2x1)u1− k1x1u2),

...

Ṡn = (−1)n−1 xn−3
1

(n− 3)!((n − 3)k1+Kb)((k3x2+ k2x1)u1− k1x1u2). (6)

Under the control law (2), system (6) becomes

ẋ1 = −k1x1,

ẋ2 = −k2x1 − k3x2+ w2,

Ṡ3 = −k1x1

Kb
w2,

Ṡ4 = k1x
2
1

(k − 1+Kb)w2,

Ṡ5 = −k1x
3
1

2(2k1 +Kb)w2,

...

Ṡn = (−1)n k1x
n−2
1

(n− 3)!((n − 3)k1+Kb)w2. (7)
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Let us define the following vectors and matrices that will be used later:

S =


S3

S4
...

Sn

 , C =


c3

c4
...

cn

 , A =



k1 0 · · · 0
0 2k1

. . .
. . .

...
. . .
. . .

...
. . . 0

0 · · · 0 (n− 2)k1


,

B =


b3

b4
...

bn

 =


−k1
Kb
k1

k1+Kb
...

(−1)n k1
(n−3)!(kb+(n−3)k1)


and .

Q(x1) =



1
x1

0 · · · 0

0 1
x2

1

. . .
...

...
. . .

. . . 0

0 · · · 0 1
xn−2

1

 .

We are now ready to state the following result:

PROPOSITION 2.The invariant manifoldMs = {x ∈ Rn/Si(x) = 0; 3 ≤ i ≤ n} is
attractive, over the domain� = {x = (x1, x2, . . . , xn) ∈ Rn/x1 6= 0}, under the following
control law:

w2 = CTQ(x1)S, (8)

where the vectorC is chosen such that the eigenvalues of the matrix(A + BCT ) are all with
a negative real part.

Proof. Since the vectorC is such that the eigenvalues of the matrix(A+BCT ) are all with
a negative real part, then there exists a symmetric positive definite matrixP satisfying

(A+ BCT )T P + P(A+ BCT ) < 0.

Now, consider the following Lyapunov function candidate, which is positive definite over�

and outsideMs :

V (S, x1) = (QS)T P (QS). (9)

DenotingY = QS, and differentiating (9) with respect to time leads to

V̇ (S, x1) = Ẏ T PY + Y TP Ẏ . (10)
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Using some algebraic manipulations, one can show thatẎ = AY + Bw2 and, hence, (10)
becomes

V̇ (S, x1) = (AY + Bw2)
T PY + Y TP (AY + Bw2). (11)

Under the control law (8), the latter becomes

V̇ (S, x1) = (QS)T ((A+ BCT )T P + P(A+ BCT ))(QS), (12)

which is negative definite outside the manifoldMs and over the domain�. Therefore,
V (S, x1) decreases with respect to time and tends to zero whent tends to infinity. Thus,
||Q(x1)S|| is bounded and tends to zero. Therefore, the convergence ofS to zero becomes
obvious, sincex1 decays exponentially to zero. 2
If we examine system (1), one can easily see that ifx1 converges to zero beforex3, x4, . . . , xn
then the convergence of the whole state to the origin never holds, which is the main problem
of nonholonomic systems. Intuitively, one must ensure that the convergence of the whole state
towards the invariant manifoldMs is faster than the convergence ofx1 to zero, which justifies
the choice of the weighting matrixQ(x1).

Now, one can state our main result in the following theorem:

THEOREM 1.Consider system(1) under the following control law:

u1 = −k1x1, u2 = −k2x1− k3x2+ w2, (13)

wherew2 = CTQ(x1)S, k2 ∈ R, k1 > 0, k3 > 1 andk1 6= k3.
The vectorC is such that the eigenvalues of the matrix(A + BCT ) are all with negative

real parts. Then, ifx1(0) 6= 0,

(i) the whole state of the closed loop system(1–13)tends to zero whent tends to infinity;
(ii) the control law(13) is well defined and bounded for allt ≥ 0.

Proof. (i) Recall that the transformation from(x1, x2, . . . , xn) to (x1, x2, S3, . . . , Sn) is a
diffeomorphism and hence, the stabilization of the chained system (1) is equivalent to the
stabilization of system (6).

Thanks to Proposition 2, which proves the convergence ofS to zero and the boundedness
of ||QS||. Thanks also to Proposition 1, which proves that if the manifoldMs is reached,
all the trajectories of the closed-loop system remain there. These imply thatx1 andx2 tend
exponentially to zero under the residual linear state feedback(u1 = −k1x1, u2 = −k2x1 −
k3x2), sinceCTQ(x1)S → 0 when t → ∞, as long asx belongs to�. Finally, one can
conclude that the whole statex tends to zero whent →∞.

(ii) Now one has to show that the control law is bounded and well defined for allt ≥ 0
provided thatx1(0) 6= 0. Indeed, since the boundedness ofCTQ(x1)S is proved in Proposi-
tion 1, and the boundedness ofx1 is obvious, we have just to prove the boundedness of the
state variablex2.

To this end, let us consider the following Lyapunov candidate function

VT (x2) = 1

2
x2

2. (14)
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Differentiating (14) with respect to time along the trajectories of the closed loop system (6–13)
leads to

V̇T = −k2x1x2− k3x
2
2 + x2C

TQ(x1)S = −k3x
2
2 + x2(C

TQ(x1)S − k2x1). (15)

Now, one can use Young’s inequality [7], which states that if the constantsp > 1 andq > 1
are such that(p − 1)(q − 1) = 1, then for allε > 0 and all(z1, z2) ∈ R2, we have

z1z2 ≤ ε
p

p
|z1|p + 1

qεq
|z2|q. (16)

Choosingp = q = 2 andε2 = 2, (16) becomes

z1z2 ≤ z2
1+

1

4
z2

2. (17)

Using this inequality for (15), withz1 = x2 andz2 = CTQ(x1)S − k2x1, we obtain

V̇T ≤ −(k3− 1)x2
2 +

1

4
(CTQ(x1)S − k2x1)

2. (18)

The term(CTQ(x1)S − k2x1) is bounded and tends to zero whent tends to infinity.
From (18), one can see thatV̇T is negative whenever

|x2| > (CTQ(x1)S − k2x1)

2
√
k3− 1

.

Since,(CTQ(x1)S − k2x1) is bounded, one can conclude thatV̇T is negative outside the
compact residual set{

x2/|x2| ≤ ||(C
TQ(x1)S − k2x1)||∞

2
√
k3− 1

}
.

In view of (14), |x2| decreases wheneverx2(t) is outside the previous set and, hence,x2(t) is
bounded as

||x2||∞ ≤
{
|x2(0)|, ||(C

TQ(x1)S − k2x1)||∞
2
√
k3− 1

}
.

Finally, one can conclude that the control law is well defined and bounded as along as
x1(0) 6= 0, sincex1 decays to zero without crossingx1 = 0. 2
It is worth noting that the assumptionx1(0) 6= 0 is not very restrictive, since it is always
possible to apply an open loop control, for an arbitrary small period of time, to drive the
system away fromx1 = 0 and then switch to the state feedback (13).

4. Application to a Car-Like Mobile Robot

The mobile robot under consideration is a car-like mobile robot with a motorized front wheel
and two passive rear-wheels (see Figure 1). The motion control of this vehicle can be achieved
by dealing with the linear velocity of the pointM denotedν and the steering velocity of the
front wheel denotedω.
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Figure 1. A car-like vehicle.

Figure 2. Time evolution of the state variables starting from (x0 = −2, y0 = −2, θ0 = π/4, φ0 = π/4).

The kinematics model is derived under rolling without slippage assumption, on horizontal
ground. The configuration of the mobile robot is described by the vector(x, y, θ, φ)T , where
(x, y) are the coordinates of the pointM, located at mid-distance of the rear-wheels,θ is the
orientation of the vehicle, taken counterclockwise from the globalx-axis, andφ is the steering
angle of the front wheel.

ẋ = ν cosθ, ẏ = ν sinθ,
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Figure 3. Time plots of the control inputsν (—) andω (-·-).

Figure 4. Steering the vehicle to the origin, starting from (x0 = −2, y0 = −2, θ0 = π/4,φ0 = π/4).

θ̇ = ν

d
tanφ, φ̇ = ω, (19)

whered denotes the distance between the pointM and the center of the front wheel. As
discussed in [10], system (19) can be transformed into a four-order chained system using the
following local coordinates transformation defined over the subset

0 =
{
(x, y, θ, φ) ∈ R4/θ 6= π

2
modπ, φ 6= π

2
modπ

}
,

x1 = x, x2 = tanφ

d cos3 θ
,

x3 = tanθ, x4 = y, (20)
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Figure 5. Time evolution of the state variables, starting from (x0 = 4, y0 = 4, θ0 = 0, φ0 = 0).

Figure 6. Steering the vehicle to the origin, starting from (x0 = 4, y0 = 4, θ0 = 0, φ0 = 0).

and the following input transformation defined over the domain0:

ν = u1

cosθ
,

ω = −3 sin2 φ sinθ

d cos2 θ
u1+ d cos2φ cos3 θu2, (21)

whereu1 andu2 are the control variables given in (13).
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Figure 7. Time evolution of the state variables, starting from (x0 = −3, y0 = 4, θ0 = −π/6, φ0 = −π/3).

Figure 8. Steering the vehicle to the origin, starting from (x0 = −3, y0 = 4, θ0 = −π/6, φ0 = −π/3).

In our simulations, we have takend = 1.2 m,k1 = 1, k2 = 0, k3 = 3 andkb = k1+k3 = 4.
We have also usedS = [S3 S4]T with

S3(x) = x3− k1

Kb
x1x2 + k2

2Kb
x2

1,

S4(x) = x4− x1x3 + k1

(k1+Kb)x
2
1x2− k2

3(k1+Kb)x
3
1.
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Figure 9. Time evolution of the state variables, starting from (x0 = 4, y0 = −5, θ0 = −π/3, φ0 = 0).

Figure 10. Steering the vehicle to the origin, starting from (x0 = 4, y0 = −5, θ0 = −π/3, φ0 = 0).

The matricesA,B, andQ are given by

A =
[
k1 0
0 2k1

]
, B =

[ −k1
Kb
k1

k1+Kb

]
, and Q(x1) =

[ 1
x1

0

0 1
x2

1

]
.

Finally, we have chosenCT = [−24 −60] to make the eigenvalues of(A + BCT ) equal to
−1 and−2.

We have performed some simulations for different initial conditions. The convergence of
the whole state of system (19) to the origin starting from (x0 = −2, y0 = −2, θ0 = π/4,
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φ0 = π/4), and the time evolution of the control variables are shown, respectively, in Figures 2
and 3. Figure 4 shows the motion of the vehicle towards the origin starting from the same
initial conditions. Figures 5, 7 and 9 show the convergence of the whole state of system (19)
to the origin for different initial configurations, while Figures 6, 8 and 10 illustrate the motion
of the vehicle towards the origin starting from different initial configurations.

5. Conclusion

In this paper, it is demonstrated that the invariant manifold technique can be applied for
the stabilization ofn-dimensional nonholonomic systems in chained form. In fact, using this
technique we have proposed a discontinuous time-invariant state feedback controller for the
stabilization of this class of strong nonlinear systems. Finally, our controller has been success-
fully applied to a car-like mobile robot demonstrating that our control scheme fits particularly
well for the stabilization of mobile robots.
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