ﬁl‘ Nonlinear Dynamics24: 167-181, 2001.
i~ © 2001 Kluwer Academic Publishers. Printed in the Netherlands.

Invariant Manifold Approach for the Stabilization of
Nonholonomic Chained Systems: Application to a Mobile Robot

A. TAYEBI
Department of Electrical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay,
Ontario P7B 5E1, Canada

M. TADJINE
Process Control Laboratory, ENP Alger, Algeria

A. RACHID

Laboratoire des Systemes Automatiques, Université de Picardie Jules Verne, 80000 Amiens, France

(Received: 25 February 1999; accepted: 17 April 2000)

Abstract. In this paper it is shown that a classieflimensional nonholonomic chained systems can be stabilized
using the invariant manifold approach. First, we derive an invariant manifold for this class of systems and we
show that, once on it, all the closed-loop trajectories tend to the origin under a linear smooth time-invariant state
feedback. Thereatfter, it is shown that this manifold can be made attractive by means of a discontinuous time-
invariant state feedback. Finally, a mobile robot is taken as an example demonstrating the effectiveness of our
study.
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1. Introduction

Wheeled mobile robots are widely involved in advanced applications such as planetary ex-
ploration, intervention in hostile and dangerous environments, and the execution of accurate
repetitive tasks. Unfortunately, this class of mechanical systems is subject to honholonomic
kinematic constraints restricting its mobility and making its control non-trivial. The problem

of controlling nonholonomic systems has been tackled following two principal approaches [6].
The first approach uses open-loop control strategies to generate feasible trajectories; it is often
referred to as motion planning [8—10]. Although this approach is interesting from the practical
point of view (obstacles avoidance for example), it suffers from a lack of robustness with re-
spect to disturbances and modeling inaccuracies. The second approach uses feedback control
strategies, guaranteeing a certain level of robustness, to solve the following two fundamental
problems:

1. Path-following,
2. Point-stabilization (or stabilization).

The first problem consists in finding adequate feedback control laws allowing the mobile robot
to track a desired trajectory. The second problem consists in finding adequate feedback control



168 A. Tayebi et al.

laws allowing the mobile robot to reach a desired static configuration starting from any initial
configuration.

It is well known that the first problem can be solved by means of classical time-invariant
smooth state feedback [13], while the second one needs more elaborate nonlinear techniques.
The second problem is a challenging one, since it has been proven that nonholonomic systems
cannot be stabilized to an equilibrium point via any smooth time-invariant feedback [3]. To
overcome this problem, two main types of controller have been proposed in the literature:

1. Smooth time-varying controllers leading to slow (polynomial) asymptotic convergence
(see, for instance, [11, 14]).

2. Discontinuous time-invariant controllers leading to exponential convergence and gener-
ating more realistic trajectories, as shown in [1, 2, 4, 15].

In this paper we aim to provide another way to solve the point-stabilization problemt for
dimensional nonholonomic chained systems by means of a time-invariant discontinuous state
feedback. To this end, the invariant manifold method, previously used for low order honholo-
nomic systems [5, 12, 17], is investigated and generalized to-thimensional nonholonomic
chained systems, as shown in [16].

The invariant manifold approach consists in finding a suitable manifold, which is invariant
under a linear state feedback, on which all the closed-loop trajectories tend to the origin.
Furthermore, this manifold is rendered attractive by adding a discontinuous state feedback to
the first linear state feedback to ensure that all the closed-loop trajectories tend to the invariant
manifold as long as they start outside a certain manifold.

The next section describes the problem we are concerned with as well as the construction of
the invariant manifold. Section 3, is devoted to the design of the discontinuous state feedback
making the invariant manifold attractive. In Section 4, our control law is applied to a mobile
robot and simulation results are given. Section 5 concludes the paper.

2. Problem Formulation and Invariant Manifold Construction

2.1. PRROBLEM FORMULATION

The problem that we address in this paper is the stabilization of the class of nonholonomic
systems in chained form given by

)'C]_ = U

X2 = =up

X3 = Xo2U1q

).Cn = Xp—1U1, (l)

wherex = (x1x»...x,)T € D1 denotes the state vector agdu,)” € D, denotes the input
vector, andD; and D, are open subsets &" andR2. Such a class of nonholonomic systems

has been widely studied in the literature. Sufficient conditions under which any nonholo-
nomic mechanical system with two inputs, can be transformed, via coordinates and feedback
transformations, into a chained form, are given in [10].
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Let us first, recall the following definitions.

DEFINITION 1. Let® : R" — R be a smooth map. A manifoltd = {x € R"/®(x) = 0}
is said to be invariant for the control system= f (x, u) if all system trajectories starting in
M atr = 1o remain in this manifold for alt > #y. In other words, the Lie derivative @b
along the vector fieldf is zero(L ;®(x) = 0) forall x € M.

DEFINITION 2. A manifoldM = {x € R"/®(x) = 0} is said to be asymptotically attractive
in an open domaif of R" if for all 15 € R, such thate(7p) € 2, then lim_, o, x(¢) € M.

Our aim is to design a discontinuous time-invariant state feedback contllen, u»(x))”
which stabilizes system (1), where

ui(x) =vi(x), wu2a(x) = va(x) + wa(x). (2

2.2. CONSTRUCTION OF THEINVARIANT MANIFOLD
First, letw,(x) = 0, and consider a linear state feedb&ei(x)v»(x))” such that
u1(x) = —kixy, uz(x) = —koxy — kaxp, (3)

wherek, € R, k1, andks are strictly positive parameters, akg# ks.
The resulting closed-loop system (1-3) can be integrated, step by step, to obtain

x1(t) = xyo€Xp(—k1t),

k k
xXp(1) = (xzo— ?1‘)) exp(—kst) + ?10 exp(—kir),

a a

k k
x3(f) = —x10 (xzo— ZXlO) exp(—Kpt),
Kb a
+ ﬁxz exp(—2k1t) + S3(xo),
2K, 10
ka_sz_o ( kzX]_o)
1) = —————— | xo0— —— | exp(— (k1 + K)t
x4(1) Ko+ Ky 3207 ¢ p(—(ky »)t)
kZXfo
+ 6K exp(—3k1t) + x1083(x0) €XP(—k1t) + Sa(xo),
k2l ( kleo)
X, (1) = x10— —— | exp(—(Kp + (n — 3)kq)t
() K, Ko kD (Ko - 01— 3k 0= P(—(Kp + ( )k1)t)
kzxilal
———exp(—(n — Dkt
- DK, p(—(n — Dkat)

n—3 i
X

+ Y =208, (x0) exp(—kait) + S, (x0), 4)
— i!
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whereK, = k1 — k3, K, = k1+ks, andSs(xo), Sa(xo), . .. S,(xo) are the integration constants

which can be determined, at= 0, as a function of the initial conditionsg, x»g, . . ., X,0.
Besides, from (4), one can easily see that, x;, x3, x4, ..., x,) tends to(0, 0, S3(xg),

Sa(x0), ..., S,(x0)) when¢ goes to infinity. So, if we take the initial conditions such that

Si(xo) = 0; 3 < j < n, then the whole state tends to the origin. Let us defipe=

S;(x); 3 < j < n such that the initial conditions are all satisfied (i.e., setting: 0 in

(4) and determining; (xo) and then substitutingo by x).

Sa0) = v e+ 5o,

Sa(x) = x4 —x1x3+ ﬁx%xz — ﬁxi

S5(x) = x5 — x1x4 + %xfxg — mxfxz + m%‘,
3 (—1)ixix,—; (—l)”klx'll_2

SO =5t Tt KT a9kt 9

(=) Yoyt
(Kp +(n—k)(n —3)!n—1)°

From (5), it appears that if the state variables belong to the two-dimensional matmifole

{x € R"/S;(x) = 0; 3 <i < n}, then the whole state tends to the origin, since; and

x, decay exponentially to zero. Furthermore, this manifold is invariant under the linear state
feedback(vy = —k1x1, v = —kpx1 — kaxp), as is shown in the following result.

()

+

PROPOSITION 1Consider the following smooth functions:

23 (—ixix (—1) ki % x,

S0 = x5+, Ky + G — k) — B!

i=

(=17 ko]
(Kp+(j —Dk)(j =3I — D’
Then,M, = {x € R"/S;(x) = 0; 3 < j < n}is an invariant manifold for the closed-loop
system(1-3)
Proof. Evaluating the Lie derivatives &f; along the vector fields of system (1) under the
linear state feedback (3), yields

for j>3.

i1 _j-3
(-t x]

(J — UK + (j — k1)
forall xeR" and 3<j <n.

Sj(x) = L;S; = ((kaxo + kox1)ug — kyxquz) =0
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Two remarks should be pointed out. Firstly, the transformation fiamx,, ..., x,) to

(x1, x2, 83, ..., S,) is a diffeomorphism. Hence, the stabilization of the chained system (1)
is equivalent to the stabilization ¢f1, x», Ss, ..., S,). Secondly, the invariance of the man-
ifold M, means that once on it, the trajectories of the closed-loop system remain there for
all subsequent times. Hence, to stabilize system (1), it suffices to bring the state variables
(x1, x2, ..., x,) iNnto M, by an additional state feedback, namedy(x).

3. Discontinuous State Feedback Control Synthesis

Now, we focus our objective in the determination of the second term of (2), namely
w,(x), making the manifoldV; attractive. Once on itw,(x) vanishes and the whole state
(x1, X2, ..., x,) tends to zero under the residual linear state feedback (3).

Simple algebraic manipulations can be used to show that

X1 = U,

X2 = up,

. 1
S3 = ?((k:axz + kox)uq — kixquo),
b

. —X

S = s gy (ore e — ko),

: x?

Se = ——2  ((kaxp + koxp)uqg — kyxiuz),
ST 2t k) (e )

S, = (—11 3 ((kaxz + kox1)us — kixiuz) ©6)
R TR T 9 R

Under the control law (2), system (6) becomes

X1 = —kixg,

X2 = —kox1 — kaxo + wo,

. —klxl

S3 = ,

3 X, w2

. k1x2

S, = #wz,
k — 1+ K;)

. —kle

Sg = —————w»y,

° T 22Ut Ky)

. (=" kaxf ™

S, = 5. @)

-3 — ks + Kp)
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Let us define the following vectors and matrices that will be used later:

ki, O 0
0 2
Sg C3 L
S4 Cy
S = ) C = . 5 A == 9
Sn Cn .0
0 e 0(n — 2Dk
=k
b3 le’
ba K
B = =
by D" Ky
(n—3)!(kp+(n—3)k1)
and .
0 ... 0
X1
0 3
0(x1) = i
o 0
0 --- 0 -5

X1

We are now ready to state the following result:

PROPOSITION 2.The invariant manifoldM; = {x € R"/S;(x) = 0, 3 < i < n}is

attractive, over the domaif = {x = (x1, x2,...,x,) € R"/x1 # 0}, under the following
control law:
wy = CTQ(x1)S, (8)

where the vecto€ is chosen such that the eigenvalues of the mattix- BC”) are all with
a negative real part.

Proof. Since the vecto€ is such that the eigenvalues of the mattix+ BC”) are all with
a negative real part, then there exists a symmetric positive definite nfagatisfying

(A+BcHT P+ PA+BCT) <.

Now, consider the following Lyapunov function candidate, which is positive definite @ver
and outsideV/:

V(S,x1) = (05" P(QS). 9)
DenotingY = @S, and differentiating (9) with respect to time leads to

V(S,x)=YT'PY +YTPY. (10)
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Using some algebraic manipulations, one can show ¥hat AY + Bw, and, hence, (10)
becomes

V(S,x1) = (AY + Bwy)T PY + YT P(AY + Bw,). (11)
Under the control law (8), the latter becomes
V(S.x1) = (Q8)"(A+ BC")" P+ P(A+ BC"))(QS). (12)

which is negative definite outside the manifodd, and over the domai2. Therefore,
V (S, x1) decreases with respect to time and tends to zero whends to infinity. Thus,
[|Q(x1)S]| is bounded and tends to zero. Therefore, the convergenfetmizero becomes
obvious, sincer; decays exponentially to zero. O

If we examine system (1), one can easily see that fonverges to zero befong, x4, ..., x,
then the convergence of the whole state to the origin never holds, which is the main problem
of nonholonomic systems. Intuitively, one must ensure that the convergence of the whole state
towards the invariant manifold is faster than the convergencexafto zero, which justifies
the choice of the weighting matri@ (x,).

Now, one can state our main result in the following theorem:

THEOREM 1.Consider syster(iL) under the following control law:
uy = —kixi, uz = —kaxy — kaxz + wo, (13)

wherew, = CTQ()C]_)S, ko€ R, ky > 0,kz > 1landk; % k3.
The vectorC is such that the eigenvalues of the maitix+ BC”) are all with negative
real parts. Then, ifc1(0) # 0,

() the whole state of the closed loop systdml3)tends to zero whentends to infinity;
(i) the control law(13)is well defined and bounded for al> O.

Proof. (i) Recall that the transformation froixy, x,, ..., x,) t0 (x1, x2, S3,..., S,) is a
diffeomorphism and hence, the stabilization of the chained system (1) is equivalent to the
stabilization of system (6).

Thanks to Proposition 2, which proves the convergencg tofzero and the boundedness
of [|QS]||. Thanks also to Proposition 1, which proves that if the manififidis reached,
all the trajectories of the closed-loop system remain there. These imply;ttzad x, tend
exponentially to zero under the residual linear state feedack= —kqx1, up = —kox1 —
kax»), sinceCT Q(x1)S — 0 whent — oo, as long ast belongs toR2. Finally, one can
conclude that the whole statetends to zero when— oo.

(i) Now one has to show that the control law is bounded and well defined for=all0
provided thatx1(0) # 0. Indeed, since the boundednessCdfQ (x1)S is proved in Proposi-
tion 1, and the boundedness xaf is obvious, we have just to prove the boundedness of the
state variabler,.

To this end, let us consider the following Lyapunov candidate function

1
VT (Xz) = §x22 (14)
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Differentiating (14) with respect to time along the trajectories of the closed loop system (6—13)
leads to

Vi = —kopxixp — kax3 + x2CT Q(x1)S = —kax3 + x2(CT Q(x1)S — koxy). (15)

Now, one can use Young's inequality [7], which states that if the consjantsl andg > 1
are such thatp — 1)(¢ — 1) = 1, then for alle > 0 and all(z1, z2) € R2, we have

eP 1
2122 < ?|Z1|p + q@|22|q' (16)

Choosingp = g = 2 ands? = 2, (16) becomes

1
2122 < 25 + Zzg. (17)

Using this inequality for (15), with; = x» andz, = CT Q(x1)S — k»x1, we obtain
. 1
Vi < —(ks— D5 + Z(CTQ(xl)S — kox1)?. (18)

The term(CT Q(x1)S — kox1) is bounded and tends to zero whetends to infinity.
From (18), one can see tht is negative whenever

- (CT Q(x1)S — kax1)
2Vks — 1 '

Since, (CT Q(x1)S — kpx1) is bounded, one can conclude tHat is negative outside the
compact residual set

I1(CTQ(x1)S —kle)lloo}
2Vks — 1 )

In view of (14), |x,| decreases wheneves(z) is outside the previous set and, hencsy) is
bounded as

|x2|

{X2/|X2| <

cr S — kox1)|loo
l1x2llo0 < {|x2(0)|, €7 00x) 2x1)|| }

2Vkz —1
Finally, one can conclude that the control law is well defined and bounded as along as
x1(0) # 0, sincex; decays to zero without crossing = 0. O

It is worth noting that the assumption (0) # 0 is not very restrictive, since it is always
possible to apply an open loop control, for an arbitrary small period of time, to drive the
system away from; = 0 and then switch to the state feedback (13).

4. Application to a Car-Like Mobile Robot

The mobile robot under consideration is a car-like mobile robot with a motorized front wheel
and two passive rear-wheels (see Figure 1). The motion control of this vehicle can be achieved
by dealing with the linear velocity of the poid denotedv and the steering velocity of the

front wheel denoted.
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Figure 1. A car-like vehicle.

tetha

time(s)

time(s)
Figure 2. Time evolution of the state variables starting frarg & —2, yo = —2,6p = 7 /4, ¢g = 7 /4).

The kinematics model is derived under rolling without slippage assumption, on horizontal
ground. The configuration of the mobile robot is described by the véetar, 8, ¢)”, where
(x, y) are the coordinates of the poimf, located at mid-distance of the rear-wheélss the
orientation of the vehicle, taken counterclockwise from the glakaxkis, andp is the steering

angle of the front wheel.

X = vcosh, y=vsing,
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Figure 3. Time plots of the control inputs (—) andw (---).

05¢

'2‘.52_5 -2 215 - 05 0 05 1
X

Figure 4. Steering the vehicle to the origin, starting fromy (= —2, yg = —2,00 = n/4, ¢pg = 7 /4).

6 = 5tan¢, ¢ = o, (19)

whered denotes the distance between the pdifitand the center of the front wheel. As
discussed in [10], system (19) can be transformed into a four-order chained system using the
following local coordinates transformation defined over the subset

r— {(x,y,9,¢) e R0 £ % modr, ¢ # % modn},
tang

~ dcoso’
x3 = tanf, xz=y, (20)

X1 = X, X2
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Figure 6. Steering the vehicle to the origin, starting fromg ¢

and the following input transformation defined over the doniain

ui

’

Vv

cosf

(21)

uy + d cos ¢ cos Ouy,

3sirf ¢ sind
dcog o

whereu; andu; are the control variables given in (13).
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Figure 8. Steering the vehicle to the origin, starting fromp ¢

=4,

3andk, = k1+k3

Lky,=0ks=

In our simulations, we have takén= 1.2 m,k;

We have also usefl = [S3 S4]7 with

2
1

ko
+ Z—Kbx
k1
(k1 + Kp)

k1
X3 — ——X1X2

S3(x) =

b

3
1

Xq.

k>
3(k1 + Kp)

XJZ_XZ -

X4 — X1X3 +

S4(x)
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Figure 9. Time evolution of the state variables, starting frarg € 4, yo = —5,00 = —7/3, ¢o = 0).

Figure 10. Steering the vehicle to the origin, starting fromy = 4, yo = —5,00 = —7/3, ¢ = 0).

The matricesA, B, andQ are given by

ki O = = 0

_ 1 _ K _ X1

A_[O 2k1] B_|: I } and Q(xl)_|:o %]
k1+Kp X7

Finally, we have chosea@’ = [-24 —60] to make the eigenvalues 6A + BCT) equal to
—1and-2.

We have performed some simulations for different initial conditions. The convergence of
the whole state of system (19) to the origin starting from € —2, yo = —2, 6y = /4,
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¢o = 7 /4), and the time evolution of the control variables are shown, respectively, in Figures 2
and 3. Figure 4 shows the motion of the vehicle towards the origin starting from the same
initial conditions. Figures 5, 7 and 9 show the convergence of the whole state of system (19)
to the origin for different initial configurations, while Figures 6, 8 and 10 illustrate the motion
of the vehicle towards the origin starting from different initial configurations.

5. Conclusion

In this paper, it is demonstrated that the invariant manifold technique can be applied for
the stabilization of:-dimensional nonholonomic systems in chained form. In fact, using this
technique we have proposed a discontinuous time-invariant state feedback controller for the
stabilization of this class of strong nonlinear systems. Finally, our controller has been success-
fully applied to a car-like mobile robot demonstrating that our control scheme fits particularly
well for the stabilization of mobile robots.
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