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Unit Quaternion-Based Output Feedback for the Attitude
Tracking Problem

Abdelhamid Tayebi, Senior Member, IEEE

Abstract—In this note, we propose a quaternion-based dynamic output
feedback for the attitude tracking problem of a rigid body without velocity
measurement. Our approach consists of introducing an auxiliary dynam-
ical system whose output (which is also a unit quaternion) is used in the
control law together with the unit quaternion representing the attitude
tracking error. Roughly speaking, the necessary damping that would have
been achieved by the direct use of the angular velocity can be achieved, in
our approach, by the vector part ~q of the error signal between the output of
the auxiliary system and the unit quaternion tracking error. The resulting
velocity-free control scheme guarantees almost global1 asymptotic stability
which is as strong as the topology of the motion space can permit. In
the regulation case, our control law is a pure quaternion feedback (i.e.,
consisting of two terms that are vector parts of unit-quaternion), and
hence, the control torques are naturally bounded by the control gains.
Simulation results are provided to show the effectiveness of the proposed
control scheme.

Index Terms—Attitude tracking, output feedback, rigid body.

I. INTRODUCTION

The attitude control problem of a spacecraft, or a rigid body in gen-
eral, has been extensively studied during the past four decades. This is
a particularly interesting problem in dynamics since the angular ve-
locity of the body cannot be integrated to obtain the attitude of the
body [8]. From a practical point of view, the design of efficient and
low-cost attitude controllers is an important issue which is of great in-
terest for aerospace industry for instance. The attitude stabilization of
a rigid body, using the unit-quaternion and the angular velocity in the
feedback control law, has been investigated by many researchers and a
wide class of controllers has been proposed (see, for instance, [8], [15],
[18], [19]). In [15], some quaternion-based feedback controllers for the
attitude stabilization have been proposed and tested experimentally on
a quadrotor aircraft.

The attitude control of a rigid body with full states measurements
(i.e., quaternion and angular velocity), being relatively well under-
stood, the research has been directed towards other performance and
implementation-cost optimization issues, by removing the requirement
of the velocity measurement. The passivity property, was the main
idea behind the design of the attitude controllers, without velocity
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1In this paper we use the term almost global (see, for instance, [9]) to indicate
that the boundedness of the states is guaranteed over � � , where

is the set of unit-quaternion. Furthermore, the closed-loop system has four
equilibrium points (three repeller equilibria and one attractor) that are mathe-
matically different but represent the same physical attitude of the rigid body. All
trajectories starting in � � –except the three repeller equilibria—
will converge to the unique attractor equilibrium. For more details about the
topological obstruction to continuous global stabilization of rotational motion,
the reader is referred to [2].

measurement, in [6], [10], [17]. In fact, in [6], the authors used the
passivity-based adaptive control approach for robotic manipulators
to derive their adaptive attitude control scheme without velocity
measurement. In [10], a quite similar passivity argument has been
used to develop a velocity-measurement-free attitude stabilization
controller using a lead filter. In [16], an alternative solution to the
attitude regulation problem without velocity measurement and without
the use of a lead filter has been proposed. The author in [17] derives
quite similar results as the results of [10] by using the Rodrigues
Parameters instead of the quaternion [13]. The second approach that
has also been used to avoid the velocity measurement is based on
the use of nonlinear observers. In fact, in [12], a nonlinear velocity
observer, using just the torque and orientation measurements, has been
proposed based on the analogy to second-order linear systems, where
a separation principle-like property was conjectured. The extension of
the velocity-free attitude regulation controllers to the tracking problem
is not an obvious task especially when we aim for nonlocal results. In
[3], two attitude tracking controllers without velocity measurement
have been proposed. The first one is a locally exponentially stabilizing
controller-observer scheme. The second scheme, guaranteeing also
local exponential stability under an adequate choice of the control pa-
rameters, is a generalization of the lead filter-based regulation scheme
of [10] to the attitude tracking problem. In [4], a local velocity-free
adaptive quaternion-based tracking controller for a rigid body with
uncertainties has been proposed. Another alternative to the work of
[3] has been proposed in [1] based on the results of [17] using the
Rodrigues parameters instead of the unit-quaternion. Note that unlike
the quaternion representation, the three-parameters (Rodrigues param-
eters) attitude representation suffers from singularity problems [13].

In the present paper, we use the four-parameters representation
(quaternion), which is globally nonsingular, to represent the attitude
motion, and provide a new solution to the attitude tracking problem
without velocity measurement. To the best of our knowledge, our
result is the first velocity-free unit quaternion-based tracking controller
guaranteeing almost global asymptotic stability. Our main idea is the
introduction of an auxiliary unit-quaternion dynamical system having
the same structure as the actual unit-quaternion attitude model. Under
an appropriate feedback involving the unit quaternion tracking error
and the vector part ~q of the error signal between the output of the
auxiliary system and the unit quaternion tracking error, we show that
the map between the auxiliary system input and ~q is passive. Therefore,
the auxiliary system input can be designed as a simple proportional
feedback in terms of ~q. The proposed control strategy guarantees
almost global asymptotic attitude tracking. In the regulation case, our
control law turns out to be a pure quaternion feedback leading to a
natural boundednes of the control torques, and hence, the designer can
explicitly set the desired bounds for the control torques through the
control gains. Finally, simulation results are also provided to support
the theoretical developments.

II. DYNAMICAL MODEL AND PROBLEM STATEMENT

The dynamical model of a spacecraft or a rigid body is given by

If _
 = � 
 � If
+ �; (1)
_R =RS(
) (2)

where 
 denotes the angular velocity of the body expressed in the
body-fixed frame A. The orientation of the rigid body is given by the
orthogonal rotation matrix R 2 SO(3). If 2 3� 3 is a symmetric
positive definite constant inertia matrix of the body with respect to the
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frameAwhose origin is at the center of mass. The vector � is the torque
applied the rigid body, considered as the input vector. The matrix S(
)
is a skew-symmetric matrix such that S(
)V = 
 � V for any vector
V 2 3, where � denotes the vector cross-product.

Our objective is to design a feedback controller, without ve-
locity measurement, for the stabilization of the equilibrium point
( ~R := RRT

d = I , 
 � 
d = 0), where Rd(t) is the desired orienta-
tion and 
d(t) is the desired angular velocity.

III. UNIT-QUATERNION

The orientation of a rigid body with respect to the inertial frame can
be described by a four-parameters representation, namely unit-quater-
nion [11]. A quaternion Q = (q0; q) is composed of a scalar compo-
nent q0 2 and a vector q 2 3. The set of quaternion is a four-di-
mensional vector space over the reals, which forms a group with the
quaternion multiplication denoted by “?”. The quaternion multiplica-
tion is distributive and associative but not commutative [11]. The mul-
tiplication of two quaternion Q = (q0; q) and P = (p0; p) is defined
as [11], [13]

Q ? P = (q0p0 � qT p; q0p+ p0q + q � p) (3)

and has the quaternion (1;0) as the identity element. Note that, for a
given quaternion Q = (q0; q), we have Q?Q�1 = Q�1 ?Q = (1;0),
where Q�1 = (q0;�q)=kQk

2.
The set of unit-quaternion u is a subset of such that

u = Q = (q0; q) 2 � 3jq20 + qT q = 1 : (4)

Note that in the case where Q = (q0; q) 2 u, the unit-quaternion
inverse is given by Q�1 = (q0;�q).

A rotation matrixR by an angle 
 about the axis described by the unit
vector k̂ 2 3, can be described by a unit-quaternion Q = (q0; q) 2

u such that

q = k̂ sin



2
; q0 = cos




2
(5)

The rotation matrix R is related to the quaternion through the Ro-
driguez formula [7], [13]

R(Q) = I + 2q0S(q) + 2S2(q)

= (q20 � qT q)I + 2qqT + 2q0S(q): (6)

Algorithms allowing the extraction of q and q0 from a rotation matrix
R, can be found in [13], [14].

In this note, instead of using the rotation matrix R to describe the
orientation of the rigid body, we will use the unit-quaternion. The dy-
namic equation (2) can be replaced by the following dynamic equation
in terms of the unit-quaternion [7], [13]:

_Q =
1

2
Q ?Q
 (7)

where Q = (q0; q) 2 u and Q
 = (0;
) 2 . In the sequel,
we will use Q? to denote the quaternion (0; ?). We also define the
unit-quaternion error E = (e0; e), which describes the discrepancy
between two unit-quaternion Q = (q0; q) and �Q(�q0; �q), as follows:

E = �Q�1 ? Q = (�q0q0 + �qT q; �q0q � q0�q � �q � q): (8)

Note that the unit-quaternion Q and �Q coincide if E = (1;0).

It is also important to mention that the equilibrium point (R =
I;
 = 0) for (1) and (2) is equivalent to the equilibrium point (q =
0; q0 = �1;
 = 0) for (1) and (7). Since q0 = 1 corresponds to 
 = 0
and q0 = �1 corresponds to 
 = 2�, it is clear that q0 = �1 corre-
spond to the same physical point. Hence, the two equilibrium points
(q = 0; q0 = �1;
 = 0) are in reality a unique physical equilibrium
point corresponding to (R = I;
 = 0).

IV. MAIN RESULTS

Assume that the desired orientation to be tracked is given by

_Qd =
1

2
Qd ? Q
 (9)

where 
d is the desired angular velocity, which is assumed to be
bounded as well as its first and second time-derivatives.

Let us define the unit-quaternion tracking error Qe, which describes
the discrepancy between the actual unit-quaternion Q and the desired
unit-quaternion Qd, as follows: Qe = (Qd)�1?Q := (qe0; q

e). There-
fore, we have

Qd ? Qe = Q:

Differentiating both sides of the above equation with respect to time,
we have

_Qd ? Qe +Qd ? _Qe = _Q:

Hence

_Qe = (Qd)�1 ? ( _Q� _Qd ? Qe):

Using (7) and (9), the error quaternion dynamics is given by

_Qe = �
1

2
Q
 ? Qe +

1

2
Qe ? Q


= �
1

2
Qe ? (Qe)

�1
? Q
 ? Qe +

1

2
Qe ? Q
: (10)

Using the fact that (Qe)�1?Q
 ?Qe = Q�
 , with �
d = RT (Qe)
d,
where RT (Qe) is obtained from (6) by substituting Q by Qe, we have

_Qe =
1

2
Qe ? Q~


= �
1

2
(qe)T ~
;

1

2
(qe0I + S(qe))~


:= ( _qe0; _q
e) (11)

where ~
 = 
 � �
d.
Let us introduce the following auxiliary system:

_�Q =
1

2
�Q ?Q� (12)

with �Q(0) = (�q0(0); �q(0)) 2 u, Q� = (0; �) 2 , where the
input � of (12) will be designed later. We define the unit-quaternion
~Q = �Q�1 ? Qe = (~q0; ~q) 2 u describing the discrepancy between
the unit-quaternion tracking error Qe and the auxiliary unit-quaternion
signal �Q.

Now, we can state the following theorem.
Theorem 1: Consider system (1) under the following control law

� = ��1q
e � �2~q + IfR

T (Qe) _
d + S(�
d)If �
d (13)



1518 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 53, NO. 6, JULY 2008

with �1 > 0, �2 > 0, and let the input of the auxiliary system (12) be

� = �1~q (14)

with �1 = �T1 > 0.
The vectors qe and ~q are the vector parts of the unit-quater-

nion Qe and ~Q, respectively. Then, Qe, ~Q and 
 are globally
bounded2, and limt!1 qe(t) = limt!1 ~q(t) = limt!1

~
?(t) = 0,
limt!1 qe0(t) = �1 and limt!1 ~q0(t) = �1, where ~
?(t) :=

(t) � 
d(t).

Proof: The dynamical equation for the angular velocity tracking
error is given by

If
_~
 = �(~
 + �
d) � If (~
 + �
d)

+If (~
 � �
d �R
T (Qe) _
d) + �: (15)

After some algebraic manipulations, one can show that

d

dt

1

2
~
T

If ~
 = � ~
T
S(�
d)If �
d

� ~
T (S(�
d)If + IfS(�
d))~


+ ~
T (� � IfR
T (Qe) _
d): (16)

Since If = ITf > 0, it is clear that (S(�
d)If + IfS(�
d)) is a skew
symmetric matrix and hence ~
T (S(�
d)If + IfS(�
d))~
 = 0. There-
fore

d

dt

1

2
~
T

If ~
 = ~
T (� � IfR
T (Qe) _
d � S(�
d)If �
d) (17)

Using (11) and (12), one can show that

_~Q =
d

dt
( �Q�1 ? Qe)

= �
1

2
Q� ? ~Q+

1

2
~Q ? Q~


=
1

2
~qT (� � ~
);

1

2
~q0(~
� �) +

1

2
~q � (~
 + �)

:= (_~q
0
; _~q): (18)

Consider the following Lyapunov function candidate:

V =�2 ~qT ~q + (~q0 � 1)2 + �1 (qe)T qe + (qe0 � 1)2

+
1

2
~
T

If ~


=2�2(1� ~q0) + 2�1(1� q
e
0) +

1

2
~
T

If ~
 (19)

whose time-derivative, in view of (11), (17) and (18) is given by

_V = � 2�2 _~q0 � 2�1 _q
e
0 +

d

dt

1

2
~
T

If ~


= � �2~q
T (� � ~
) + �1 ~


T
q
e

+ ~
T (� � IfR
T (Qe) _
d � S(�
d)If �
d)) (20)

which in view of (13) and (14), leads to

_V = ��2~q
T�1~q: (21)

Therefore, one can conclude that ~Q, Qe and ~
 are globally bounded.
Therefore, it is clear that �V is bounded. Hence, invoking Barbalat
Lemma, one can conclude that limt!1 ~q(t) = 0, which implies

2The global boundedness here indicates that the states are bounded for any
(Q (0); ~Q(0);
(0)) 2 � � . Note that the unit-quaternion ~Q
and Q are bounded by definition.

that limt!1 ~q0(t) = �1. Consequently, one can show that �~Q is

bounded since _
d is bounded, and hence limt!1
_~Q(t) = 0, which

in turns, from (18), implies that limt!1(~
(t) � �(t)) = 0. Since
limt!1 ~q(t) = 0, it is clear, from (14), that limt!1 �(t) = 0.
Consequently, one can conclude that limt!1

~
(t) = 0. Using
the fact that �
d is bounded and the previous boundedness results,
one can show that �~
 is bounded, and hence, one can conclude
that limt!1

_~
(t) = 0. As t goes to infinity, from (15), we
have 0 = �IfR

T (Qe) _
d � S(�
d)If �
d + � . Therefore, from
(13), it is clear that limt!1(�1q

e(t) + �2~q(t)) = 0, which im-
plies that limt!1 qe(t) = 0 since limt!1 ~q(t) = 0. Finally,
limt!1 qe0(t) = �1. Since Qe tends to (�1; 0), when t goes to
infinity, it is clear R(Qe) goes to I and hence, �
d tends to 
d.
Consequently, limt!1(
(t)� 
d(t)) = 0.

It is clear that our control scheme includes the attitude regulation
problem as a particular case, i.e., 
d = 0. The velocity-free attitude
regulation scheme is given in the following Corollary.

Corollary 1: Consider system (1) under the following control law:

� = � �1q
e � �2~q (22)

_�Q =
1

2
�Q ?Q� (23)

� =�1~q (24)

where ~q is the vector part of ~Q = �Q�1 ? Qe, �Q(0) 2 u,
Q� = (0; �) 2 , �1 = �T1 > 0, �1 > 0, �2 > 0. Then, ~Q, Q
and 
 are globally bounded3 and limt!1 qe(t) = limt!1 ~q(t) =
limt!1 
(t) = 0, limt!1 ~q0(t) = �1 and limt!1 qe0(t) = �1.

Remark 1: From the proof of Theorem 1, it is clear that for the
closed loop system, _V = 0 at the following four equilibrium points
(~q0 = �1; qe0 = �1; ~
? = 0), and _V < 0 away from these equilib-
rium points. Note that these four equilibria represent the same physical
equilibrium for the rigid body ( ~R := RRT

d = I , ~
? = 0). If initially,
the closed-loop system is at one of these four equilibria, it will remain
there for all subsequent time. In the case where the closed-loop system
is not at one of the four equilibria, it will converge to the attractive equi-
librium point (~q0 = 1; qe0 = 1; ~
? = 0) for which V = 0 and _V = 0.
The three isolated equilibrium points (~q0 = 1; qe0 = �1; ~
? = 0),
(~q0 = �1; qe0 = 1; ~
? = 0) and (~q0 = �1; qe0 = �1; ~
? = 0) are
not attractors, but repeller equilibria [8].

Remark 2: The introduction of the auxiliary system (12) allows to
generate a passive map �� 7! ~q[5]. In fact, this can be easily seen by
substituting (13) in (20) to get

T

0

��2~q
T
�dt � V (X(T ))� V (X(0)) (25)

with XT (t) = (~q(t); ~q0(t); q
e(t); qe0(t); ~
(t)). Therefore, the auxil-

iary system input � can be designed in a straightforward manner as in
(14). The resulting closed-loop system is a feedback interconnection of
a passive system and a constant gain. This, guarantees global bound-
edness of X(t) and the convergence of ~q to zero. Finally, thanks to the
fact that the largest positively invariant set fXj _V = 0g is simply the
set fXj~q = 0; qe = 0; ~
? = 0g.

Remark 3: It is worth noting that the main purposes of the auxiliary
dynamical system (12) are 1) to generate a passive mapping between
(��) and the vector part of the unit quaternion error ~q; 2) to guarantee
that the equilibrium of (18), in view of the fact that ~q tends to zero,
is characterized by ~
 = �. In fact, under the control law (13) and
forcing the input � of the auxiliary system (12) to be proportional to ~q,
we ensure asymptotic convergence of ~q to zero. The convergence of ~q
to zero will guarantee the convergence of ~
? to zero (as shown in the

3The global boundedness here, means for any (Q(0); ~Q(0);
(0)) 2 �

� .
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Fig. 1. The three components of the angular velocity error
�
 versus time.

Fig. 2. Unit quaternion tracking error Q = (q ; q ; q ; q ) versus time.

proof of Theorem 1) since the equilibrium point of (18), in view of the
fact that ~q tends to zero, is characterized by ~
 = �. Once ~q and ~
?

converge to zero, the convergence of qe to zero is guaranteed in view
of the system dynamics (1) and the structure of the control law (13).

Remark 4: In the regulation case, our control law (22) is a pure
quaternion feedback (since qe and ~q are the vector parts of unit quater-
nion). Since kqek � 1 and k~qk � 1, it is clear that the control effort
is bounded as k�k � �1 + �2 and hence a natural saturation, interms
of the control gains, is achieved and the designer can set the limits of
the control effort through the control gains �1 and �2. This conclu-
sion cannot be achieved with the regulation controller of [10] since the
term substituting the angular velocity is not a unit-quaternion and is
frequency dependant.

V. SIMULATION RESULTS

In this section, we present some simulation results showing the effec-
tiveness of the proposed controller. The inertia matrix has been taken as

Fig. 3. ~Q = (~q ; ~q ; ~q ; ~q ) versus time.

Fig. 4. Control input � versus time.

If = diag(20; 20; 30). We applied the control law of Theorem 1, with
�1 = �2 = 20 and �1 = diag(3;3; 3). The initial conditions have
been taken as follows: Q(0) = (0; 0; 1; 0) and �Q(0) = (0; 1; 0; 0).
The reference trajectory is given by (9) with Qd(0) = (1; 0; 0; 0) and

d = 0:1 sin(0:2�t)[1; 1; 1]T . The simulation was performed with
Simulink for a time span of 50 s.

Fig. 1 shows the evolution of the three components of the angular
velocity tracking error 
 � 
d with respect to time. Fig. 2, shows the
evolution of the unit-quaternion tracking error Qe, describing the de-
viation between the orientation of the body and the desired orientation,
with respect to time. Fig. 3, shows the time evolution of the unit-quater-
nion error ~Q, describing the deviation betweenQe and �Q. Fig. 4, shows
the control input versus time.
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VI. CONCLUSION

A new quaternion-based solution to the attitude tracking problem,
without velocity measurement, has been proposed. Our approach is
based on the use of a unit-quaternion auxiliary system whose input
is related to the vector part of the unit quaternion error ~q via a pas-
sive map, under an appropriate unit quaternion-based feedback. The
proposed control scheme includes the attitude regulation problem as a
particular case, and guarantees almost global asymptotic stability of the
equilibrium point ( ~R := RRT

d = I , ~
? = 0). In the regulation case,
our control scheme is a pure quaternion feedback, and consequently,
the designer can set, in a straightforward manner, the upper bound for
the control effort in terms of the control gains.
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Robust Control of Nonlinear Jump Parameter Systems
Governed by Uncertain Chains

Jason J. Ford and Valery A. Ugrinovskii

Abstract—We consider an infinite-horizon minimax optimal control
problem for stochastic uncertain systems governed by a discrete-state
uncertain continuous-time chain. Using existing risk-sensitive control re-
sults, a robust suboptimal absolutely stabilizing guaranteed cost controller
is constructed. Conditions are presented under which this suboptimal
controller is minimax optimal. We then present a numeric algorithm
for calculating a robust (sub)optimal controller using a Markov chain
approximation technique.

Index Terms—Markov chain approximations, Markov jump parameter
systems, robust control, stochastic control.

I. INTRODUCTION

Minimax robust control of uncertain stochastic systems, in which
perturbations are restricted to satisfy a constraint on probability laws
associated with disturbances, has been actively developed in the past
decade [1]–[3]. This theory covers problems of robust LQG control and
filtering, and also nonlinear control systems [1], [3], controllability, ob-
servability, and performance aspects of robust controllers and filters [4],
[5]. The theory is however limited in that it only applies to systems sub-
ject to Gaussian disturbances. In this paper, we expand the boundaries
of this theory to include nonlinear hybrid stochastic systems governed
by a discrete-state uncertain mode process. In addition, dynamics of
each mode of the system are subject to disturbances.

The problem in the focus of this paper is that of nonlinear robust
switching control design via optimization of the worst-case perfor-
mance of an uncertain stochastic system driven by an uncertain noise
and subject to abrupt changes of system parameters. We wish to find a
state-feedback switching control solution u� to the worst-case perfor-
mance optimization problem

inf
u

sup
Q2�

J(u;Q) � sup
Q2�

J(u�; Q);

J(u;Q) := lim sup
T!1

1

T

T

0

E
Q

c(x(t); u(t); r(t))dt: (1)

Here, x(t) is the state process and r describes a discrete-event random
mechanism of mode changes. Both processes evolve under an uncer-
tain probability measure Q, and have uncertain probability distribu-
tions subject to the constraint Q 2 �d; �d is a given set. We refer to
Section II for rigorous definitions. A controller sought is allowed to ac-
cess both x and r.

The major novelty of this paper is the ‘hybrid’ uncertainty model
which combines the uncertainties in the discrete-event and continuous-
state components of the system. Indeed, in a hybrid system, plant mod-
eling errors may depend on the state of the mode process. Also, proba-
bilities of switching from one operation mode to another mode may de-

Manuscript received June 28, 2005; revised June 5, 2007. Current version
published August 29, 2008. Recommended by Associate Editor H. Hjalmarsson.
This work was supported by the Australian Research Council. Part of this work
was done during the second author’s visit to the Australian National University.

J. J. Ford is with the School of Engineering Systems, Queensland University
of Technology, Brisbane, Australia (e-mail: j2.ford@qut.edu.au).

V. A. Ugrinovskii is with the School of Information Technology and
Electrical Engineering, the Australian Defence Force Academy, Canberra ACT
2600, Australia (e-mail: v.ougrinovski@adfa.edu.au).

Digital Object Identifier 10.1109/TAC.2008.928911

0018-9286/$25.00 © 2008 IEEE


