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Abstract

The theoretical challenge involved in the operation of VTOL UAVs is often divided

into two main problems. The first problem involves the development of an estima-

tion scheme which can accurately recover the orientation, or angular position, of the

aircraft. The second problem involves the development of algorithms which can be

used to reliably control the orientation and/or the position of the vehicle. These two

problems are the primary focus of this thesis.

We first consider the problem of attitude estimation. To solve this problem we

use vector measurements, and in many cases, a gyroscope (to measure the angular

velocity of the system) in order to develop the estimation scheme. In the case where

an accelerometer is used to provide a measurement of the apparent acceleration,

we consider a special class of attitude observer, known as a velocity-aided attitude

observer, which additionally use the system linear velocity to improves the estimation

performance when the system is subject to high linear accelerations.

Secondly, we develop a number of algorithms which can be used to control the

orientation and/or the position of the system. Two adaptive position tracking control

laws are proposed which are able to compensate for exogenous disturbance forces.

However, this control strategy (like other existing position control strategies) assumes

that the system orientation is directly measured, where in reality only an estimate of

the system orientation is available, which is obtained using some attitude estimation

scheme. Therefore, we also propose an attitude stabilization control law, and two

position control laws which do not assume that the system orientation is directly

measured. To develop these control laws, we use vector measurements (that would

normally be used by the attitude observer) directly in the control algorithms, which

eliminates the requirement for an attitude observer. We also consider a special type

of the vector-measurement-based position control laws which uses the accelerometer

to measure the body-referenced apparent acceleration (rather than assuming only the

gravity vector is measured). Therefore, this proposed control strategy may be better

suited for VTOL UAVs, which are likely to be subjected to linear accelerations.
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Nomenclature

NED Ortho-normal coordinate system where the x-axis is directed
towards the Earth’s magnetic North pole, the y-axis directed
towards the East, and the z-axis is directed downwards.

I Inertial (Fixed) Coordinate Frame rigidly attached to a po-
sition on the Earth (assumed flat) expressed in NED coor-
dinates.

B Body Coordinate Frame rigidly attached to the rigid-body
center of gravity, where the x-axis is directed towards the
front of the rigid-body, the y-axis is directed towards the
right-hand-side of the rigid-body, and the z-axis is directed
towards the bottom of the rigid-body.

ri A vector in R3 whose coordinates are expressed in I.
bi Vector measurement of ri in the body-frame B.
k̂ Unit-length vector in R3 which defines an axis of rotation.

θ Angle of rotation about the unit-vector k̂.
Q The set of unit-quaternion, or equivalently, the set of unit-

length-vectors in R4, or equivalently the set of vectors con-
tained in S3 (4-dimensional unit-sphere)

Q The unit-quaternion belonging to the set Q which describes
the relative orientation of B taken with respect to I.

Q̂ Unit-quaternion which defines an adaptive estimate of Q.
Q̄ Reconstruction or calculation of the unit-quaternion Q based

upon the inertial vectors ri and their measurements bi.
SO(3) The special orthogonal group in 3-dimensions (set of rota-

tion matrices).
R The rotation matrix belonging to SO(3) which describes the

relative orientation of B taken with respect to I.
R(Q) Rotation matrix in SO(3) which corresponds to the unit-

quaternion Q.

R̂ Rotation matrix which defines an adaptive estimate of R
and corresponds to the unit-quaternion Q̂.

R̄ Reconstruction or calculation of the rotation matrix R based
upon the inertial vectors ri and their measurements bi.

p Position of the frame B expressed in the frame I.
v Velocity of the frame B expressed in the frame I.
ω Angular velocity of the frame B expressed in the frame B.
ωg Output of gyroscope sensor (measurement of ω).
ωb Gyroscope sensor bias.
mb Rigid-body mass.
Ib Rigid-body inertia tensor expressed in the frame B.
g Acceleration due to gravity (9.81m/s2).

e3 The unit vector [0, 0, 1]T .
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Chapter 1

Introduction

1.1 Vertical Take-Off and Landing Unmanned

Airborne Vehicles

In the recent past the use of vertical take-off and landing (VTOL) unmanned airborne

vehicles (UAVs) has seen a significant increase in popularity. This type of aircraft is

often desired due to its hovering capabilities as well as the fact that they can take-off

and land in a relatively much smaller footprint than other fixed-wing type aircraft.

Due to these capabilities, these aircraft are suitable for a variety of applications such as

visual inspection of structures (buildings, bridges, etc), search and recovery, defence,

recreational use, or a variety of other applications where human presence is either

hazardous or difficult to achieve. Two of the most common VTOL UAV aircraft are

the ducted-fan and the quad-rotor helicopters, which are shown in Figures 1.1a and

1.1b, respectively.

As its name suggests, the quad-rotor uses four rotors to collectively generate

thrust necessary for flight. The quad-rotor is controlled by regulating the value of each

rotor thrust independently, which is used to generate a moment (control torque input)

about the system center of gravity (COG). Alternatively, the ducted fan uses one or

two rotors which operate within a shroud or duct in a coaxial/series arrangement.

In the case where two rotors are used, they are rotated in opposite directions in

order to eliminate the torque due to rotor aerodynamic drag, which could otherwise
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(a) Ducted Fan VTOL
UAV

(b) Quad-Rotor
www.st.ewi.tudelft.nl

Figure 1.1: The Ducted Fan and Quad-Rotor VTOL UAVs

cause the system to spin about its vertical axis. The ducted fan uses a set of control

surfaces (ailerons or wings) located at the exit of the duct which are actuated to

generate aerodynamic forces due to the duct airflow, thereby generating a torque

which is proportional to the distance from the control surfaces to the system COG.

This control strategy is sometimes referred to as vectored thrust. Since the rotors are

contained within a shroud the ducted fan offers a higher degree of safety than the

quad-rotor. As a result it is more common to see ducted fan aircraft possessing more

powerful motors and rotors which results in higher payload capabilities.

Piloting these types of aircraft has been proven to be quite challenging, and

was typically only suitable for operators with a high degree of training or experience.

This fact has motivated a number of researchers to study and develop flight control

systems which reduce the complexity of the task presented to the operator. In the

development of these flight control systems there are two main theoretical challenges

which researchers face: obtaining accurate knowledge about the system’s attitude

(orientation or angular position), and developing the necessary control and estimation

algorithms needed to ensure reliable performance of the system while in autonomous

flight. These are the two main challenges addressed in this thesis.
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1.2 Attitude Parameterization

The use of an attitude observer or position controller, requires that the orientation of

the rigid-body is represented using one of a few mathematical parameterizations, such

as Euler angles, direct cosine (rotation) matrices, modified Rodriguez parameters and

unit-quaternion (see, for instance, Murray et al. (1994), Shuster (1993) and Hughes

(1986) for more details). By orientation, we mean the relative angular position of

a body-fixed frame (rigidly attached to the system COG), and an inertial frame

rigidly attached to the Earth. Choosing a particular type of attitude parameterization

is not necessarily straightforward, since each representation has unique advantages

and disadvantages. However, the key deciding factors one faces when deciding on

the choice of attitude parameterization generally involve three criteria: whether the

parameterization is a global representation (globally non-singular), the uniqueness

of the representation, and the mathematical complexity involved in the use of the

parameterization.

Perhaps the most familiar form of attitude parameterizations (at least for those

not involved in the study of attitude parameterizations) are the Euler angles. The

Euler angle representation takes advantage of the fact that the relative orientation of

two frames of reference can always be described by three separate rotations. There

are twelve different types of Euler angle representations, which differ by the axes of

rotation which are used for the three individual rotations. Using one of the twelve

sets of rotation vectors, the Euler angle parameterizations uses three elements to

represent the value of the angle of rotation about each axis. Among the twelve

different parameterizations, the most common convention used is the one where the

three angles are taken consecutively as: a rotation about the body-referenced z-

axis, followed by a rotation about the body-referenced y-axis, followed by a rotation



Chapter 1: Introduction 4

about the body-referenced x-axis. The angles which correspond to these three axes

of rotation are referred to as the yaw, pitch and roll angles, respectively. One of

the useful characteristics of the yaw-pitch-roll representation, is that given a value of

these angles, one can almost immediately visualize the corresponding orientation of a

vehicle. The use of other parameterizations, however, are more ambiguous and do not

immediately offer insight on the physical orientation of a vehicle. Unfortunately, the

Euler angle parameterization is not a global representation. In fact, at a particular

value of one of the three Euler angles, there exist an infinite number of solutions

for the other two angles, which describes the relative orientation of two frames of

reference. In terms of the yaw-pitch-roll representation, this singularity corresponds

to when the cosine of the pitch angle becomes zero. Some authors suggest that this

is not a likely operating mode of certain aircraft, and subsequently continue with the

control design by assuming the singularity is never encountered. However, those who

desire a global representation of orientation are therefore forced to use a different

form of attitude parameterization.

Although Euler angles use three-separate rotations to define the relative orien-

tation between two frames of reference, we know from Euler’s rotation theorem, that

it is always possible to represent orientation in three-dimensional space using a single

axis about a single vector of rotation (for example, see Hughes (1986), page 10). This

convention is usually referred to as the axis-angle parameterization. Although this is

a global attitude parameterization, it is not unique (for example, the same orientation

could be achieved by simultaneously taking the negative value for both the angle and

axis of rotation). However, it seems the axis-angle parameterization has not been

very widely used in the literature. Alternatively, a very commonly used attitude pa-

rameterization which also uses four elements is the unit-quaternion. Similar to the

axis-angle representation, the unit-quaternion offers a global attitude representation,
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which is not unique. In fact, the unit quaternion parameterization is a double-cover,

or two-to-one map, over the real space. As discussed in Bhat (2000), this presents a

topological obstruction since for every equilibrium solution which exists in the real

space (Euclidean space in three-dimensions), two antipodal equilibrium solutions ex-

ist in the quaternion space S3. Note that although this pair of equilibrium solutions

correspond to the same physical point in the real space, this does not necessarily

mean that both points share the same characteristics in terms of stability. In fact, in

some cases, the pair of equilibrium points can have completely different behaviors (for

example one point is an attractor, and one is a repeller). In this case, the stable and

unstable manifolds overlap in the real space, and the equilibrium point is a homoclinic

point, Guckenheimer and Holmes (1983). This can result in some strange behavior of

the system (as viewed in the real space), since trajectories which start near the desired

equilibrium solution, can diverge and travel a large distance before coming back to

the same equilibrium solution, since both the stable and unstable equilibrium points

(in the quaternion space) map to the same point in the real space. Trajectories of

this nature are referred to as homoclinic orbits, however, in the study of the literature

involving unit-quaternion based attitude parameterization, this characteristic is typ-

ically referred to as unwinding. In other cases, both antipodal equilibrium points in

the quaternion space are shown to be stable (and therefore the problem of unwinding

is avoided). However, in this case, the quaternion space contains an unstable invari-

ant manifold which divides the quaternion space into two halves (each containing a

stable equilibrium). This manifold is usually unstable, yet trajectories starting on the

manifold remain there indefinitely and therefore do not converge to one of the two

stable equilibrium points. Due to these problems, when the unit-quaternion is used

to represent the attitude of a rigid-body, it is impossible to achieve global asymptotic

stability using strictly continuous feedback. In the case where the equilibrium point



Chapter 1: Introduction 6

in the real space is homoclinic, asymptotic stability cannot be achieved due to the

nonlinear behavior of the homoclinic orbits. When both antipodal equilibrium points

are stable, and an invariant manifold exists, in Koditschek (1988) the authors use the

term almost global stability, which refers to the asymptotic stability of a system for

all initial conditions except for those contained in a set of Lebesgue measure zero,

(for example, the unstable manifold). For more information on this topological ob-

struction, the reader is referred to Koditschek (1988) and Chaturvedi et al. (2011). In

some cases, discontinuous feedback has been used to avoid the problems associated

with the undesired equilibrium solutions and unwinding, for example see Mayhew

et al. (2009b) and Mayhew et al. (2009a).

Another attitude parameterization, which is just as popular as than the unit-

quaternion, is the rotation matrix. The rotation matrix has some clear advantages

since it is a global bijective map (one-to-one) from the rotation-space SO(3) to the

real-space (Euclidean space in three-dimensions). Therefore, it is not affected by the

unwinding phenomena that are sometimes attributed to the quaternion parameteri-

zation. However, the invariant manifold (previously mentioned in the discussion of

unit-quaternion) may still exist. In these cases, systems are said to exhibit almost-

global stability (asymptotically stable for all initial conditions except for the invariant

manifold, which is a set of Lebesgue measure zero). However, despite the advantages

of the rotation matrix, researchers sometimes prefer the use of the unit-quaternion.

This choice is partly attributed to the fact that quaternions are represented using

a vector, rather than the more cumbersome matrix representation. Also, in many

cases, the mathematical analysis of systems which use unit-quaternion seems to be

greatly simplified when compared to those which use rotation matrices. For this

reason, in this thesis we typically use unit-quaternion for attitude parameterization.

However, in the case where a rotation matrix is desired, we can apply straightfor-
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ward transformations which can yield a rotation matrix corresponding to a particular

unit-quaternion.

1.3 Rigid-Body-Attitude Estimation

In the absence of a pilot, it is essential for the operation of UAVs to utilize sensors

in order to recover the orientation of the aircraft. Unfortunately, there does not exist

a sensor (to our knowledge) which directly measures the orientation of a rigid-body

with respect to an inertial frame. To address this limitation, researchers and prac-

titioners have sought the use of sensors which give the body-frame coordinates of

an inertial-referenced vector. Examples of such a sensor often include accelerome-

ters and magnetometers, which are attached to the rigid-body in order to provide

body-referenced coordinates of the gravity vector and the Earth’s magnetic field,

respectively. However, although these vector measurements contain very useful infor-

mation about the rigid-body orientation, they do not directly yield the orientation of

the system, and therefore some attitude estimation scheme must be used based upon

these measurements. It should be noted that there does exist some commercially

available so-called ”orientation sensors”. However, these devices typically include an

inertial measurement unit (usually a set of vector-measurement sensors and a gyro-

scope), with some type of attitude estimation scheme, all of which are contained in a

complete package.

The attitude estimation problem has been the focus of several research groups

who have subsequently produced some very promising results in this area. To solve

this problem, researchers have typically used vector measurements and sometimes

a gyroscope (which measures the angular velocity of the rigid-body) to develop an

estimation scheme. In theory, using gyroscopes one can obtain the attitude of a rigid-
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body by integration of the rigid-body angular velocity. However, due to problems

associated with accuracy of estimator initial conditions, gyroscope bias, sensor gain

and axis misalignments, it is well-known that this approach leads to errors, and po-

tentially to the particularly disastrous effect of gyroscope drift; a well known problem

which causes the attitude estimates to continuously diverge over time. These prob-

lems have led to the development of highly-accurate gyroscopes, which are usually

very expensive and heavy devices, and are typically considered only for commercial

applications. For other applications where size, weight and cost are important factors

(such as in the area of small scale VTOL UAVs), control engineers prefer low-cost sen-

sors, for example the Integrated Micro-Electro-Mechanical systems (IMEMs), which

are cheap, small and lightweight (since they are contained within an integrated cir-

cuit). In this case, rigorous design of robust attitude observers is required to deal

with sensor inaccuracies.

Attitude reconstruction is one estimation scheme where the vector measure-

ments are used to calculate (without the use of a filter/observer) the orientation of

a rigid body. In several cases, this problem has been addressed as an optimization

problem (for example, see Shuster and Oh (1981) and Shuster (2006)), which seeks a

value for the rigid-body attitude that is a best-fit for the vector-measurement data.

This is typically referred to as Wahba’s problem, named after Grace Wahba who orig-

inally formulated this problem. However, some are not attracted to these solutions,

due to delay and the high computational complexity required in the solution of op-

timization problems. However, other closed-form reconstruction methods have also

been proposed (which do not require the minimization of a cost function), for example

see Wahba (1965), Shuster and Oh (1981), Fisher et al. (1993), Reynolds (1998) and

Metni et al. (2006).

Some researchers have worked to develop observers which combine the use of
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these attitude reconstructions with a gyroscope. This is particularly desirable when

the rigid-body is in a rotating frame, since the gyroscopes are more accurate at

higher frequencies (gyroscope drift occurs due to errors at low frequencies), and the

reconstructions are generally more accurate at low frequencies (for example, when

the system is not moving). The combination of the attitude reconstructions with

the gyroscope signal are commonly referred to as complementary filters. Examples

of linear complementary filters can be found in Tayebi and McGilvray (2006) and

Baerveldt and Klang (1997). Other nonlinear complementary filters which have used

the rotation matrix and unit-quaternion can be found in Hamel and Mahony (2006),

Mahony et al. (2005), Mahony et al. (2008), Tayebi and McGilvray (2006) and Tayebi

et al. (2007). In some other cases, vector-measurement based attitude observers have

been proposed which do not require the use of the so-called attitude reconstruction

algorithms. Instead, the vector measurements are used directly with an observer,

where the error signal used to correct the attitude is usually calculated using the

vector or cross-product. Examples of these attitude observers can be found in Hamel

and Mahony (2006),Mahony et al. (2008), Martin and Salaun (2007), Martin and

Salaun (2010) and Tayebi et al. (2011). Another attractive feature of these results,

is that the authors are also able to estimate the gyroscope sensor bias, which is

normally assumed to be constant or slowly varying. In many practical situations, in

the presence of sensor noise (which can be excessive in applications involving VTOL

UAVs), control engineers are forced to pre-filter the sensor data before applying it

to the attitude observer, which is normally not considered during the design of the

observers. Therefore, it would be beneficial if one could design an observer which

considers filtering of the sensor data with accompanying proofs for stability.

In addition to complementary filtering, and the more classic filters that have

been developed using traditional nonlinear control design tools, the use of Extended
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Kalman filters for the vector-measurement-based attitude estimation problem has

received a great deal of attention, such as Rehbinder (2004) and Rehbinder (2000),

Choukroun et al. (2006b), Choukroun et al. (2006a), Markley (2004) and Crassidis

(2006). For more details on Kalman filtering based attitude estimation the reader is

also referred to the survey paper Crassidis et al. (2007) and the references therein.

As indicated by the references mentioned above, due to the efforts of the re-

search community the area of vector-measurement-based attitude estimation has ex-

perienced significant breakthroughs. However, these estimation schemes (including

Kalman filtering) can face a problem when they require the vectors to be known in

the inertial frame (which is a common assumption). Unfortunately, this condition is

usually not satisfied by the sensors typically used for these applications. Indeed, the

magnetometer is one sensor which does satisfy this requirement (provided that the

ambient magnetic field is known). However, perhaps the most common sensor used

in this manner is the accelerometer, which is used in many (if not most) cases, to

measure the gravity vector in the body-fixed frame. In this case, in order to satisfy

the requirement that the inertial vector is known and constant in the inertial frame,

one must assume that the body-fixed frame must be non-accelerating (such that the

gravity measurement is not contaminated with forces due to linear acceleration). It

is clear that this condition is not guaranteed to be satisfied for the particular case

involving VTOL UAVs. Therefore many of the results for the attitude estimation

and control of VTOL UAVs require that the system is in a near-hover configuration

in order to avoid significant linear accelerations which can affect the accelerometer.

Fortunately, this limitation of the existing vector-measurement-based attitude

observers has led to the development of a new class of attitude observer which uses

the accelerometer (and magnetometer) to provide vector-measurements. This type

of observer acknowledges the fact that the accelerometer measures the forces due to
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acceleration of the rigid-body in addition to the gravity vector, in the body-fixed

frame. The corresponding inertial vector which is measured is commonly referred

to as the apparent acceleration, which unlike the requirements needed for previous

observers, is not assumed to be known or constant. In order to deal with the fact that

the inertial vector is unknown, this type of attitude observer uses the linear velocity

of the rigid-body (assumed to be measurable using, for instance, a GPS) in addition

to the signals obtained from an IMU, which includes an accelerometer, magnetometer

and a gyroscope. These attitude observers, which are often referred to as velocity-

aided attitude observers, can be found in Bonnabel et al. (2008) and Martin and

Salaun (2008) with proofs for local stability. In Hua (2010) the author extends these

results to show that the domain of convergence can be arbitrarily increased using the

observer gains (semi-global). As expected, these observers are shown to offer superior

performance when the rigid body is subjected to significant linear accelerations, and

are therefore better suited for applications involving VTOL UAVs. However, the

proofs for these observers are quite complicated, and the mechanisms behind how the

velocity observer aids in the estimation of the system attitude is not clear. Therefore,

future study into these observers may provide further insight and new developments

in this area.

1.4 Control of VTOL UAVs

The study of control systems for unmanned aircraft has received considerable atten-

tion over the past two decades. One main focus for the control of VTOL UAVs has

been to develop control laws which stabilize the attitude of the system to a certain de-

sired attitude (attitude stabilization/regulation), or possibly to track a time-varying

attitude-trajectory (attitude tracking). Traditionally, these attitude controllers as-
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sume that the system attitude and angular velocity are accurately known, and are

used to provide a proportional-derivative (PD) type of feedback, for example see Joshi

et al. (1995) and Wen and Kreutz-Delgado (1991). A number of authors were also

able to provide solutions for the attitude control problem without the use of the sys-

tem angular-velocity measurements, for example see Caccavale (1999), Egeland and

Godhavn (1994), Lizarralde and Wen (1996), Salcudean (1991), Tayebi (2008) and

Tsiotras (1998). The non-requirement of the angular velocity vector is an important

result since it reduces complexity of the closed loop system (one less sensor required).

For systems which are equipped with a gyroscope sensor, this control scheme can also

be used as a redundant back-up control scheme in the case where a fault is detected on

the gyroscope measurements. To deal with the absence of angular velocity measure-

ments, the authors mentioned above typically use an auxiliary system, or lead filter,

in order to generate the necessary damping to stabilize the system, using only sys-

tem attitude measurements. However, as discussed in the description of the attitude

estimation schemes, the system attitude is not directly known. Rather, it is obtained

using some attitude estimation scheme, which typically involves the measurement of

the system angular velocity. Therefore, the knowledge of the system attitude usually

requires the measurement of the system angular velocity, and consequently, one may

question whether the results obtained above are truly angular-velocity-free. There-

fore, there seems to be some room for improvement in this regard.

Another main objective for the autonomous operation of VTOL UAVs is to

develop algorithms which control the position of the vehicle. This objective has been

the focus of several groups in the research community, which has resulted in sig-

nificant and interesting breakthroughs in this field, for example see Abdessameud

and Tayebi (2010), Aguiar and Hespanha (2007), Frazzoli et al. (2000), Hamel et al.

(2002), Hauser et al. (1992), Hua et al. (2009) and Pflimlin et al. (2007). Due to the
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underactuated nature of VTOL UAVs, the system attitude must be used in order to

control the position and velocity of the system. However, this presents some difficulty

due to the fundamental differences between Euclidean space (used to model the po-

sition and velocity) and the rotational space (unit-quaternion or rotation matrix). In

many cases, the authors first derive an expression for a desired system acceleration,

which corresponds to the ideal acceleration required to force the position and velocity

error signals to zero. Subsequently, a control law is derived to force the actual system

acceleration to the desired value. Although this is a straightforward concept, the

manner in which the rotational dynamics are controlled is not necessarily straight-

forward. In some cases, for example Pflimlin et al. (2007) and Hua et al. (2009), the

authors attempt to control the thrust vector (a function of the attitude and system

thrust which is associated to the system acceleration). In other cases, for example

Abdessameud and Tayebi (2010) and Frazzoli et al. (2000), based upon the value of

the desired acceleration, a desired system attitude is derived, and the control laws

are designed to force the actual system attitude to the desired value. These are just

two examples, and as a result of the complexity, there have been a number of differ-

ent methods which have been proposed in the literature in order to accomplish this

task. Despite the differences in these procedures, they all are affected by a common

problem involving the magnitude of the system thrust (the vertical thrust force that

is generated to achieve the VTOL capabilities). A critical design requirement for

these aircraft is to ensure that the value of the thrust is non-vanishing (different from

zero), since the system may not be controllable in this state. Also, there are often

inherent singularities associated with the control laws which occur when the system

thrust vanishes. For example, when the desired acceleration is the acceleration due to

gravity, a desired attitude cannot be extracted (since there exists an infinite number

of solutions for the desired attitude which can achieve the free-fall state). In some
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cases, position controllers have been developed based upon an assumption that the

system thrust is non-vanishing since it corresponds to an undesirable and/or unlikely

free-fall operating condition. As a result, these controllers contain an inherent singu-

larity which can be reached for certain values of system initial-conditions and choice

of gains. Therefore, it is desired to seek position controllers which, in some manner,

ensure that the system thrust is non-vanishing.

The design of position control laws are complicated for a number of reasons,

for example, handling of external disturbances, coupling between system dynamics,

singularities as well as achieving global stability results. Some examples of posi-

tion controllers which deal with unknown disturbances include Hua et al. (2009) and

Pflimlin et al. (2007). In most cases, the disturbance force is required to satisfy some

assumptions in order to develop the control laws (for example, the disturbance is

constant in the inertial frame of reference). However, for VTOL UAVS, the external

disturbances are most likely caused by aerodynamic forces which can change due to

the motion and/or orientation of the vehicle. Therefore, there may be some room

for improvement concerning the design of control laws which consider time varying

disturbances.

A second problem is related to which system inputs are used to specify the

control law. Usually it is desired to obtain the control torque that is applied to the

rotational dynamics of the system (that is generated by the vectored thrust in the

case of the ducted fan, or in the case of the quad-rotor the difference in the thrust of

the four-rotors). This goal can be challenging, especially in the presence of external

disturbances, and as a result, the control law is sometimes specified in terms of the

desired system angular velocity (one integrator away from the control torque), for

example see Hua et al. (2009). The desired angular velocity must then be implemented

using high-gain feedback. There are few examples of controllers in the literature that
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use the control torque as a system input while considering external disturbances. In

Pflimlin et al. (2007), a result is achieved for the position regulation problem; however

this result only guarantees local stability and does not consider position tracking. In

Johnson and Turbe (2006), a Nerual Network adaptive controller has been proposed;

however, it is not accompanied with proofs of stability, either locally or globally.

For the ducted-fan type of VTOL UAV, in the process of generating a torque

used to control the system orientation, a translational force is also generated due to

the vectored thrust action. Due to this system characteristic, another well known

problem is due to this coupling between the rotational and translational dynamics.

This coupling is usually in the form of a perturbing term (given as a function of the

control torque or angular velocity) that affects the translational acceleration of the

system. This problem is discussed in more detail in Hauser et al. (1992) and Olfati-

Saber (2002). In most cases, it is assumed that the coupling term is negligible and

is thus omitted in the control design. However, as discussed in Hauser et al. (1992)

and Olfati-Saber (2002), depending on the strength of the coupling and the choice

of control gains, this can lead to unexpected oscillations in the system states. There

are some examples of controllers in the literature which address the coupling prob-

lem. For instance, in Olfati-Saber (2002) a nice change of coordinates is presented,

however, only for a planar system. In Pflimlin et al. (2007), a change of coordinates

is also presented that removes the coupling due to the control torque. A consequence

of this change of coordinates is that a new coupling is introduced in terms of the

system angular velocity. Although this new coupling vanishes when the yaw rate is

zero (angular velocity about the body-referenced z-axis), in practice this would likely

not be the case. Therefore, there still seems to be some potential for improvement

regarding this coupling term in future work. Note that this coupling term is system

dependant, and is not always present in certain VTOL systems, for example the quad-
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rotor aircraft. In Hamel et al. (2002) a position tracking controller is proposed for the

quad-rotor aircraft achieving practical stability. Also, an attitude controller for the

quad-rotor aircraft is proposed in Tayebi and McGilvray (2006). Position tracking

control laws, that do not address disturbance forces, can be found in Frazzoli et al.

(2000) for the case of a helicopter, and in Abdessameud and Tayebi (2010) for the case

of a general VTOL UAV system. Also, in Hua et al. (2009) a result is obtained for a

VTOL UAV system achieving almost-global stability using a simple control law which

is given in terms of the system angular velocity. However, although there have been

significant breakthroughs in addressing the problems discussed above, to the best of

our knowledge, there are no results in the available literature which simultaneously

address the position tracking problem in the presence of disturbance forces which use

the system control torque as the system input while providing almost-global asymp-

totic stability. Therefore, one of the objectives of this thesis is the development of a

position tracking controller which satisfies these objectives.

Existing position controllers all require that a number of system states are

accurately known or measured, including the position, velocity, angular velocity in

addition to the orientation of the system. However, as discussed in the previous

section (attitude estimation), there does not exist a sensor which directly provides a

measurement of the system attitude. Consequently, in practice a vector-measurement-

based attitude observer is used to feed attitude estimates to the position controller.

However, due to errors and observer dynamics (which are not considered by the

control design), this may lead to undesirable performance. In this case, one relies on

the robustness of the position controller, however, there are no stability guarantees for

the coupled observer-controller. Therefore, there is some room for improvement in this

regard. For example, this problem could be addressed by designing position control

laws which do not require direct measurement of the system attitude. Instead, it may
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be possible to design a position controller which utilizes the vector measurements

directly (that would otherwise be used by the attitude estimation scheme). In this

case, an attitude observer would no longer be required for the overall closed-loop

system, which would reduce complexity (as well as cost and weight) of the overall

system.

If we were to obtain a position controller which utilized the vector measurements

instead of the system attitude, we may be faced with the problem regarding the avail-

ability of sensors which provide ideal vector measurements (for example sensors which

provide the measurements of vectors which are known in an inertial frame). For ex-

ample, similar to the attitude observers previously discussed, the two most commonly

used sensors which are used to provide vector measurements are the accelerometer and

the magnetometer, which are used to measure the body-referenced coordinates of the

gravity-vector and Earth’s magnetic field, respectively. However, the accelerometer

measures forces due to linear acceleration in addition to the gravity vector. Therefore,

existing position controllers which depend on accelerometer measurements must as-

sume that the system is near hover. Clearly, this assumption may be easily violated in

the case of VTOL UAVs, and especially in the context of position control. However,

one may recall that this problem was addressed for the attitude estimation problem,

by additionally using a GPS to obtain linear velocity measurements, in order to deal

with the fact that the accelerometer actually measures the system apparent acceler-

ation, which includes both the gravity forces and the forces due to linear motion. In

light of these results, one may be able to develop vector-measurement-based position

controllers which use the accelerometer signal with linear velocity measurements in

a similar manner. This would likely result in a position controller which is much

more suitable to be used in the presence of linear accelerations, thus making it more

suitable for VTOL UAVs.
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1.5 Contributions of the Thesis

First, we propose a new vector-measurement based attitude observer. This observer is

unique since we consider pre-filtering of the sensor data as part of the observer design.

We show that the observer, which is driven by filtered measurements, guarantees

convergence of the attitude estimates to the actual system attitude for almost all

initial conditions. Therefore, this observer may offer improved performance when the

vector measurements are affected by noise and disturbances. The results for this work

has been reported in Tayebi et al. (2011).

Two new velocity-aided attitude observers are also proposed which use a GPS in

addition to vector measurements obtained using an accelerometer and magnetometer

contained within an IMU. However, in this case it is not assumed that the accelerom-

eter provides an ideal vector measurement (measurement of only the gravity vector).

Instead, the accelerometer is used to provide the body-referenced system apparent

acceleration, which is used with a new filter (which is driven by measurements of

the system velocity obtained using the GPS) in order to successfully estimate the

system attitude. As a result, this observer is better suited when the rigid-body is

accelerating, and is therefore better suited for VTOL UAVs. The observer estimates

are shown to converge to the actual attitude as long as the trajectories are initialized

within a certain domain of attraction, which can be arbitrarily increased through an

adequate choice of the gains. Although these stability results are similar to the work

of Hua (2010), the structure of our observer which uses the unit-quaternion leads to a

much simpler stability analysis which provides important insight on the mechanisms

involved in the operation of the observer. The results for this work have been reported

in Roberts and Tayebi (2011b).

We propose two new adaptive position tracking control laws for VTOL UAVs.
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To develop the control laws, we first propose a new attitude extraction algorithm

(which extracts the desired attitude corresponding to a desired translational accel-

eration) in terms of the unit-quaternion that has almost no restrictions on the de-

manded acceleration, except for a mild singularity that can be avoided. Relying on

this quaternion extraction method, we present two adaptive tracking controllers using

the torque (that is applied to the system rotation dynamics) as a control input. Both

controllers depend on an adaptive estimation method, which uses a projection mecha-

nism Ioannou and Sun (1996), Cai et al. (2006). The projection mechanism is required

to avoid the singularity associated with the value of the system thrust, which as a

result, is guaranteed to be non-vanishing. The first proposed controller achieves the

position-tracking objective for any initial condition of the state, whereas the second

controller achieves the position-tracking objective for a set of initial conditions which

are dependant on the control gains. The latter controller is included since it is less

complicated than the prior case and may be more suitable to use in practice. During

the process of developing the two control laws, the disturbance forces are assumed to

be constant in the inertial frame. In this case, both control laws are proven to achieve

the position tracking objective provided that an upper bound of the disturbance force

is known a-priori (although the actual magnitude of this disturbance force may be

less than this limit). The results for this work have been reported in Roberts and

Tayebi (2011a).

The proposed controller described above and the existing attitude and position

controllers in the literature, share a limitation since they assume that the system

attitude is known, where in reality it is likely obtained using an attitude observer.

To address this problem, we propose a new vector-measurement-based control law

which no longer assumes the system attitude is directly measured. Instead, first we

propose an angular-velocity-free attitude stabilization controller which uses the vec-
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tor measurements (that would normally be applied to the attitude observer) directly

in the control design, and therefore does not require an attitude observer in order

to be implemented on the system. Furthermore, in light of the fact that existing

angular-velocity-free attitude controllers require the measurement of the system at-

titude (which is obtained by an attitude observer which typically requires the use of

the angular-velocity measurements), this result may be the first attitude controller

which is truly angular-velocity free. The results for this work have been reported in

Tayebi et al. (2011).

We also extend the results of the vector-measurement-based attitude controller

described above to the position control problem. Relying on the attitude extraction

algorithm used with the adaptive position tracking controller, we propose a new

position control law which uses the vector measurements instead of assuming the

system attitude is known. We show that for an appropriate choice of control gains,

the system states are uniformly bounded and converge to some predefined trajectory

for almost all initial conditions. The results for this work have been reported in

Roberts and Tayebi (2011e).

In the case where an accelerometer is used to provide a vector measurement

(usually to obtain body-frame coordinates of the gravity vector), the vector-measurement-

based position controller described above may yield unexpected performance when

the accelerometer is affected by forces due to the linear acceleration of the system

(which is to be expected for the position control problem). To address this problem,

we extend the results of the velocity-aided attitude observers to the case of position

control. We propose a new vector-measurement based attitude controller which uses

a filter (which is driven by the accelerometer and system velocity measurements ob-

tained by a GPS), in order to obtain information about the system attitude. We show

that for an appropriate choice of control gains, the system states are bounded and the
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system position converges to a constant target in the presence of disturbances that

are assumed to be due to aerodynamic forces. The results for this work have been

reported in Roberts and Tayebi (2011b).

In addition to these main points, there are several other minor contributions

which are offered as Lemmas or Propositions throughout the thesis.
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1.7 Thesis Outline

The following is a general overview of how the main sections of the thesis are orga-

nized:

• Chapter 2 provides an overview of the mathematical background used in the

development and analysis of the estimation and control laws. This includes



Chapter 1: Introduction 23

mathematical details regarding the unit-quaternion and rotation matrix atti-

tude parameterizations which are used, and definitions for the system dynamic

equations (system model). In this chapter we also introduce a class of bounded

functions, which are useful later in the thesis, and discuss the skew-symmetric

matrix and some of its properties which are frequently used.

• Chapter 3 contains the contributions to the thesis in the area of attitude esti-

mation. In this chapter we discuss several types of attitude estimation schemes.

These methods include attitude reconstruction (closed form solutions which do

not use an observer), complementary filtering and vector-measurement-based

attitude estimation.

• Chapter 4 contains the contributions to the thesis in the area of the control

of VTOL UAVs. In this chapter we propose a velocity-free attitude stabiliza-

tion control law using vector measurements, and a number of position control

strategies. The position control strategies include adaptive position tracking

(which includes the estimation of disturbance forces), as well as two types of

vector-measurement based position control laws.

• Chapter 5 provides a summary of the work presented in the thesis, and dis-

cusses new potential areas for improvement and future research.
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Chapter 2

Background

In this chapter we review some of the mathematical background that is used in the

development and analysis of the control and estimation laws. A major component

of this background involves the definitions of the attitude parameterizations used to

describe the orientation of the system (rigid-body). A description of these attitude

parameterizations and some of these properties are provided in Section 2.1. However,

for a more complete description of these parameterizations the reader is referred

to Shuster (1993), Hughes (1986) and Murray et al. (1994). Section 2.2 defines the

equations which govern the vehicle dynamics (system model), and Section 2.3 reviews

some preliminary mathematical details that will be helpful during the discussion of

the estimation and control algorithms.

2.1 Attitude Representation

2.1.1 Coordinate Frames

To represent the orientation (angular position) of the aircraft (rigid-body), we intro-

duce two reference frames:
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• Inertial Frame I: A frame rigidly attached to a position on the Earth (as-

sumed flat) in NED coordinates1.

• Body Frame B: A frame which is rigidly attached to the aircraft COG. The

orthonormal basis of B is taken such that the x axis is directed towards the

front of the aircraft, the y axis is taken towards the right side, and the z axis is

directed downwards (opposite the direction of the system thrust).

Throughout the paper we often refer to the orientation of the rigid-body, by

which we mean the relative orientation of B with respect to I. The goal of the attitude

representation is to mathematically describe the orientation of the rigid-body.

2.1.2 Direct Cosine (Rotation) Matrices

The direct-cosine, or rotation matrix, is a three-dimensional orthogonal matrix. A

matrix R ∈ R3×3 is considered a rotation matrix if it is contained within the set

SO(3) :=
{
R ∈ R3×3 | det(R) = 1 | RTR = RRT = I3×3

}
. (2.1)

The set SO(3) forms a group with the linear matrix multiplication with identity

element I = I3×3 and inverse R−1 = RT. This set is often used since it offers

a global and unique representation of the orientation of a frame of reference, and

therefore we refer to this set as the rotation space. The rotation matrix R ∈ SO(3)

can be used to map vector coordinates from one frame to another. For example, let

x1 denote the coordinates of a vector in frame I1, and x2 denote the coordinates

1. North-East-Down coordinate system: Refers to the right-handed frame where the x
axis is directed towards (magnetic) North, y axis is directed towards the East, and the z
axis is directed downwards towards the Earth.
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of x1 expressed in frame I2. Let R denote the rotation matrix which describes the

rotation from I1 to I2. Then, a well known property of the rotation matrix is

x2 = Rx1 (2.2)

The rotation matrix can also be expressed in terms of the axis-angle represen-

tation. For example, if we let k̂ ∈ R3 denote a unit-length vector of rotation and

θ ∈ R denote the corresponding angle of rotation, then the corresponding rotation

matrix R(θ, k̂) ∈ SO(3) is given by the following transformation

R(θ, k̂) = I − sin(θ)S(k̂) + (1− cos(θ))S(k̂)2 (2.3)

where, in general S(u), u = [u1, u2, u3]
T ∈ R3, is the skew-symmetric matrix associ-

ated with the vector u given by

S(u) =


0 −u3 u2

u3 0 −u1

−u2 u1 0

 (2.4)

A more thorough description of the skew-symmetric matrix is provided later in section

2.3.1.

2.1.3 Unit Quaternion

To denote the unit-quaternion, we use Q = (η, q) ∈ Q, where η ∈ R and q ∈ R3, and

Q is the set of unit-quaternion defined by

Q :=
{
Q ∈ R× R3 | ∥Q∥ = 1

}
. (2.5)
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The unit-quaternion is often considered as an axis-angle representation due to the

fact the relative orientation of two reference frames can always be expressed by a

single rotation by some angle θ about some axis (of unit length) k̂, where in this case

the unit-quaternion can be written as

Q =
(
cos(θ/2), sin(θ/2)k̂

)
. (2.6)

The axis-angle representation can be used to reveal some interesting facts about the

unit-quaternion. For example, the particular case Q = (0, q), such that η = 0 and

∥q∥ = 1, suggests that θ = π(2n + 1) where n ∈ Z. In this case, the unit-quaternion

Q physically describes a rotation of 180 degrees about the unit-length axis of rotation

k̂ = q. This condition will be of particular interest in the analysis of the attitude

estimation and control laws, due to some unique challenges which are attributed to

this condition.

Due to the use of four elements, the unit-quaternion is an over-parameterization

of the rotation space SO(3). That is, the transformation from Q → SO(3) is a two-

to-one map. This characteristic results in some difficulties due to the multiplicity of

equilibrium solutions (which relate to the same point in the rotation space) when using

this representation. This is due to the fact that a coordinate frame whose orientation

is described by the unit-quaternion Q is physically equivalent to the coordinate frame

whose orientation is defined by the unit-quaternion −Q. This can easily be seen from

the definition of the axis-angle representation (2.6) since

−Q =
(
− cos(θ/2), − sin(θ/2)k̂

)
=
(
cos((θ + 2π)/2), sin((θ + 2π)/2)k̂

)
. (2.7)

In terms of the axis-angle representation, we see that the unit-quaternion −Q differs
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from Q in that the angle θ is increased by a value of 2π (or a multiple thereof).

Therefore, if the orientation of two different frames of reference (each taken with

respect to the inertial frame) are described by the unit-quaternion Q and −Q, the

orientation of the two coordinate frames are physically equivalent and actually share

the same value for the rotation matrix using the SO(3) parameterization. In fact, a

well known transformation which provides a rotation matrix R(Q) which corresponds

to the unit quaternion Q is known as the Rodrigues formula, and is given by

R(Q) = I3×3 + 2S(q)2 − 2ηS(q), (2.8)

from which one can easily confirm R(Q) = R(−Q). Throughout this thesis we make

use of this transformation frequently when it is convenient to use a rotation matrix

instead of the unit-quaternion. Regardless of the physical equivalence of two points in

the quaternion space, as discussed in the introduction, if a system has an equilibrium

solution which corresponds to a value of the rotation matrix given by R ∈ SO(3),

there exists two antipodal equilibrium solutions when using the quaternion parame-

terization given by ±Q ∈ Q. As previously discussed, the multiplicity of equilibrium

solutions presents a topological obstruction to making claims such as global stability

(for more details see Bhat (2000) and Koditschek (1988)).

When unit-quaternion are used, it is often necessary to employ the use of the

well-known quaternion product operation. To define this operation, we let Q1 =

(η1, q1) ∈ Q, Q2 = (η2, q2) ∈ Q denote two unit-quaternion. Then the quaternion

product of Q1 and Q2, denoted by Q3 = (η3, q3) ∈ Q is defined by

Q3 = Q1 ⊙Q2 =
(
η1η2 − qT1 q2, η1q2 + η2q1 + S(q1)q2

)
. (2.9)
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The set Q forms a group with the quaternion multiplication operation ⊙, with quater-

nion inverse Q−1 = (η,−q), and identity element Q⊙Q−1 = Q−1⊙Q = (1,0). Using

this operation, the unit-quaternion can also be used to give the coordinates of a vec-

tor in multiple frames of reference. For example, using the vector-transformation

property described by 2.2, where we denote an arbitrary vector x1 ∈ R3 and denote

the vector expressed in a rotated coordinated frame given by x2 = R(Q)x1, then

the vector x2 can also be obtained using the quaternion product by the following

operation

(0, x2) = Q−1 ⊙ (0, x1)⊙Q. (2.10)

Although the aforementioned topological obstruction can be avoided by using

the set SO(3), many researchers have still relied on the quaternion representation due

to some significant advantages it offers over SO(3) representation. One advantage

can be attributed to the unique mathematical properties of the quaternion, which

often yields greatly simplified proofs when compared to works which rely solely on

SO(3). Another advantage of the unit quaternion stems from the fact it is represented

using a vector (of four elements) instead of a 3× 3 orthogonal matrix, which can be

useful, especially in the development of computer simulations. For example, when

implementing a particular unit-quaternion-based estimation or control algorithm (or

when performing computer simulations), preserving the properties of the attitude

representation becomes important. To ensure a vector preserves the properties of a

unit-quaternion, one can simply normalize the vector (divide by the norm). Preserving

SO(3) properties of a 3× 3 matrix involves more complicated algorithms, such as the

Gram-Schmidt orthonormalization algorithm (see, for instance, Nicholson (1995)).
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2.1.4 Attitude Dynamics

Since the SO(3) and quaternion parameterizations will be used to describe the ori-

entation of frames which are moving with respect to time, it is necessary to describe

the time-derivatives of these attitude parameterizations. Consider the two reference

frames I and B as described in Section 2.1.1, and let ω ∈ R3 denote the angular

velocity of B with respect to I, expressed in B (body-referenced angular velocity).

Let Q ∈ Q denote a unit quaternion which describes the orientation of B, and let

R = R(Q) denote the corresponding rotation matrix. The time-derivatives of the

unit quaternion and the corresponding rotation matrix are described as follows

Q̇ =
1

2
Q⊙ (0, ω) =

1

2
A(Q)ω (2.11)

Ṙ = −S(ω)R (2.12)

where A(Q) ∈ R4×3 is given by

A(Q) =

 −qT

ηI + S(q)

 (2.13)

In the case where Q̇ is known, the angular velocity can be obtained using

ω = 2A(Q)TQ̇ (2.14)

where we use the fact that A(Q)TA(Q) = qqT + η2I − S(q)2 = (η2 + qTq)I = I.
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2.2 Equations of Motion (Dynamic Model)

In this section we present the dynamic model for the VTOL that is used to develop the

attitude estimation and control algorithms. Recall from Section 2.1.1 the definitions

of the inertial and body-fixed frames, denoted as I and B, respectively, and let Q ∈

Q and R ∈ SO(3) denote the unit-quaternion and rotation matrix, respectively,

which describes the orientation of B with respect to I. Let p and v denote the

inertial referenced position and linear velocity of B with respect to I, expressed in

I. The system thrust is denoted as T ∈ R, which is assumed to be directed along

the body-referenced z-axis which we denote as e3 = [0, 0, 1]T. Finally, let g denote

the acceleration due to gravity, mb denote the system mass, and δt ∈ R3 denote a

disturbance input caused by exogenous aerodynamic forces. Let Ib ∈ R3×3 denote

the moment of inertia of the rigid-body, and recall ω ∈ R3 is the body-referenced

angular velocity of B. Using this framework we can now present the model for the

system translational and rotational dynamics.

Translational dynamics:

ṗ = v (2.15)

v̇ = ge3 −
T

mb
RTe3 + δt (2.16)

Rotational dynamics:

Q̇ =
1

2

 −qT

ηI3×3 + S(q)

ω (2.17)

Ibω̇ = −ω × Ibω + δr + u (2.18)

where u ∈ R3 is the exogenous torque applied to the rigid-body (control torque input),
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and δr ∈ R3 is a disturbance torque expressed in B.

2.3 Mathematical Preliminary

In this section we review some mathematical preliminaries which are necessary to

describe the estimation and control algorithms. The skew-symmetric matrix, which

is extensively used throughout this work, is defined in Section 2.3.1 in addition to

some commonly used properties of this matrix. We also define a class of bounded

functions in Section 2.3.2, and in Section 2.3.3 we define some tools frequently used

in the stability analysis of the proposed estimation and control algorithms.

2.3.1 Skew-Symmetric Matrix

Throughout this work we extensively use the skew-symmetric matrix. In fact, to

quote M.D. Shuster, ”it could be said with no little justification that the theoretical

study of attitude is the study of the skew-symmetric matrix.” Shuster (1993).

Let x = [x1, x2, x3]
T ∈ R3 and y = [y1, y2, y3]

T ∈ R3 denote two arbitrary

vectors. The skew-symmetric matrix S(x) : R3 → R3 × R3 is given by

S(x) =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (2.19)

Some useful properties of this matrix are given below (for a more complete list the
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reader is referred to Shuster (1993), page 446):

S(x)x = 03×1 (2.20)

S(x)T = −S(x) (2.21)

S(x)2 = xxT − xTxI3×3 (2.22)

S(Rx) = RS(x)RT, R ∈ SO(3) (2.23)

S(x)y = −S(y)x = x× y (2.24)

λ
(
S(x)2

)
=

[
0, −∥x∥2, −∥x∥2

]
(2.25)

where x × y is the (right-handed) vector product of the vectors x and y, and λ(M)

denotes the eigenvalues of the matrix M ∈ R3×3.

2.3.2 Bounded Functions

The use of bounded functions is sometimes required, especially in the development of

control laws which are required to be bounded a priori. We consider a bounded, (at

least) twice-differentiable function, denoted as h(·) : R3 → R3, where we also denote

ϕ(u) := ∂
∂uh(u), and fϕ(u, v) :=

∂
∂uϕ(u)v, satisfying the following properties:

h(0) = 0

uTh(u) > 0 ∀u ∈ R3, ∥u∥ ∈ (0,∞)

0 < ∥h(u)∥ < 1

0 < ∥ϕ(u)∥ ≤ 1

∥fϕ(u, v)∥ ≤ cf∥v∥

 ∀u ∈ R3, ∥u∥ ∈ (0,∞)

(2.26)
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Throughout the thesis we make use of one example of this type of function which is

given by

h(u) =
(
1 + uTu

)−1/2
u. (2.27)

Using this definition for h(u) one can derive the expressions for ϕ(u) and fϕ(u, v) to

obtain

ϕ(u) =
(
1 + uTu

)−3/2 (
I3×3 − S(u)2

)
(2.28)

fϕ(u, v) =
(
1 + uTu

)−5/2 (
3(S(u)2 − I)vuT

+(1 + uTu)(2S(u)S(v)− S(v)S(u))
)

(2.29)

from which one can find the bound

∥fϕ(u, v)∥ ≤
(
1 + ∥u∥2

)−5/2 (
6(1 + ∥u∥2)∥u∥∥v∥

)
≤ 6(1 + ∥u∥2)−3/2∥u∥∥v∥ (2.30)

To find an upper bound for fϕ(u, v) (in terms of u), we construct the cost function

J = (1 + uTu)−3uTu, which we differentiate with respect to u to obtain

∂

∂u
J = −6uTu(1 + uTu)−4uT + 2(1 + uTu)−3uT (2.31)

Setting this result to zero yields two results given by ∥u∥ = 0 (minimum value for J)

and ∥u∥ = 1/
√
2 (maximum value for J), which implies sup

{
(1 + ∥u∥)−3/2∥u∥

}
=

(2/3)3/2/
√
2. Consequently, we find the bound fϕ(u, v) ≤ cf∥v∥ where cf = 4/

√
3.
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2.3.3 Stability Definitions

Throughout this work, based upon a proposed estimation or control law, we seek to

describe the qualitative behavior of the system equilibrium solutions. We say that an

equilibrium point is stable if for initial conditions sufficiently close to the equilibrium

point, the system states remain in a neighborhood of the equilibrium point for all time.

An equilibrium point is said to be asymptotically stable if the system states remain

in a neighborhood of the equilibrium point, and converge to the equilibrium point for

all initial conditions contained within a set defined as the domain of attraction. In

the case where the domain of attraction is the entire space, the equilibrium point is

said to be globally asymptotically stable. In the case where the domain of attraction

is the entire set except for a subset of Lebesgue measure zero, the equilibrium point

is said to be almost globally asymptotically stable. If the domain of attraction can be

arbitrarily increased to contain any subset of the entire space, the equilibrium point

is said to be semi-globally stable. For more formal stability definitions the reader is

referred to Khalil (2002).

Throughout the thesis, we study the performance of closed loop systems (using

the proposed estimation and control laws) using Lyapunov based techniques. In

general, let x ∈ Rn denote the state of a given system, and D ⊂ Rn denote a

subset of the space. We assume that x is continuously differentiable, where in general

ẋ = f(t, x) where we assume the function f(t, x) is Lipschitz in D. We denote V(t, x) :

D → R as a continuously differentiable positive-definite function on the domain D

which contains the origin x = 0, which is referred to as a Lyapunov function. Also,

in many cases we may denote V := V(t) := V(t, x), where the arguments t and x

may be intentionally removed, unless they are specifically required. Using Lyapunov

functions, in general we analyze the stability of the particular equilibrium point x = 0
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by differentiating V with respect to time. To identify this operation we often denote

the time-derivative of a function using the dot notation, for example ẋ := dx/dt

and ẍ := d2x/dt2. Furthermore, when we require derivatives of a higher-order, we

use the notation x(n) := dnx/dtn. Fortunately, there are a variety of mathematical

tools which are available in the literature which assist us in the stability analysis of

equilibrium solutions. One of these tools, is known as Barbalat’s Lemma, which is

restated below for convenience.

Lemma 1 (Barbalat’s Lemma Khalil (2002), page 323). Let ϕ : R → R be a uniformly

continuous function on [0,∞). Suppose that limt→∞
∫ t
0 ϕ(τ)dτ exists and is finite.

Then ϕ(t) → 0 as t→ ∞.

In most cases it can be very difficult to show the time-derivative of Lyapunov

functions are negative definite, especially in the case of non-autonomous systems.

In these cases, one cannot use invariance set theorems (such as Lasalle’s theorem,

Khalil (2002)), and therefore one often relies on the use of Barbalat’s Lemma. In

particular, we make frequent use of the following Lemma (which is actually a corollary

of Barbalat’s Lemma) which involves the study of non-autonomous systems.

Lemma 2 (Lyapunov-Like Lemma, Slotine and Li (1991), page 125). If a scalar

function V(t, x) satisfies the following conditions

• V(t, x) is lower bounded,

• V̇(t, x) is negative semi-definite,

• V̇(t, x) is uniformly continuous in time,

then V̇(t, x) → 0 as t→ ∞.
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In some situations it may not be straightforward to show V̇(t, x) is uniformly

continuous. In these situations, a sufficient (yet conservative) condition for the uni-

form continuity of V̇(t, x) is to show that V̈(t, x) is uniformly bounded.

In the case where a system has multiple equilibria, it is sometimes helpful to

show that a particular undesired equilibrium point is unstable. One useful Lemma

which can be used to demonstrate the instability of a particular equilibrium point is

known as Chetaev’s Theorem, which is also restated for convenience.

Theorem 2.1 (Chetaev’s Theorem Khalil (2002)). Let x = 0 be an equilibrium point

for ẋ = f(x). Let Vc : D → R be a continuously differentiable function on a domain

D ⊂ Rn that contains the origin x = 0, such that Vc(0) = 0 and for any ϵ > 0 there

exists x0 ∈ B(ϵ, 0) ∈ D such that Vc(x0) > 0. Let Br = {x ∈ Rn | ∥x∥ ≤ r} denote

a ball of radius r > 0 and define the set U = {x ∈ Br | Vc(x) > 0}, and suppose that

V̇c(x) > 0 in U . Then, x = 0 is unstable.
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Chapter 3

Attitude Reconstruction and Estimation

In this chapter we explore the challenge of determining the orientation of a rigid-body.

We recall the inertial frame I and body frame B (defined in Section 2.1.1), where our

primary objective is to determine the rotation matrix R ∈ SO(3) or unit-quaternion

Q ∈ Q which describes the orientation of B.

To solve our problem we make use of vector-measurements, which refers to the

body-frame measurements of vectors which are known in the inertial frame. In some

situations, we also require the knowledge of the system angular velocity (measured

using a gyroscope which is rigidly attached to B).

In Section 3.1 we describe the so-called attitude reconstruction algorithms,

which seek to recover a closed-form solution for the attitude of a rigid-body, without

the use of an observer or filter. In the case where the rigid-body is rotating, other

estimation schemes have been proposed which combine these attitude reconstructions

with the gyroscope measurement, and are known as complementary filters. In Section

3.2, one example of a nonlinear complementary filter is discussed.

Other observers have eliminated the requirement of the reconstruction algo-

rithms by applying the vector measurements directly to the estimation laws, which

is described in Section 3.3.3. Also, in Section 3.3.4 we describe a similar vector-

measurement based observer (that does not require the attitude reconstructions)

which also considers low-pass filtering of the vector measurements, and therefore
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may be better suited in the case where the measurements are affected by noise or

other disturbances.

For the type of observers listed above, the vector measurements are assumed to

be constant and known in the inertial frame. However, in many practical situations,

two vector measurements most commonly used are obtained using a magnetometer

and accelerometer which are rigidly attached to B. The magnetometer is used to

measure the ambient magnetic field which is assumed to be known in I, and the

accelerometer is used to measure the apparent acceleration of B. However, since

the apparent acceleration is not known in I, the previous attitude observer is no

longer applicable. This problem is addressed by using an additional filter which uses

linear-velocity measurements which are obtained using a GPS. The filtered version of

the system velocity can be used to obtain information about the (unknown) system

apparent acceleration, and can therefore be used to aid in the estimation of the rigid-

body attitude. Two observers of this type are proposed in Section 3.3.5.

3.1 Attitude Reconstruction

3.1.1 Attitude Reconstruction Using a Single Vector

Measurement

In the case where only one vector measurement is available we seek to determine an

expression for the rotation matrix R ∈ SO(3) which satisfies

b1 = Rr1. (3.1)
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where r1 ∈ R3 is a known vector whose coordinates are given in the inertial frame I

and b1 ∈ R3 is its resulting measurement in the body-frame B. Note that (3.1) can

also be expressed using the unit quaternion

(0, b1) = Q−1 ⊙ (0, r1)⊙Q, (3.2)

where R = R(Q) as defined by (2.8). One solution to this problem is proposed by

the following Lemma.

Lemma 3. Roberts and Tayebi (2011a) Given two vectors r and b where ∥r∥ = ∥b∥ ̸=

0, and where r ̸= −b, then a solution for R = R(Q) ∈ SO(3) (as defined by (2.8))

where Q = (η, q) ∈ Q, that satisfies b = Rr exists and is given by

η =
1

∥r∥

√
∥r∥2 + rTb

2
, (3.3)

q =
1

∥r∥

√
1

2
(
∥r∥2 + rTb

)S(b)r. (3.4)

The proof for this lemma is given in Appendix A.1.1 on page 147.

Remark 1. The solution for R = R(Q) given in Lemma 3 is not unique, since there

exists an infinite number of solutions to the problem when using only a single vector

measurement. This is due to the fact that (3.1) is equivalent to b = RR(θ, r̂)r = Rr

where R(θ, r̂) is the rotation matrix which corresponds to the rotation axis r̂ = r/∥r∥

and θ is the corresponding angle of rotation as defined by (2.3). Note that R(θ, r̂)r = r

for any value of θ. In order to extract a rotation matrix (or unit-quaternion) which de-

scribes the orientation of a frame of reference (in three-dimensional Euclidean space),
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in most cases two non-collinear vector measurements are required. This problem is

considered in the next section.

3.1.2 Attitude Reconstruction Using Two or More Vector

Measurements

In the previous section we considered the problem of finding a suitable value for a

unit-quaternion and rotation matrix using a single vector measurement. Since there

exists an infinite number of solutions for this particular problem, a single vector

measurement is usually not sufficient to find a unique value. In the sequel, we use

multiple vector measurements to find a unique solution for a the rotation matrix R,

which satisfies

bi = Rri, i = 1, 2, ..., n, (3.5)

where ri is a vector known in frame I which is measured in the frame B, R is the

rotation matrix which describes the orientation of B with respect to I, and n is the

number of available vector measurements. We assume that n > 1 , and that at least

two of the vectors are not collinear.

Attitude Reconstruction Using Two Vector Measurements: When

only two non-collinear vector measurements are available, it is possible to construct

a third vector r3 = r1 × r2 and b3 = b1 × b2 = Rr3. Using the three vector pairs we

construct the following matrices

U = [r1, r2, r3], Y = [b1, b2, b3], (3.6)

which are full-rank provided r1 and r2 are not collinear. In this case it is obvious

that Y = RU and therefore a unique solution for the rotation matrix R exists which
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is given by

R = Y U−1. (3.7)

This solution is very similar to the TRIAD algorithm defined in Shuster and

Oh (1981). In fact, a nice feature of the TRIAD algorithm is attributed to the fact it

guarantees solutions to be SO(3) even in the presence of noise, which is not necessarily

the case with the method proposed above.

Attitude Reconstruction Using More Than Three Vector Measure-

ments: In the more general case where n > 3 vectors are measured, we construct

the matrices U, Y ∈ R3×n such that

U = [r1, r2, · · · , rn], Y = [b1, b2, · · · , bn], (3.8)

where we know Y = RU . In this more general case, if the matrix UUT has full rank,

a unique solution for R can be found using the pseudo-inverse which is given by

R = Y UT(UUT)−1. (3.9)

The condition that UUT has a rank of three requires we have three vectors which are

not collinear. In the case where only two of the vectors are linearly independent, we

can always construct a third non-collinear vector r3 = r1× r2 and the corresponding

measurement b3 = b1 × b2, and the above method is repeated with n+ 1 vectors.

3.2 Complementary Filtering

In the previous section we demonstrate how the orientation of a rigid-body can be

calculated (without a filter or observer) using two or more vector inertial vectors and
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their corresponding measurements. In ideal situations, the attitude extraction algo-

rithms would be sufficient for obtaining attitude estimates for a rigid-body. However,

when the inertial vectors and their measurements are not ideal, it is useful to use an

observer (or filter) in order to improve the accuracy of the estimates.

One common method incorporates the use of the attitude reconstruction meth-

ods, for example the ones discussed in the previous section, together with a gyroscope

in a filter, which is commonly referred to as complementary filtering. In this section

we present a complementary filter which has been previously proposed by Tayebi

et al. (2007). However other examples of complementary filtering are proposed in

Hamel and Mahony (2006), Mahony et al. (2005), Mahony et al. (2008) and Tayebi

and McGilvray (2006).

Let R ∈ SO(3) denote the orientation of the body-fixed frame B with respect

to I, and let R̄ denote an estimate of R which is obtained using an attitude recon-

struction algorithm, for example the one defined in Section 3.1.2. Furthermore, let

Q̄ ∈ Q denote the unit-quaternion which corresponds to the rotation matrix R̄ (for

algorithms which give a unit-quaternion based upon a rotation matrix see Shuster

(1993)). If we assume for the time being that the vector measurements are not per-

turbed by noise or other disturbances, using the model given by (2.17), the rotational

dynamics are governed by

˙̄Q =
1

2
Q̄⊙ (0, ω) =

1

2
A(Q̄)ω, (3.10)

where ω is the body-referenced angular velocity of B. Let ωg denote a biased mea-

surement of ω, for example, as measured using a gyroscope, such that

ωg = ω + ωb, (3.11)
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where ωb ∈ R3 is the unknown gyroscope sensor bias, which is assumed to be constant.

In some cases, an attitude observer is proposed which also estimates this unknown

gyroscope bias in order to improve the performance of the overall observer. Let Q̂ ∈ Q

denote an estimate of Q, and let ω̂b ∈ R3 denote an estimate of ωb, and consider the

following observer/complementary filter:

˙̂
Q =

1

2
Q̂⊙ (0, β), (3.12)

β = ωg − ω̂b + Γ1q̃, (3.13)

˙̂ωb = −Γ2q̃, (3.14)

where Γ1 and Γ2 are positive definite matrices, and q̃ is the vector part of the quater-

nion defined by

Q̃ = (η̃, q̃) = Q̂−1 ⊙ Q̄, (3.15)

and denote the gyroscope bias error as ω̃b = ω̂b − ωb.

Proposition 1 (Tayebi et al. (2007)). Consider the system given by (3.10) and

the observer (3.12)-(3.14). Assume that the bias ωb is constant, and assume that

ω and ω̇ are bounded. Then, all observer signals are bounded and limt→∞ q̃(t) =

limt→∞ ω̃b(t) = 0.

Sketch of Proof:

(For a complete proof please see Appendix A.2.1 on page 149)

We first find the time-derivative of the attitude error Q̃ = (η̃, q̃) is governed by

˙̃Q =
1

2
Q̃⊙ (0, ω − R̃β), (3.16)
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from which we find ˙̃η = −q̃T(ω − β) since q̃TR̃β = q̃Tβ. We consider the following

Lyapunov function

V = q̃Tq̃ + (1− η̃)2 +
1

2
ω̃Tb Γ

−1
2 ω̃b = 2(1− η̃) +

1

2
ω̃Tb Γ

−1
2 ω̃b, (3.17)

which, in light of the control and estimation laws, has the time derivative given by

V̇ = − q̃TΓ1q̃. Due to the boundedness of ω, Barbalat’s Lemma implies q̃ → 0.

Similarly, the bound of ω̇ also implies ˙̃Q → 0 and therefore β → ω, which in turn

implies ω̂b → ωb.

Remark 2. The fact that q̃ → 0 implies that Q̂ → ±Q̄, which is not necessarily the

true orientation defined by Q. Consequently, the performance of the complementary

filter is dependant on the accuracy of reconstructed attitude R̄.

Remark 3. Note that when using the unit-quaternion, there are two antipodal equi-

librium solutions in the space Q×R3 which are given by (η̃ = ±1, q̃ = 0, ω̃b = 0). In

terms of the rotation matrix representation, both of these equilibria correspond to the

single equilibrium solution in the space SO(3)×R3 given by (R̃ = I3×3, b̃ = 0). Note

that the equilibrium solution corresponding to η̃ = 1 is a stable equilibrium, where

the solution corresponding to η̃ = −1 is a repeller. In this case the equilibrium point

(R̃ = I3×3, b̃ = 0) is a homoclinic point and therefore the unwinding phenomenon

exists.
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3.3 Vector Measurement Based Attitude

Estimation

As discussed in the previous sections, the attitude reconstruction algorithms are a

crucial part of the complementary filters. However, in many cases attitude observers

have been designed which do not depend on the attitude reconstructions. Instead, the

vector measurements, which would normally be applied to the attitude reconstruction

algorithms, are now applied directly to the estimation laws. Similar to the previous

observers, we use the frames B and I (as defined in Section 2.1.1), and let Q ∈ Q

denote the unit-quaternion which defines the relative orientation of the frame B with

respect to I, and R = R(Q) ∈ SO(3) the corresponding rotation matrix as defined

by (2.8), which are unknown. As previously defined by (2.17), the attitude dynamics

are governed by

Q̇ =
1

2
Q⊙ (0, ω) =

1

2

 −qT

ηI3×3 + S(q)

ω, Ṙ = −S(ω)R, (3.18)

where ω ∈ R3 is the body-referenced angular velocity. For the purposes of the esti-

mator design, we now assume the gyroscope measurement is unbiased, or ωb ≈ 0, and

therefore the gyroscope provides the ideal measurement ωg = ω. In many cases, we

also require that the system angular velocity is bounded, which we state more formally

by the following assumption. This assumption is a realistic constraint for a physical

system, and therefore does not limit the applicability of the proposed observers.

Assumption 3.1. The body-referenced angular velocity ω = ω(t) is bounded for all

t ≥ t0.

Let Q̂ = (η̂, q̂) ∈ Q, η̂ ∈ R, q̂ ∈ R3, denote the unit quaternion which is an



Chapter 3: Attitude Reconstruction and Estimation 47

estimate of Q, and R̂ = R(Q̂) denote the corresponding rotation matrix as defined

by (2.8). To preserve the properties of the attitude parameterizations, we consider

observer laws which are governed by

˙̂
Q =

1

2
Q̂⊙ (0, ω + σ) =

1

2

 −q̂T

η̂I3×3 + S(q̂)

 (ω + σ), (3.19)

where σ ∈ R3 is an observer law which is defined later. Based upon this definition,

the dynamic equation of the corresponding rotation matrix is given by

˙̂
R = −S(ω + σ)R̂. (3.20)

To study the performance of the proposed observers we require a measure of

the relative orientation between the attitude estimates and the actual attitude. This

is the goal of the next section.

3.3.1 Attitude Error

To define the attitude error, we use the unit-quaternion Q̃ =
(
η̃, q̃
)
∈ Q, and rotation

matrix R̃ ∈ SO(3) which are defined by

Q̃ = Q⊙ Q̂−1, R̃ = R(Q̃) = R̂TR. (3.21)

To obtain the time-derivative of the unit-quaternion Q̃, we first note that Q = Q̃⊙ Q̂,

from which one can find Q̇ = ˙̃Q⊙Q̂+Q̃⊙ ˙̂
Q, which leads to ˙̃Q = Q̇⊙Q̂−1−Q̃⊙ ˙̂

Q⊙Q̂−1.

Applying the definitions (3.18) and (3.19) we find

˙̃Q =
1

2
Q̃⊙ Q̂⊙ (0,−σ)⊙ Q̂−1. (3.22)



Chapter 3: Attitude Reconstruction and Estimation 48

Using the property (2.10) the result for the derivative of Q̃ can be written in the

desired form (quaternion-derivative)

˙̃Q =
1

2
Q̃⊙ (0, ω̃) =

1

2

 −q̃

η̃I3×3 + S(q̃)

 ω̃, (3.23)

ω̃ = −R̂Tσ. (3.24)

A similar result can also be achieved using the rotation matrix R̃. In fact, in light of

(3.18) and (3.20), we find ˙̃R = R̂TS(σ)R̂R̃. Applying the property (2.23), we find

˙̃R = −S(ω̃)R̃. (3.25)

Clearly, using SO(3) representation, the goal of the attitude observers is to force

R̂ → R, which is equivalent to R̃ → I. In terms of the unit-quaternion, as discussed

in Section 2.1.3, this objective has two (antipodal) solutions Q̃ = (±1,0). The fact

that Q̃ = (1,0) implies Q̂ = Q which is clearly desired. The fact that Q̃ = (−1,0)

implies Q̂ = −Q, which implies the relative orientation of B with respect to I differs

by an angle of rotation equal to 2π, and therefore also satisfies the objectives.

3.3.2 Vector Measurements

Let ri, i = 1, 2, ..., n, denote a set of inertial vectors and let bi = Rri denote the

measurement of the vector ri. Using the attitude estimate R̂ = R(Q̂), we define the

measurement estimate as b̂i = R̂ri, and the measurement error as b̃i = b̂i − bi. We

also define two particularly useful functions which are given by

zγ :=
n∑
i=1

γiS(b̂i)bi, (3.26)
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W := −
n∑
i=1

γiS(ri)
2, (3.27)

where γi are strictly positive constants. The vector zγ provides a useful corrective

term in the estimator feedback since this vector is comprised by the cross-products

of the actual and estimated vector measurements, or bi and b̂i, respectively. This is

intuitive since a straightforward choice for the axis of rotation to force b̂i → bi is the

vector which is orthogonal to both vectors.

In some cases we require that the inertial vectors ri satisfy some requirements

which are stated in the following assumption.

Assumption 3.2. The vectors ri, i = 1, 2, ..., n, are known and constant in an inertial

frame I, and contain at least two non-collinear vectors.

We now propose the following Lemma which identifies some useful characteris-

tics of the functions given by (3.26) and (3.27).

Lemma 4 (Tayebi et al. (2011)). Consider a set of vectors bi, i = 1, 2, ...n, which are

measured in the body-frame B, corresponding to n inertial vectors ri, which satisfy

Assumption 3.2. Assume the parameters γi are strictly positive. Then,

(a) The matrix W defined by (3.27) is positive-definite.

(b) The following property holds

zγ :=
n∑
i=1

γiS(b̂i)bi = −2R̂(η̃I − S(q̃))Wq̃, (3.28)

(c) zγ = 0 is equivalent to (η̃ = 0, q̃ = ±v) or (η̃ = ±1, q̃ = 0), where v is a

unit-eigenvector of the matrix W defined by (3.27).
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The proof for this Lemma is given in Appendix A.1.2 on page 148.

Based upon this framework, we propose two types of attitude observers. The

first observer, given in Section 3.3.3, uses the vector measurements directly, where the

observer discussed in Section 3.3.4 uses a filtered version of the vector measurements.

The latter observer may be better suited in practical situations, for example when

the vector measurements are contaminated with noise.

3.3.3 Vector-Measurement Based Attitude Observer

Using the framework previously defined, we now propose an observer based upon the

vector measurements. The estimation laws are given as follows:

˙̂
Q =

1

2

 q̂T

η̂I + S(q̂)

 β, (3.29)

β = ω − zγ , (3.30)

where zγ is given by (3.26). Let Q̃ = (η̃, q̃) denote the attitude error as defined by

(3.21), and consider the following proposition.

Proposition 2 (Tayebi et al. (2011)). Consider the system defined by (3.18) where we

apply the observer (3.29)-(3.30), with n ≥ 2 vector measurements bi, corresponding

to n inertial vectors ri, i = 1, 2, ...n. Let Assumptions 3.1 and 3.2 be satisfied. Then,

(a) limt→∞ Q̃(t) = (sgn(η̃(t0)),0), (or equivalently limt→∞ R̃(t) = I), for almost

any initial condition except for a set of Lebesgue measure zero described by Ψ ={
Q̃ = (η̃, q̃) ∈ Q | η̃ = 0

}
.

(b) The manifold Ψ is invariant and non-attractive.
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(c) If Q̃(t0) ∈ Ψ, then Q̃(t) ∈ Ψ for all t ≥ t0 and limt→∞ Q̃(t) = (0,±v), where v

are the unit eigenvectors of W .

Sketch of Proof

(For a complete proof please see Appendix A.2.2 on page 150)

Using the vector measurement error b̃i = b̂i − bi we construct the Lyapunov

function candidate

V =
1

2

n∑
i=1

γib̃
T
i b̃i, (3.31)

which yields the negative semi-definite result for the time-derivative V̇ = −zTγ zγ .

Since ω and β are bounded, V̈ is bounded, and therefore Barbalat’s Lemma implies

zγ → 0. Invoking Lemma 4 we find this corresponds to the desired equilibria (η̃ =

±1, q̃ = 0) and the undesired equilibria (η̃ = 0, q̃ = ±v). To show that Ψ is invariant,

and the undesired equilibria are unstable, we study the dynamics of η̃2. In fact, we

show that for all η̃(t0) ̸= 0, |η̃| is always increasing and therefore η̃(t) converges to

sgn(η̃(t0)). In the case where η̃ = 0, we show ˙̃η = 0 which shows the invariance of

Ψ. Therefore, in the case where η̃(t0) = 0, Lemma 4 implies limt→∞ η̃(t) = 0 and

limt→∞ q̃(t) = ±v.

Remark 4. As discussed in the proof, there are two antipodal equilibrium solutions

given by (η̃ = ±1, q̃ = 0), which both correspond (in terms of the SO(3) parameter-

ization) to R̃ = R(Q̃) = I3×3. However, since both antipodal equilibrium solutions

are asymptotically stable, the equilibrium point R̃ = I3×3 is not homoclinic and the

unwinding phenomenon is avoided. However, the invariant manifold Ψ exists which

divides the quaternion space into two halves, with each half containing one of the two

stable equilibria. All trajectories which start on this manifold stay there for all time,

and converge to one of the hyperbolic equilibria which are contained in Ψ. Despite this
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disadvantage, this observer offers superior performance when compared to the comple-

mentary filter since the unwinding problem is avoided, and the attitude reconstruction

is no longer required.

3.3.4 Attitude Observer Using Filtered Vector

Measurements

In practical situations the vector measurements bi are likely to be contaminated with

noise. A well known practice is to use low-pass filtering of the sensor data before

applying the signals to the attitude observer, which is done without rigorous proofs

of stability. In this section we extend the results given in Section 3.3.3 by including

a low-pass filter which is applied to the sensor data as part of the attitude observer.

We let ψ ∈ R3 denote the filter state-variable, and consider the following observer

˙̂
Q =

1

2
A(Q̂)β, (3.32)

β = ω − αψ, (3.33)

ψ̇ = −αψ + αzγ , (3.34)

where α ∈ R is chosen to be strictly positive and zγ is defined in Lemma 4. Let

Q̃ = (η̃, q̃) ∈ Q denote the attitude error as defined by (3.21).

Proposition 3 (Tayebi et al. (2011)). Consider the system (3.18) with the observer

(3.32)-(3.34). Let Assumptions 3.1 and 3.2 be satisfied. Then,

(a) The estimator has the following equilibria: (η̃ = ±1, q̃ = 0, ψ = 0) and (η̃ =

0, q̃ = ±v, ψ = 0).
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(b) There exists γ̄i, such that for all γi > γ̄i, the equilibria (η̃ = ±1, q̃ = 0, ψ = 0)

are almost globally asymptotically stable and the equilibria (η̃ = 0, q̃ = ±v, ψ = 0)

are unstable.

Sketch of Proof:

(For a complete proof please see Appendix A.2.3 on page 151)

Using the vector measurement error b̃i = b̂i − bi we construct the Lyapunov

function candidate

V =
1

2

n∑
i=1

γib̃
T
i b̃i, (3.35)

which in light of (3.32) and (3.34) has the time-derivative V̇ = −αψTψ. Due to the

boundedness of ψ̇, Barbalats lemma implies ψ → 0 and zγ → 0. Invoking Lemma

4, we find this corresponds to the desired equilibria (η̃ = ±1, q̃ = 0, ψ = 0) and the

undesired equilibria (η̃ = 0, q̃ = ±v, ψ = 0). To show that the undesired equilibria

are unstable we use the Chetaev function candidate Vc = η̃δ where δ = q̃TR̂Tψ. We

show that there exists a neighborhood U (which contains the undesired equilibria

characterized by Vc = 0) where Vc > 0 and V̇c > 0, and therefore the undesired

equilibria are unstable.

Remark 5. The use of the low-pass filter, in addition to improving the performance of

the observer in the presence of noise, can also be used to destroy the invariance of the

manifold Ψ = {Q̃ = (η̃, q̃) ∈ Q | η̃ = 0}. In fact, if δ(t0) = q̃(t0)
TR̂(t0)

Tψ(t0) ̸= 0,

the manifold Ψ is non invariant, which causes trajectories which start on this set to

converge to one of the two desired equilibria.
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3.3.5 Attitude Estimation Using GPS and IMU

Measurements

In the previous section we described an observer which uses a set of vector mea-

surements, which were assumed to be constant and known in an inertial frame of

reference. The applicability of this type of observer may be questioned in situations

where there are a limited number of sensors that offer measurements which satisfy

these criteria.

To address this problem, we now focus on observers which use the accelerometer

to measure the acceleration of the body-fixed frame (and not only the gravity vector).

This type of observer utilizes measurements from an IMU (containing a magnetome-

ter, accelerometer and a gyroscope) in addition to a GPS which is used to obtain

measurements of the linear velocity of a body-fixed frame.

Let v ∈ R3 denote the linear velocity of B with respect to I, whose coordinates

are known in frame I (or measured with a GPS), and let Q ∈ Q and R = R(Q) ∈

SO(3) describe the orientation of B with respect to I. We extend our dynamical

model to include the dynamics of v. Therefore, our system is now governed by

v̇ = ge3 + r2, (3.36)

Q̇ =
1

2

 −qT

ηI3×3 + S(q)

ω, (3.37)

where ω is the body-referenced angular velocity of B, and r2 ∈ R3 is the inertial-

referenced apparent acceleration of B with respect to I. Let b1 = Rr1 ∈ R3 denote the

output of a magnetometer which is rigidly attached to B, where r1 ∈ R3 is the known

magnetic-field of the surrounding environment. We also make use of an accelerometer
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which is rigidly attached to B which provides the measurement

b2 = R(v̇ − ge3) = Rr2. (3.38)

The previous observers (given in Sections 3.3.3 and 3.3.4) can not be used since the

inertial vector r2 is not known. To address this problem, both observers make use of

the additional adaptive state vector v̂ ∈ R3. Furthermore, we also define the following

error function

ṽ = v − v̂. (3.39)

The adaptive state v̂ and error function ṽ are very useful since, for an appropriate

choice of the estimation law ˙̂v, the error signal ṽ can be viewed as a filtered version of

the system acceleration, and therefore contains information about the unknown signal

r2. Consequently, the signal ṽ can be used by the observer (in some manner) instead

of the vector r2. This point will be discussed later in more detail. The difficulty of

our objective can be somewhat simplified by placing some realistic constraints on the

value of r2, which are stated in the following assumptions.

Assumption 3.3. There exists positive constants c1 and c2 such that ∥r2∥ ≤ c1, and

∥ṙ2∥ ≤ c2.

Assumption 3.4. Given two positive constants, γ1 and γ2, there exists a positive

constant cw = cw(γ1, γ2) such that cw < λmin(W ) where

W = −γ1S(r1)2 − γ2S(r2)
2. (3.40)

The second assumption is satisfied if r2 is non-vanishing and is not collinear to
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the magnetic field vector r1. In the case where r2 = 0, the system velocity dynamics

become v̇ = ge3 (which corresponds to the rigid body being in a free-fall state) which

is not likely in normal circumstances. When this assumption is satisfied, it follows

that W is positive definite (for justification of this point, the reader is referred to

Lemma 4 and the corresponding proof). Furthermore, if this assumption is satisfied,

the value of cw > 0 can be arbitrarily increased by increasing the values of γ1 and γ2.

In addition to these assumptions, we place the following constraint on the sys-

tem linear velocity signal.

Assumption 3.5. The system linear velocity v is bounded.

Although the third assumption is not needed to show convergence of the attitude

estimates, we include this requirement in order to ensure all signals involved with the

attitude observers remain bounded (internal stability).

3.3.5.1 Second Order Observer Using GPS and IMU Measurements

We propose the following second-order observer:

˙̂
Q =

1

2

 −q̂T

η̂I + S(q̂)

 (ω + σ) , (3.41)

σ = −γ1S(R̂r1)b1 − γ2k1S(R̂ṽ)b2, (3.42)

˙̂v = k1ṽ + ge3 + R̂Tb2 +
1

k1
R̂TS (σ) b2, (3.43)

where k1, γ1, γ2 > 0, ṽ = v − v̂, R̂ = R(η̂, q̂) is defined using (2.8) and S(·) is the

skew-symmetric matrix defined by (2.19). Let Q̃ = (η̃, q̃) define the unit-quaternion

which describes the attitude error as defined by (3.23).
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Theorem 3.1 (Roberts and Tayebi (2011b)). Consider the observer (3.41) - (3.43)

used with the system defined by (3.36)-(3.37), where Assumptions 3.1, 3.3, 3.4, and

3.5 are satisfied. Then for all initial conditions η̃(t0) ̸= 0 (or equivalently ∥q̃(t0)∥ ̸=

1), there exists a strictly positive constant κ1 > 0 such that for all k1 > κ1, all

associated observer signals are bounded, and (ṽ(t), q(t), η̃(t)) converges exponentially

to (0, 0, sgn(η(t0))).

Sketch of Proof:

(For a complete version of the proof please see Appendix B.1 on page 155)

We first define the error function r̃2 = k1ṽ − (I − R̃)r2. In order to show that

the error signals r̃2 and q̃ converge to zero, we construct the Lyapunov function

V =
γ

2
r̃T2 r̃2 + γq q̃

Tq̃ =
γ

2
r̃T2 r̃2 + γq(1− η̃2), (3.44)

which we differentiate with respect to time along the trajectories of the system. We

then show that, based upon a suitable choice for the estimator gain k1, there exists

a set D such that V̇ ≤ 0 if q̃ ∈ D. Using the set D and the fact that
√

V/γq ≥ ∥q̃∥,

we find an estimate of the domain of attraction, which we denote as U , where all the

estimator trajectories are guaranteed to converge to the equilibrium (η̃ = ±1, q̃ =

0, r̃2 = 0). Using these results we show that there exists an upper bound for the error

function ∥q̃(t)∥ < 1 for all t ≥ t0. Consequently, we find that V̇ ≤ −ϵvV , where ϵv

is a strictly positive constant that depends on the estimator parameters and initial

conditions, and therefore the estimator trajectories converge exponentially.
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3.3.5.2 Third-Order Observer Using IMU and GPS Measurements

For the second observer we introduce another adaptive state denoted by ψ ∈ R3. The

observer laws are chosen as follows:

˙̂
Q =

1

2

 −q̂T

η̂I + S(q̂)

 (ω + σ) , (3.45)

σ = −γ1S(R̂r1)b1 − γ2S(R̂r̂2)b2, (3.46)

r̂2 = k2ψ + k3ṽ, (3.47)

ψ̇ = −k4ψ +
1

k2
R̂TS(b2)σ − k5ṽ, (3.48)

˙̂v = k1ṽ + ge3 + R̂Tb2 + k6ψ, (3.49)

where k1, k3, γ1, γ2 > 0, ṽ = v − v̂, R̂ = R(Q̂) as defined by (2.8) and S(·) is the

skew-symmetric matrix defined by (2.19). Let Q̃ = (η̃, q̃) as defined by (3.21).

Theorem 3.2 (Roberts and Tayebi (2011b)). Consider the system (3.36)-(3.37),

with the observer given by (3.45)-(3.49), where we choose the following values for the

gains k5 and k6

k5 =
k3(k3 − k1)

k2
+
k4 − k3
k2k3γr

, k6 =
k2(k3 − k4)

k3
, (3.50)

where γr > 0. Let Assumptions 3.1, 3.3, 3.4, and 3.5 be satisfied. Then for all

initial conditions η̃(t0) ̸= 0 (or equivalently ∥q̃(t0)∥ ̸= 1), there exists strictly positive

constants κ3 > 0 and κ1 > κ3 − k4 > 0, such that for all k1 > κ1 and k3 > κ3, all

associated observer signals are bounded, and (ṽ(t), q̃(t), η̃(t)) converges exponentially

to (0, 0, sgn(η̃(t0))).

Sketch of Proof:
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(For a complete version of the proof please see Appendix B.2 on page 159)

We first consider the error function r̃2 = k2ψ + k3ṽ + (R̃ − I)r2, and propose

the following Lyapunov function candidate

V =
γ

2

(
ṽTṽ + γrr̃

T
2 r̃2

)
+ γq(1− η̃2) =

γ

2

(
ṽTṽ + γrr̃

T
2 r̃2

)
+ γq q̃

Tq̃, (3.51)

which we differentiate with respect to time along the trajectories of the system. Using

this new Lyapunov function, the remaining steps of the proof are the same as the

previous observer, except in this case, we also require a condition on the gain k3 (in

addition to k1).

Remark 6. For both observers we show that there exists an upper bound ∥q̃(t)∥ < 1

for all t ≥ t0, and therefore η̃ is guaranteed to never cross zero (due to the unit-

norm constraint of the unit-quaternion). Consequently, we find η̃(t) → sgn(η̃(t0))

as t → ∞, and therefore the two equilibrium solutions (η̃ = ±1, q̃ = 0, r̃2 = 0) are

both asymptotically stable. Therefore, the problem of unwinding is avoided. How-

ever, unlike the results we obtained for observers given in Sections 3.3.3 and 3.3.4,

we can no longer state that the observer dynamics are almost globally stable, since

there exists a set (of finite Lebesque measure) from which the system trajectories are

not guaranteed to converge to one of the desired equilibria. Instead, we show that

the domain of attraction can be arbitrarily increased to contain almost any initial

condition. Although this is similar to semi-global stability, we refrain from the use of

this term, since there does exist a set Φ = {(r̃2, ṽ, q̃) ∈ R3×R3×R3 | ∥q̃∥ = 1} which

cannot be reached by arbitrarily increasing the domain of attraction, which violates

the definition of semi-global stability.
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3.4 Simulations

3.4.1 Complementary Filter

Simulation results were performed for the complementary filter given by (3.12)-(3.14)

with the system (3.18). The gyroscope was used to measure ωg = ω + ωb where the

bias was specified as ωb = [0.01,−0.01, 0.005]Trad/s and the angular velocity was

chosen as ω = (sin(0.1t), 0.2 sin(0.2t+ π), 0.1 sin(0.3t+ π/3)) rad/s. The estimator

gains were chosen as Γ1 = Γ2 = 10I3×3. The attitude estimate was initialized

with Q̂(t0) = [1, 0, 0, 0]T, with the system initial attitude was specified as Q(t0) =

[0.5, 0.5, 0.5, 0.5]T. The simulations results are shown by Figure 3.1.

3.4.2 Vector Measurement Based Attitude Observer

Simulation results are provided for the two observers specified by (3.29)-(3.30) (vector-

measurement-based) and (3.32)-(3.34) (filtered-vector-measurement based) with the

system specified by (3.18). The body-referenced angular velocity was specified as

ω = (sin(0.1t), 0.2 sin(0.2t+π), 0.1 sin(0.3t+π/3))T which was assumed to be ideally

measured using a gyroscope (no bias). Two non-collinear vector measurements were

used, which were assigned the values r1 = [1, 0, 1]T and r2 = [0, 0, 1]T. For both

simulations the observer gains were chosen as γ1 = γ2 = 5, and the observers were

initialized with Q̂(t0) = [1, 0, 0, 0]T, with the system initial attitude was specified as

Q(t0) = [0.5, 0.5, 0.5, 0.5]T. For the filtered-vector-measurement based observer, we

used the value α = 3 and initialized the filter state vector as ψ(t0) = [0, 0, 1]T. The

plots for these simulations are provided by Figure (3.2) for the vector-measurement

based attitude observer, and by Figure (3.3) for the filtered-vector measurements.
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Figure 3.1: Simulation Results for Complementary Filter
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Figure 3.2: Simulation Results for Vector-Measurement-Based Attitude Observer
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Figure 3.3: Simulation Results for Filtered-Vector-Measurement-Based Attitude
Observer



Chapter 3: Attitude Reconstruction and Estimation 63

3.4.3 Attitude Observer Using IMU and GPS

Measurements

Simulations were performed to test the performance of the two proposed attitude ob-

servers. For both simulations the trajectory of the rigid-body position was specified

as p(t) = (4 sin(0.5t+ 0.5), 3 sin(1.25t+ 0.5), sin(0.5t+ 0.5))m, from which the rigid-

body velocity v and apparent acceleration r2 were obtained. The angular velocity of

the rigid body was chosen as ω = (sin(0.1t), 0.2 sin(0.2t+ π), 0.1 sin(0.3t+ π/3)) rad/s.

The inertial-referenced ambient magnetic field vector was chosen as r1 = [0.05, 0, 0.5]T.

Figures (3.5a)-(3.5c) give the simulation results for the first observer, and (3.6a)-(3.6d)

give the results for the second observer.

The following initial conditions were used for both simulations: v̂(t0) = [0, 1, 0]T,

η̂(t0) = 1, q̂ = [0, 0, 0]T, η(t0) = 0 and q(t0) = [1, 0, 0]T. This choice corresponds

to a value of the attitude error η̃ = 0 and q̃ = [1, 0, 0]T, which is the worst case

scenario where the stability of the proposed observers is not guaranteed according

to our proof. This initial conditions have been selected on purpose to show that the

proposed observers did not fail even in this extreme case.

The following gains were used for observer 1: k1 = γ1 = γ2 = 10. For the

second observer the following gains were used: k1 = γ1 = γ2 = 10, k2 = k3 = 2 and

k4 = 1. The gains k5 and k6 were chosen to satisfy (3.50).

3.4.4 Comparison of Attitude Observers

In addition to the simulations previously presented, additional simulations have also

been performed in order to determine the performance of the proposed attitude ob-

servers in the presence of noise and disturbances. For each simulation it is assumed

that a magnetometer and an accelerometer are used to provide the only two vector
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IMU and GPS Based Attitude Observer
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ṽ
(m

/s
)

 

 
x
y
z

(b) Velocity Error ṽ
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Figure 3.5: Simulation Results for Second Order IMU/GPS Based Attitude Observer
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Figure 3.6: Simulation Results for Third Order IMU/GPS Based Attitude Observer

measurements (which is often the case). In order to determine the effect of rigid-

body accelerations on the performance of attitude estimates (since the accelerome-

ter is used), the simulation also considered accelerations of the rigid-body. A plot

of the rigid-body position trajectory which was used in the simulation is given by

Figure 3.7. The rigid-body position was chosen in such a manner that the rigid-

body experienced a time-interval of zero-acceleration, followed by a short period of

significant accelerations (for instance, when the rigid-body makes a turn). The re-

sulting inertial-referenced apparent acceleration vector r2 is shown in Figure 3.8.
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The angular velocity for the rigid-body used for the simulation was chosen to be

ω = [sin(0.1t), 0.2 sin(0.2t+ π), 0.1 sin(0.3t+ π/3)]T.

(a) Rigid-body Position vs Time. (b) 3D Plot of Rigid-body Position Trajectory

Figure 3.7: Rigid-body position for comparison simulation.

0 5 10 15 20 25 30 35 40
−12

−10

−8

−6

−4

−2

0

2

4

6

8

t(s)

r 2
(m

/
s2

)

 

 
x
y
z

Figure 3.8: Inertial-referenced apparent acceleration of rigid-body.

To further demonstrate the effectiveness of the proposed observers, noise and

other sensor inaccuracies were included in the comparison simulation. We assumed

the gyroscope sensor has a constant bias of ωb = [0.1, 0.05, − 0.2] deg/s. Zero-mean

Gaussian noise was also injected into the accelerometer, magnetometer, gyroscope

and GPS velocity measurements. Since GPS sensors can often have low-sampling

rates, we also assumed that the GPS sensor operated with a sampling rate of 5Hz

and had a time-delay of 0.1s. These values for sampling rate and time-delay are quite

conservative and there does exist sensors which offer superior performance, for exam-
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ple the NovAtel OEM615 GPS receiver. However, we chose these non-ideal values in

order to demonstrate the robustness of the proposed observers. Table 3.1 lists the

standard deviation values used to model the noise on each sensor, and Figure 3.9

shows examples of the sensor outputs including the effect of noise and disturbances.

Sensor Noise Standard Deviation
Accelerometer Magnetometer Gyroscope GPS

1 m/s2 0.1 G 0.05 rad/s 0.1 m/s

Table 3.1: Sensor Noise Standard Deviation Values

In order to compare the results associated with the different observers, for each

simulation the observers were initialized with the initial condition Q̂(t0) = [1, 0, 0, 0]T,

and the same initial condition for the actual attitude was used, which was specified to

be Q(t0) = [0.5, 0.6124, 0.6124, 0]T. For the complementary filter the bias estimate

was initialized using ω̂b = [0, 0, 0]T. For the two IMU/GPS based observers the initial

condition v̂(t0) = [0, 1, 0]T was used, and for the third-order IMU/GPS based observer

the initial condition ψ(t0) = [1, 0, 0]T was used.

When tuning each observer, in general the gains were chosen to be as low as

possible in order to avoid amplifying the sensor noise. The gains used for the com-

plementary filter were chosen to be Γ1 = Γ2 = 30I3×3 where the gains for the vector

measurement based observer were chosen as γ1 = γ2 = 0.01. The wide range of gains

between these two observers was due to the slow convergence of the complementary

filter. For the filtered-vector measurement based observer the gain α = 20 was used.

For the second order IMU/GPS based observer the gains were chosen as k1 = 2 and

γ1 = γ2 = 0.01. For the third order IMU/GPS based observer the gains were chosen

to be γr = 1, k1 = 2, k2 = 0.02, k3 = 0.02, k4 = 0.01 and the gains k5 and k6 were

chosen to satisfy (3.50).

Figure 3.10 shows the norm of the attitude error (vector part of the quaternion
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(a) Magnetometer Measurement b1 (G) (b) Accelerometer Measurement b1 (m/s2)

(c) Gyroscope Measurement (rad/s) (d) GPS Velocity Measurement (m/s)

Figure 3.9: Plots for Sensor Outputs (including noise and disturbances)

Q̃) for the complementary filter, vector measurement based observer, and the filtered-

vector-measurement based observer. The plots suggests that the performance of the

complementary filter is dramatically affected by the noise and other disturbances,

while the two vector-measurement based observers performed quite well in recovering

an accurate estimate of the rigid-body attitude. The plots also demonstrate the

ability of the two vector-measurement based observers to attenuate or reject noise.

However, the vector-measurement based observers experienced a significant increase

in the attitude error at the approximate time t = 20s, which we can see from Figure 3.8
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is the time when the rigid-body is accelerating. In this case, the observer estimation

error is increased significantly since the accelerometer is assumed to measure only the

forces due to gravity and not forces due to linear acceleration.

Figure 3.11 shows the norm of the attitude error (vector part of the quater-

nion Q̃) for the filtered-vector-measurement based observer (also included in previous

plot) and the two IMU/GPS Based Observers. As expected, the plots show the two

IMU/GPS based observers demonstrate a significant improvement in performance

during the time interval where the rigid-body is accelerating. The plots show a small

increase in the attitude error for the IMU/Based observers during the period of accel-

erations, which is due to the simulated values for time-delay and sampling time for the

GPS sensor. In fact, by decreasing the values for sampling time and time-delay, the

attitude error associated with the GPS/IMU observers would improve considerably.
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3.5 Concluding Remarks

In this chapter we proposed several attitude estimation and reconstruction strategies.

In one way or another, all of the proposed methods require the use of vector mea-

surements. The attitude reconstruction algorithms offer closed form-solutions for the

orientation of a rigid-body by using one or more vector measurements. In the case

where a single vector measurement is available, to the best of our knowledge it is not

possible to reconstruct (in closed-form) the orientation of a rigid-body1. Therefore,

the solution provided in Section 3.1.1 does not necessarily fully describe the orien-

tation of a rigid-body. However, this result is still useful, especially in the position

control of VTOL UAVs, which is discussed later in Section 4.3.

1. Although we are currently unaware of any solutions for the single-vector attitude
reconstruction problem (closed-form solutions), there does exist attitude observers which
can yield estimates of rigid-body attitude using only a single vector measurement. This
problem has been solved, for example see Mahony et al. (2009), by assuming the system
body-referenced angular velocity is persistently excited in order to fully recover the attitude
of the rigid-body.
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In most situations involving the attitude estimation of mobile robotics, the mag-

netometer and accelerometer sensors have been used to provide vector measurements,

in order to provide body-frame coordinates of the Earth’s magnetic field and gravity

vectors, respectively. However, since the accelerometer also measures forces due to

linear accelerations, that attitude reconstruction algorithms are thought to be more

accurate at low frequencies (i.e., when the system is not moving). Alternatively, the

gyroscopes are considered to be accurate at higher frequencies, since problems associ-

ated with gyroscopic drift occurs due to a constant sensor bias (low frequency). This

motivated the research community to combine the use of the attitude reconstructions

and the integration of the gyroscope, in order to take advantage of the characteristics

of each method (i.e., frequency versus accuracy), which led to the introduction of

the complementary filter, for example the observer (or filter) given in Section 3.2.

However, in theory, the attitude estimates obtained from a complementary filter are

shown to converge to the value obtained from the attitude reconstructions, and not

necessarily to the actual attitude. Therefore, when using complementary filters, one

must assume the system eventually comes to rest in order to guarantee asymptotic

convergence of the estimates to the actual attitude.

Subsequently, new observers were also proposed which did not require the use

of the attitude reconstruction algorithms. Instead, these new observers use the vec-

tor measurements directly in the attitude estimation laws, for example the observer

given in Section 3.3.3. This observer was able to avoid the problem of unwinding,

which negatively affected the complementary filter proposed in Section 3.2. However,

the new vector measurement based observer is affected by an invariant manifold,

which contains a set of trajectories which do not converge to one of the two desired

equilibria. Fortunately, the invariance of this manifold can be broken, by increasing

the order of the observer, for example the observer given in Section 3.3.4. Another
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attractive characteristic of this result is that the vector measurements are applied

to a low-pass filter as a part of the observer design, which is desirable in practice

(i.e., when the vector measurements are perturbed by noise). Unfortunately, these

vector-measurement based attitude observers still depend on an assumption that the

inertial vectors are known and constant in the inertial frame, which may be violated

especially in the case where the accelerometer is used.

Control Scheme Advantages Disadvantages

Complementary
Filter

• Gyroscope bias estima-
tion.

• Susceptible to unwinding.
• Requires high gains.
• Sensitive to disturbances
and noise.

Observers using
vector measure-
ments

• Avoids unwinding.
• Does not require recon-
struction of attitude.

• Affected by rigid-body lin-
ear accelerations.

Observer using
filtered vector
measurement

• Proves performance of ob-
servers which filter sensor
data.

• Higher order.
• Trade off between
noise rejection and rate of
convergence.
• Affected by rigid-body lin-
ear accelerations.

IMU/GPS
Based Ob-
servers

• Greatly simplified proofs
of performance (with re-
spect to existing observers).

• Dependant on linear veloc-
ity measurement.

• Allows the use of ac-
celerometer in the presence
of linear accelerations.

Table 3.2: Comparison of Estimation Strategies

This problem has motivated the research community to use the accelerometer

in a more realistic manner: to measure the body-referenced system apparent acceler-

ation, which is a combination of gravity forces and forces due to linear acceleration

of the rigid-body. This problem is complicated by the fact that we don’t know the

inertial-frame coordinates of the apparent acceleration vector (we only know body-
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referenced coordinates as obtained by the accelerometer measurement). Instead, we

rely on measurements of the system linear velocity which is intrinsically related to

the apparent acceleration (i.e., through an integral). Therefore, using the linear ve-

locity measurements with a special filter, we obtain information about the apparent

acceleration vector, which can be used with the accelerometer measurement to ob-

tain information about the system attitude. In theory, we show these velocity-aided

attitude observers given in Section 3.3.5 ensure that the attitude estimates converge

asymptotically to the actual rigid-body attitude in a specified domain of attraction.

This domain of attraction can be arbitrarily increased to contain almost any set, ex-

cept in the case where the attitude estimates are rotated 180 degrees away from the

actual system attitude. However, despite this limitation, simulation results show that

the attitude estimates converge even for this worst case scenario and for any choice

of the observer gains. Therefore, future work may involve showing stronger stability

results for these observers.
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Chapter 4

VTOL UAV Control Design

4.1 Introduction

In this chapter we consider the design and analysis of various control strategies which

can be applied to the VTOL UAV system. Although there are a number of objectives

that the research community has addressed in this area, they all can be divided into

two categories: those which are designed to control only the rotational dynamics,

and those designed to control the system translational dynamics (position, velocity).

In the former case, this problem is more generally referred to as rigid-body attitude

control, and can refer to several control objectives, for example forcing the system

attitude to achieve the hover-configuration (attitude stabilization), forcing the system

attitude to a desired orientation (attitude regulation), or forcing the rigid-body atti-

tude to converge to a desired attitude trajectory (attitude tracking). To accomplish

these objectives the system attitude is always assumed to be known, and in many

cases the system angular velocity is required, although a number of researchers have

been able to remove the requirement of the angular velocity. The attitude control

laws typically assume that the orientation of the rigid-body is fully actuated by three

orthogonal moments which are applied to the rotational system dynamics. Together

these moments are commonly referred to as the torque control-input.

In Section 4.2 we propose a control strategy for the attitude stabilization prob-

lem. This control strategy is noteworthy since it does not require the knowledge
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of the system angular velocity, and also does not require direct measurement of the

system orientation. Rather, it uses vector measurements (which would normally be

applied to an attitude estimation scheme) in order to develop the control laws. Pre-

vious angular-velocity-free attitude control strategies required the knowledge of the

system attitude, which in practice is typically obtained using an attitude estimation

scheme (for example the observers discussed in Section 3.3), which require the mea-

surement of the system angular velocity. Therefore, this strategy may be the first

truly angular-velocity-free attitude control law.

When considering the control of the system translational dynamics, typically,

only a single additional control input is assumed to be available: the system thrust

(generated by the system rotors or propellers), which is normally assumed to be

directed along the body-referenced vertical axis. As a consequence of the limited

number of available control inputs, the system translational dynamics are highly un-

deractuated, and must be controlled by using the system orientation to manipulate

the direction and magnitude of the thrust-vector (the body-referenced vertical thrust

vector expressed inertial frame coordinates). Therefore, the control of the transla-

tional dynamics also require some form of attitude control in order to satisfy the

objectives. There are a number of objectives involving the control of VTOL UAV

translational dynamics, perhaps the most common being position regulation or posi-

tion tracking, which aim to force the system position to a constant desired position,

or to a desired position trajectory, respectively. This is the focus of Section 4.3.

A necessary step for the position control problem is to obtain a method to

extract the magnitude and direction of the thrust from a given desired linear acceler-

ation (which achieves the position control objectives). Since this desired orientation

is dependant on a single vector (i.e., the vector which describes the desired accelera-

tion), we extend the results obtained for the extraction algorithm proposed in Section
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3.1.1 for the position control problem, which is given in Section 4.3.1.1. The attitude

extraction algorithm that is presented requires some mild assumptions on the desired

acceleration. In order to ensure that these assumptions are satisfied, we specify the

virtual control law for the desired acceleration using expressions which are bounded

a priori. This is the purpose of the bounded functions defined in Section 2.3.2. Re-

lying on the thrust and attitude extraction method, we derive two adaptive position

tracking controllers in Section 4.3.2, which are shown to satisfy the position tracking

objective, even in the presence of constant disturbance forces and torques which are

applied to the system. Both controllers use a projection based adaptive mechanism to

avoid the singularity in the attitude extraction. The first proposed controller, given in

Section 4.3.2.4, achieves the position-tracking objective for any initial condition of the

state, whereas the second controller, given in Section 4.3.2.5, achieves the position-

tracking objective for a set of initial conditions which are dependant on the control

gains. The latter controller is included, since it is less complicated than the prior case

and may be more suitable to use in practice. During the process of developing the

control laws, the disturbance forces are assumed to be constant in the inertial frame.

In this case, both control laws are proven to achieve the position-tracking objective

provided that an upper bound of the disturbance force is known a priori (although the

actual magnitude of this disturbance force may be less than this limit). To evaluate

the robustness the proposed controller when the disturbance force is not constant,

simulation results are provided, which considers a model of the aerodynamic forces

that are exerted on the system in the presence of a uniform external wind, which is

assumed to have a constant velocity.

The adaptive position tracking controllers which are discussed require that sev-

eral system states are measured or known (for example, the system position, velocity

and angular velocity), in addition to the system attitude. However, the system ori-
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entation is likely provided using some attitude estimation scheme which is dependant

on a set of vector measurements. Unfortunately, the existing position control laws

(including the ones mentioned above) do not consider the estimation scheme as a

component of the system, which may lead to unexpected system performance due

to unmodeled dynamics and other errors associated with the estimation scheme. To

address this problem, in Section 4.3.3 we propose a new type of position tracking con-

trol law which does not require direct measurement of the system attitude. Instead

(similar to the attitude stabilization controller described above), we use the vector

measurements directly in the control scheme, and therefore an attitude observer is no

longer required.

In the case where a vector measurement is provided using the accelerometer, the

above position controller may not be applicable since the accelerometer also measures

forces due to system linear acceleration (in addition to the gravity vector). However,

in Section 4.3.4 we discuss a new type of position controller which uses the accelerom-

eter to measure the system apparent acceleration instead of only the gravity vector.

Consequently, this position controller may be better suited for position control of

VTOL UAVs, which are likely to be subjected to linear accelerations.

To aid in the development of the control laws, we first recall the two frames

I and B, and let Q and R = R(Q) denote the unit-quaternion and rotation matrix,

respectively, which describes the orientation of B with respect to I (orientation of

aircraft). In the case where the control laws are derived using vector measurements

(where we assume that R and Q are unknown), we denote the inertial vectors ri,

i = 1, 2, ..., n, which are measured in B to yield bi = Rri. In the case where the

magnetometer and accelerometer are specifically used, we let r1 denote the ambient

magnetic field, and let r2 denote the apparent acceleration of B expressed in I.
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4.2 Vector Measurement Based Attitude

Stabilization

In this section we consider an attitude stabilization control law which uses vector

measurements. We assume that only vector measurements are available for feedback,

and therefore the control law does not depend on the direct measurement of the

system attitude or the body-referenced angular velocity. In terms of the attitude

parameterizations, our objectives are satisfied by forcing the system orientation R →

I3×3, or in terms of unit-quaternion Q→ (±1,0). Recall the model given by (2.17)-

(2.18), where we assume that the disturbance torque δr = 0, which we restate again

as follows

Q̇ =
1

2
Q⊙ (0, ω), (4.1)

Ibω̇ = u− S(ω)Ibω. (4.2)

We assume there are n ≥ 2 inertial vectors ri, i = 1, 2, ..., n, which provide the body-

frame measurements bi = Rri, where R is the rotation matrix which describes the

orientation of B. We let Q̂ ∈ Q denote an estimate of Q and define R̂ = R(Q̂) as

defined by (2.8). We define the measurement estimates b̂i = R̂ri, which are used to

define the two functions zγ ∈ R3 and zρ ∈ R3 given by

zγ :=
n∑
i=1

γiS(b̂i)bi, zρ :=
n∑
i=1

ρiS(b̂i)ri, (4.3)

and we also define the two matrices

W := −
n∑
i=1

γiS(ri)
2, Wc := −

n∑
i=1

ρiS(ri)
2. (4.4)
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Note that in the case where at least two vector measurements are non-collinear, the

matrices W and Wc are positive definite, and their eigenvalues can be arbitrarily

increased by increasing the parameters γi and ρi, respectively.

We consider the following control and estimation laws

˙̂
Q =

1

2
Q̂⊙ (0, β), (4.5)

β = −zγ , (4.6)

u = zγ − zρ. (4.7)

To represent the attitude error and vector measurement error functions, respec-

tively, we use Q̃ ∈ Q and b̃ ∈ R3 where Q̃ = (η̃, q̃) = Q⊙ Q̂−1 and b̃i = b̂i − bi.

Theorem 4.1 (Tayebi et al. (2011)). Consider the system defined by (4.1) where the

control input u is defined by (4.7). Assume that there are at least two non-collinear

vectors amongst the set of n vectors ri. Then, all signals are bounded and limt→∞ ω =

0. Furthermore, there exists kc such that for all λmin(Wc) > kc, limt→∞Q(t) =

(±1,0) for almost any initial conditions.

Sketch of Proof (For a complete proof please see appendix B.3):

We consider the error function b̃i = b̂i − bi and define the Lyapunov function

candidate

V =
1

2
ωTIbω +

1

2

n∑
i=1

(
γib̃

T
i b̃i + ρi(bi − ri)

T(bi − ri)
)
, (4.8)

which in light of the system dynamics and control laws has the time-derivative V̇ =

−zTγ zγ ≤ 0. Using these facts, one can show limt→∞ zρ = 0, which corresponds to

a set of equilibrium solutions characterized by Q = (±1,0) (desired equilibria) or

Q̃ = (0,±vc) where vc are the unit-eigenvectors of the matrix Wc. To show that the
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undesired equilibrium are unstable, we use the Chetaev function Vc = −ηδ where

δ = qTIbω. Note that Vc = 0 at the undesired equilibria. For an appropriate choice

of the gains ρi, we show that Vc > 0 and V̇c > 0 in a neighborhood of Vc = 0, which

proves the undesired equilibria are unstable.

Remark 7. This controller provides almost global stability since there exists a poten-

tially invariant manifold Ψ = {(η̃, δ) ∈ [−1, 1] × R | η̃ = 0, δ = 0} which contains

the undesired hyperbolic equilibria. However, the invariance of the manifold Ψ can be

destroyed if there exists a time t1 ≥ t0 such that δ(t1) = qT(t1)Ibω(t1) ̸= 0, at which

time the system trajectories diverge from this manifold and converge to the desired

equilibria.

4.3 Position Control of VTOL UAVs

4.3.1 Problem Formulation

In this section we consider objectives which involve the position control of VTOL

UAVs. In this case, we recall from Section 2.2 the full VTOL UAV model, given by

ṗ = v, (4.9)

v̇ = ge3 −
T

mb
RTe3 + δt, (4.10)

Q̇ =

 −qT

ηI3×3 + S(q)

ω, (4.11)

Ibω̇ = −ω × Ibω + δr + u, (4.12)
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where the thrust control input ut is given by

ut = T/mb. (4.13)

Using the model given by (4.9) through (4.12) our objective is to determine

control laws for the system thrust control input ut and control torque u to force the

position p to track some desired reference trajectory, which we denote as pd ∈ R3.

We place some mild conditions on the desired trajectory pd which is stated in the

following assumption.

Assumption 4.1. The second, third and fourth derivatives (with respect to time)

of the reference trajectory pd are uniformly continuous. Furthermore, there exists

positive constants δr and δrz such that ∥p̈d∥ ≤ δr and eT3 p̈d < δrz < g.

Given the reference trajectory pd we define the following error signals

p̃ = p− pd, position error , (4.14)

ṽ = v − ṗd, velocity error . (4.15)

As shown by (4.9)-(4.12), the system is underactuated, since there are only four

control inputs (ut, u). As expected for this type of system, the dynamics of the linear

velocity v are actuated by system thrust input ut and system attitude R. To clearly

define this relationship we define the function

µ = ge3 − utR
Te3, (4.16)

which is the acceleration of the system due to gravity and the system thrust expressed

in the inertial frame, where we note that v̇ = µ+δt. In order to achieve the objectives
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Figure 4.1: Attitude Extraction Algorithm for Position Control

of the position control law, we are forced to use the system attitude R, or Q, in order

to control the system translational dynamics. Let Qd = (ηd, qd) ∈ Q denote the

desired orientation (given in terms of the unit-quaternion) which satisfies the desired

translational dynamics, and let Rd = R(Qd) ∈ SO(3) denote the corresponding

rotation matrix as defined by (2.8). Then the desired value of µ, which we denote as

µd, is defined as

µd = ge3 − utR
T
d e3, (4.17)

where we also define the error function

µ̃ = µ− µd. (4.18)

The control strategy is based upon the following steps:

(i) Find the expression for the virtual control law µd which satisfies the translational

dynamics.

(ii) Find the required system thrust ut and desired system attitudeRd which satisfies

(4.17).

(iii) Develop a control law for the torque input u which forces R → Rd.

Figure 4.1 provides a block-diagram for this procedure. The solution for the
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desired attitude Rd which satisfies (4.17) is similar to the problem of the single-vector

attitude extraction algorithm defined in Section 3.1.1. In the next section, we extend

the previous results to the particular case involving the position control of a VTOL

UAV system.

4.3.1.1 Attitude and Thrust Extraction

Given the virtual control law µd, we seek an expression for the unit-quaternion Qd =

(ηd, qd) ∈ Q, and the rotation matrix Rd = R(Qd) ∈ SO(3) which satisfies (4.17).

Provided that some mild-conditions are satisfied regarding the virtual control input

µd, a solution to this problem is proposed by the following lemma.

Lemma 5 (Roberts and Tayebi (2011a)). Let µd = [µd1, µd2, µd3] ∈ R3, Qd =

(ηd, qd) ∈ Q and Rd = R(Qd) as defined by (2.8). Then a solution for ut ∈ R and

Qd which satisfies µd = ge3 − utR
T
d e3 is given by

ut = ∥µd − ge3∥, (4.19)

ηd =

(
1

2

(
1 +

g − µd3
∥µd − ge3∥

))1/2

, (4.20)

qd =
1

2∥µd − ge3∥ηd
S(µd)e3, (4.21)

for all µd ∈ U where

U := {µd ∈ R3 | µd = [0, 0, µd3]
T, µd3 < g}. (4.22)

Proof: Note that for all µd ∈ U the thrust control input is non-vanishing

(ut > 0). Therefore, in light (4.19), the expression for µd given by (4.17) is equivalent

to e3 = Rd(ge3 − µd)/∥ge3 − µd∥. This is equivalent to the problem addressed

by Lemma 3 with b = e3 and r = (ge3 − µd) /∥ge3 − µd∥, where we note that
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∥r∥ = ∥b∥ = 1. Provided that µd ∈ U it follows that r ̸= −b and therefore Lemma

3 can always be applied. Applying the expressions for r and b in (3.3) (3.4) leads to

(4.20) and (4.21).

Remark 8. The singularity associated with µd /∈ U corresponds to the desired attitude

being perfectly inverted (upside-down) such that the vertical acceleration of the vehicle

is greater than or equal to the acceleration due to gravity. Note that the singularity

only applies to the desired attitude Qd, and the actual attitude of the system can take

any value without ever encountering a singularity. Since the singularity corresponds

to an un-desirable operating mode of the aircraft, avoiding this singularity does not

significantly limit the normal operating mode of the system. Avoiding this singularity

can be achieved by using a bounded law for the desired virtual acceleration µd.

During the development of the control laws, it is necessary to find the desired

angular velocity ωd ∈ R3 of the desired attitude Qd and Rd, where

Q̇d =
1

2
Qd ⊙ (0, ωd), Ṙd = − S(ωd)Rd. (4.23)

To obtain an expression for ωd in terms of the virtual control law µd and its

time-derivative, in light of (2.14), we obtain

ωd = 2A(Qd)
T d

dt

 ηd

qd

 . (4.24)

By differentiating the expressions for ηd and qd from (4.20) and (4.21), respectively,

after some tedious albeit straightforward manipulations we eventually obtain

ωd =M(µd)µ̇d, (4.25)
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M(µd) =
1

4η2du
4
t

(
− 4S(µd)e3e

T
3 + 4η2dutS(e3)

+ 2S(µd)− 2eT3 µdS(e3)
)
S(µd − ge3)

2. (4.26)

In some cases we also require the time-derivative of the desired angular velocity

ωd. Therefore, we wish to obtain an expression for the partial-derivative of the matrix

M(µd). Note that for µd ∈ U , the function M(µd) is differentiable. To this end, we

define the function Z(µd, v) : R3 → R3 where v ∈ R3 is an arbitrary vector, which is

defined as

Z(µd, v) := ∂
∂µd

M(µd)v = γm

(
µTd vS(e3) + S(e3)µdv

T − eT3 vS(e3)
(
2µdµ

T
d /ut

+(g + 2ut) I − 2gµde
T
3 /ut

)
+ S(e3)ve

T
3

(
2utI3×3 + (µd − ge3) (µd − ge3)

T /ut

+µd (µd − ge3)
T /ut

)
− 2S(e3)v (µd − ge3)

T + S(v)µd (µd − ge3)
T /ut + utS(v)

)
−γ2m

(
S(e3)µdµ

T
d + (g + 2ut)S(µd)e3e

T
3 − utS(µd)

+
(
eT3 µdut − 2η2du

2
t

)
S(e3)

)
v
(
− 3u2t e

T
3 + 3ut (µd − ge3)

T − 2eT3 S(µd − ge3)
2
)
,

where γm = 1/
(
(ut + eT3 (g − µd))u

2
t

)
.

Therefore, given a desired virtual control law for µd, the dynamics of extracted

desired attitude can be specified using the functions given above.

4.3.2 Adaptive Position Tracking

In this section we propose an adaptive position tracking control law for VTOL UAVs,

which requires that several system states are known or measured, including the linear

position and velocity, system attitude, and angular velocity. In this case, we are able

to estimate unknown disturbance forces and torques which are applied to the system.

The controller designed in this section is tailored for the ducted-fan VTOL
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Figure 4.2: Ducted Fan Exogenous Forces

UAV. Although this control scheme can be applied for other VTOL UAV systems, we

design this controller based upon a disturbance model which is more closely associated

with the ducted fan system due to its geometrical properties. Recall the ducted fan

uses a set of control surfaces located at the duct-exit in order to generate (body-

referenced) horizontal forces, resulting in a torque-moment which is proportional to

the distance from control surface center-of-pressure (COP) and the system COG.

Figure 4.2 illustrates the ducted fan VTOL UAV which shows the horizontal and

vertical distances, denoted as d and ℓ, respectively, from the control surface COP to

the system COG. This figure also shows an external inertial-referenced force Fd ∈ R3

acting on the system. Due to the cylindrical symmetry of the ducted fan system,

we assume Fd is applied at a point on the body-referenced z-axis which (denoted by

e3 = [0, 0, 1]T), which is located at a distance of ϵm away from the system COG.

Note that the force Fd and the lever-arm ϵm creates a disturbance torque about the

system center of gravity.

The proposed adaptive control laws attempt to achieve the position tracking

objective by estimating the external disturbance forces and torques which are applied

to the system. For the case of the ducted fan VTOL UAV described above, the



Chapter 4: VTOL UAV Control Design 88

disturbances δt and δr which are used with the model (4.10) and (4.12) are now given

in terms of the disturbance force Fd by

δt = 1/mbFd − 1/(mbℓ)R
TS(e3)u, δr = ϵmS(e3)RFd. (4.27)

The term involving the control torque u in the new expression for δt is due to the

horizontal-forces caused by the torque-generating control surfaces. These forces are

an undesired side-effect of generating the control torque, and has been the focus of

several researchers. For example, in Pflimlin et al. (2007) the authors use a change

of coordinates which removes this coupling term provided that the system yaw-rate

(angular velocity about the z-axis) is zero, which is not likely in the case of VTOL

UAVs. In Olfati-Saber (2002) the authors propose another change of coordiates which

removes the coupling term, but is only considered for a planar system. In light of the

limitations of the proposed solutions this is still an open-problem, and therefore we

place some restrictions on the strength of the coupling term.

Assumption 4.2. The control torque lever arm ℓ is sufficiently large such that

mbℓ >> 1, and therefore the coupling term (mbℓ)
−1RTS(e3)u ≈ 0.

To simplify notation we denote two unknown parameters θa, θb ∈ R3 which we

define as

θa :=
1

mb
Fd, θb := ϵmFd, (4.28)

and therefore in light of Assumption (4.2) we find δt = θa = 1/mFd and δr =

S(e3)Rθb. Although in general the disturbance force Fd exerted on the aircraft can

be time-varying, for the purposes of developing the control laws we consider (for the

time-being) that the disturbance force is constant in the inertial frame of reference
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(for example this may be valid if the system is moving with a constant velocity in the

presence of a constant and uniform wind).

Assumption 4.3. The disturbances θa and θb are constant and there exists positive

constants δa < g and δb such that the disturbances are contained, respectively, in the

sets Ba := {θa ∈ R3 | ∥θa∥ < δa < g} and Bb := {θb ∈ R3 | ∥θb∥ < δb}.

The control design is based upon the attitude extraction algorithm given in

Section 4.3.1.1. Using an expression for the virtual control law µd (to be defined

later), we extract the desired attitude Qd and system thrust ut which satisfies the

desired translational objectives. Since the control law is designed to force the actual

attitude Q to the desired attitude Qd, we require a description of the attitude error,

which is given in Section 4.3.2.1. In Section 4.3.2.2 we give the time-derivatives of the

error functions involved in the control design. Section (4.3.2.3) describes a projection

algorithm proposed by Cai et al. (2006). This projection algorithm is required to

ensure the virtual control law µd is bounded a priori, and therefore always satisfies

µd ∈ U where the set U is given by (4.22). Finally, in Sections 4.3.2.4 and 4.3.2.5

we propose two adaptive position tracking control laws. The first position controller

exhibits almost global stability when applied to the system. Although the second

position control law is shown to have a smaller domain of attraction, we include

this result since the expression for the torque control input is less complicated, and

therefore may be more suitable for practical applications.

4.3.2.1 Attitude Error

Let Qd = (ηd, qd) ∈ Q denote the desired attitude which is obtained using the virtual

control law µd using the attitude extraction algorithm defined by (4.20)-(4.21). To
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define the attitude error, we let Q̃ = (η̃, q̃) ∈ Q, and let R̃ = R(Q̃) ∈ SO(3) denote

the corresponding rotation matrix, which are given by

Q̃ = Q−1
d ⊙Q, R̃ = RR̂T, attitude error . (4.29)

To obtain the dynamics which govern the attitude error Q̃, we use a procedure

similar to the one used in the proof of Proposition 1, to obtain

˙̃Q =
1

2

 −q̃T

η̃I + S(q̃)

 (ω − R̃ωd),
˙̃R = − S(ω − R̃ωd)R̃ (4.30)

In terms of the attitude error, forcing the system attitude to the desired valueR → Rd,

is equivalent to forcing Q̃→ (±1,0).

4.3.2.2 Control Strategy

As a result of the above formulation the system error dynamics are given by

˙̃p = ṽ, (4.31)

˙̃v = µd + µ̃+ θa − p̈d, (4.32)

˙̃Q =
1

2

 −q̃T

η̃I + S(q̃)

 (β − R̃ωd + ω̃), (4.33)

Ib ˙̃ω = −S(ω)Ibω + S(e3)Rθb − Ibβ̇ + u, (4.34)

with ω̃ = ω − β, where β is a virtual control law for the angular velocity that is

defined later in the control design. More specifically, we find two virtual control laws

β = β1 for the first control law, and β = β2 for the second control law. Based on this

formulation our control strategy can be separated into four tasks:
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1. Specify the virtual control law for the desired virtual acceleration µd that sat-

isfies the position and velocity tracking objectives (p̃→ 0, ṽ → 0).

2. Using the expression for µd as defined by step 1, obtain the desired system

thrust ut and desired attitude Qd and Rd = R(Qd) using the thrust and attitude

extraction algorithm defined in Section 4.3.1.1.

3. Specify the virtual control law for the angular velocity β that forces the sys-

tem attitude Q to track the desired system attitude Qd specified in step 2, or

equivalently to force Q̃→ (±1,0).

4. Specify the system control torque u to force the system angular velocity ω to

track the desired angular velocity β, or equivalently to force ω̃ → 0.

The first step of the control design is to choose the desired virtual acceleration

µd. Based on the above formulation there are some requirements for this control law

that must be considered:

• To ensure a solution always exists for the desired orientation, Qd, the desired

virtual acceleration µd must be bounded such that it is always contained within

the set U defined by (4.22).

• From (4.32), one can see that in order to satisfy the tracking objective (p̃→ 0,

ṽ → 0), the expression for the desired virtual acceleration µd must contain an

(adaptive) estimate of the disturbance force. Let θ̂1 ∈ R3 denote this estimate

of the disturbance θa.

• Due to the use of backstepping, the expression for µd must be twice-differentiable.
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Figure 4.3: Block Diagram of the Position Tracking Controllers

In order to satisfy the first two requirements, the adaptive estimate θ̂1 must

be guaranteed to be bounded a priori. To meet this criteria, we use a projection-

based estimation algorithm. The use of projection takes advantage of the known

upper bound for the disturbance (i.e. ∥θa∥ ≤ δa as stated by Assumption 4.3),

and subsequently ensures the adaptive estimate θ̂1 remains bounded and close to

this set. Furthermore, in order to satisfy the third requirement, the solution for

the disturbance estimates obtained using the projection-based adaptation law must

be twice differentiable. This motivates us to use the sufficiently smooth projection

algorithm described by Cai et al. (2006). The use of other existing projection-based

algorithms (for example see Ioannou and Sun (1996), Marino and Tomei (1998)) is

not directly applicable since they are not always differentiable.

As shown in Cai et al. (2006), when utilizing projection, over-parameterization

is required when the system is of a sufficiently high-order. For this reason we use two

adaptive estimates θ̂1 and θ̂2, which are both estimates of the disturbance force θa.

We use a third adaptive estimate θ̂3 which is an estimate of the disturbance torque

θb.

Figure 4.3 shows a block-diagram which highlights some of the key points in-

volved in this control strategy.
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4.3.2.3 Adaptive Estimation Using Projection

In this section we restate the projection algorithm described by Cai et al. (2006),

which yields adaptive estimates whose trajectories are sufficiently smooth. The use of

the projection algorithm allows us to use an adaptive estimate of the disturbance force

in the expression of the desired virtual acceleration, µd, while ensuring µd remains in

the set U defined by (4.22).

Consider a constant unknown parameter θp which belongs to the set Bp :={
θp ∈ R3 | ∥θp∥ < δp

}
, where the parameter δp is known a priori. Let θ̂p be the

corresponding adaptive estimate of θp, and define the error θ̃p = θp − θ̂p. In general,

the ideal adaptive estimation law is given by
˙̂
θp = τ , which does not necessarily

guarantee that θ̂p ∈ Bp. Based on the ideal adaptive estimation law, a projection-

based adaptation law which guarantees the bound of θ̂p is given for our particular

case by

˙̂
θp = τ + α(θ̂p, δp, τ), (4.35)

α(θ̂p, δp, τ) = −kαη1η2θ̂p, (4.36)

kα =

(
2
(
ϵ2α + 2ϵαδp

)2
δ2p

)−1

, (4.37)

η1 =


(
θ̂Tp θ̂p − δ2p

)2
if θ̂Tp θ̂p > δ2p

0 otherwise

 , (4.38)

η2 = θ̂Tp τ +

((
θ̂Tp τ

)2
+ δ2α

)1/2

, (4.39)
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where ϵα > 0, δα > 0, and has the properties

∥θ̂p∥ < δp + ϵα, θ̃Tp α ≥ 0,
˙̂
θp ∈ C1. (4.40)

4.3.2.4 Controller 1

The next step in the control design is to specify a virtual control law for the desired

acceleration µd which is guaranteed to bounded a priori such that µd is guaranteed

to be in the set U defined by (4.22). Using the bounded function h(u) defined in

section (2.3.2) we propose the following law for the desired virtual acceleration

µd = p̈d − θ̂1 − kpΓ
−1
v h(p̃)− (kv + kθ)h(ṽ), (4.41)

where kp, kθ, kv > 0, Γv = ΓTv > 0 and e3 = col [0, 0, 1]. Using the parameters δrz

and δa defined in Assumptions 4.1 and 4.3 we place the restriction

kp∥eT3 Γ
−1
v ∥+ 2kθ + kv + ϵα < g − δrz − δa, (4.42)

where ϵα > 0 is a control gain used in the projection algorithm. Applying the value of

the desired virtual acceleration (4.41) to the thrust and attitude extraction algorithm

specified by (4.19)-(4.21) we extract the system thrust ut and desired attitude Qd

from which we obtain Rd = R(Qd). Using the desired attitude Qd, we obtain the

attitude error Q̃ = (η̃, q̃) as defined by (4.29). Using projection, we propose the
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following estimation law for the first adaptive estimate:

˙̂
θ1 = γθ1

(
τ2 + α

(
θ̂1, δa + kθ, τ2

))
, (4.43)

τ2 = Γv ṽ +
kθ
γθ1

kpϕh(ṽ)Γ
−1
v h(p̃) +

kθkv
γθ1

ϕh(ṽ)h(ṽ)

+

(
γq (kθ + kv)ϕh(ṽ)M(µd)

T − 2utkθ
γθ1

ϕh(ṽ)R
TS(q̄)

)
q̃, (4.44)

q̄ = (η̃I3×3 − S(q̃))e3, (4.45)

where γθ1 > 0, γq > 0, ϕh(u) is the partial derivative of h(u) as defined by (2.28),

and α is the projection function defined by (4.36). Let ω̃ = ω−β1, where we propose

the following desired angular velocity virtual control law for β1:

β1 = M(µd)
(
p
(3)
d + wβ

)
− 1

γq
Φṽ −Kq q̃, (4.46)

wβ = kpkvϕh(ṽ)Γ
−1
v h(p̃)− γθ1α

(
θ̂1, δa + kθ, τ2

)
(4.47)

Φ =
(
γθ1γqM(µd)− 2utS(q̄)R

)
Γv + γqkpM(µd)Γ

−1
v ϕh(p̃), (4.48)

where Kq = KT
q > 0 and the matrix M(µd) is given by (4.26). In general, the

derivative of (4.46) is given by

β̇1 = fβ1 + f̄β1θa, (4.49)

where the actual expressions for fβ1 and f̄β1 are given in Appendix B.4.5. We propose

the following control law for the system torque control input:

u = −γq q̃ + S(ω)Ibω − S(e3)Rθ̂3 + Ibfβ1 + Ibf̄β1 θ̂2 −Kωω̃, (4.50)
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where Kω = KT
ω > 0, in addition to the following adaptation laws

˙̂
θ2 = γθ2

(
−f̄ T

β1
Ibω̃ + α

(
θ̂2, δa,−f̄ T

β1
Ibω̃
))

, (4.51)

˙̂
θ3 = γθ3

(
−RTS(e3)ω̃ + α

(
θ̂3, δb,−RTS(e3)ω̃

))
, (4.52)

where γθ2,3 > 0 and δb > 0 is the upper bound for ∥θb∥ as defined by Assumption

(4.3).

Theorem 4.2 (Roberts and Tayebi (2011a)). Consider the system described (4.31)-

(4.34) using the control and estimation laws defined by(4.43) and (4.50)-(4.52), where

we choose the control gains to satisfy (4.42) and

λmin
(
Kq
)

>
2
√
2kv c̄tct + 2γθ1γq (kv + kθ)

c2t
+
k2v
2ϵ1

, (4.53)

λmin (Γv) >
γqkvϵ1
ct

, (4.54)

where ϵ1 > 0, c̄t = g + δr + δa + kp∥Γ−1
v ∥ + kv + 2kθ + ϵα, and ct = g − δrz − δa −

kp∥eT3 Γ
−1
v ∥ − kv − 2kθ − ϵα. Let Assumptions 4.1, 4.2 and 4.3 be satisfied. Then the

system thrust input ut is bounded and non-vanishing such that 0 < ct < ut < c̄t, the

system states (p, v, ω) are bounded for all time and

lim
t→∞

[ p(t)− pd(t), v(t)− ṗd(t), q̃(t), ω̃(t) ] = 0, (4.55)

for any initial condition. Furthermore, the adaptive estimates θ̂1, θ̂2, θ̂3 are bounded,

and in particular the estimate θ̂1 converges asymptotically to the constant unknown

disturbance θa.

Sketch of proof:

(For a complete proof please see appendix B.4 on page 167)
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Note that the expression for µd is bounded a priori, due to the use of the

function h(·), the bound of p̈d given in Assumption 4.1, and the bound of θ̂1 due

to the use of the projection mechanism. Also, due to the gain restriction (4.42), we

ensure µd ∈ U where U is the set defined by (4.22), which also ensures that the

thrust is bounded and non-vanishing. We consider the following Lyapunov function

candidate

V = kp

(√
1 + p̃Tp̃− 1

)
+

1

2
XTCX (4.56)

whereX = col[ṽ, 1−η̃, q̃, ω̃, θa−kθh(ṽ)−θ̂1, θa−θ̂2, θb−θ̂3], C = diag[Γv, 4γqI4×4,

Ib, γ
−1
θ1
I, γ−1

θ2
I, γ−1

θ3
I], where I = I3×3 unless otherwise noted. In light of the control

and estimation laws we find the time derivative of V is bounded by

V̇ ≤ −ṽT∆vh(ṽ)− γq q̃
T∆q q̃ −

kθ
γθ1

θ̃T1 ϕh(ṽ)θ̃1 − ω̃TKωω̃, (4.57)

where ∆v = kv(Γv − (γqkvϵ1)/c
2
t I3×3) and ∆q = Kq − (2

√
2kv c̄tct + 2γθ1γq(kv +

kθ)))/c
2
t + k2v/(2ϵ1). Due to (4.54), the matrices ∆v and ∆q are positive definite.

Due to the boundedness of V̈ and ¨̃v, one can show that the states are bounded and

(ṽ, q̃, θ̃1, ω̃) → 0, and since ˙̃v → 0 then p̃→ 0.

4.3.2.5 Controller 2

In this section we propose a similar albeit simpler version of the control law described

in Section 4.3.2.4. The motivation to simplify the previous result is largely due to the

complexity of the virtual control law for the angular velocity, β1, from (4.46), and its

derivative (4.49). It is possible to simplify this virtual control law, if an additional

constraint is satisfied that is based on the initial conditions of the state and the

control gains. This simplified version, which may be more suitable from a practical
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perspective, is described below.

Using the previous law for the desired virtual acceleration from (4.41) under

the restriction (4.42), and the extraction of the thrust control input ut and desired

attitude Qd from (4.19)-(4.21), we obtain the attitude error Q̃ = (η̃, q̃) = Q−1
d ⊙ Q.

Let θ̂1 denote the first estimate of θa where we use the estimation law (4.43). We

propose the following virtual control law for the angular velocity:

β2 =M(µd)
(
p
(3)
d + wβ

)
−Kq q̃, (4.58)

where Kq = KT
q > 0, and wβ is given by (4.47). The derivative of β2 can be written

as

β̇2 = fβ2 + f̄β2θa, (4.59)

where the actual expressions for fβ2 and f̄β2 are given in Appendix B.4.5. Using the

angular velocity error ω̃ = ω−β2 we propose the following control law for the system

control torque input:

u = −γq q̃ + S(ω)Ibω − S(e3)Rθ̂3 + Ibfβ2 + Ibf̄β2 θ̂2 −Kωω̃ (4.60)

where Kω = KT
ω > 0. Using the new expression for angular velocity error ω̃, we apply

the adaptive estimation laws (4.51)-(4.52).

Theorem 4.3 (Roberts and Tayebi (2011a)). Consider the system described (4.31)-

(4.34) where we apply the control and estimation laws (4.43) and (4.60). Using the

angular velocity error ω̃ = ω − β2 where β2 is obtained using (4.58), we apply the

estimation laws (4.51) and (4.52). Let Assumptions 4.1, 4.2 and 4.3 be satisfied, and
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assume the control gains are chosen to satisfy (4.42) in addition to

λmin
(
Kq
)

>
2
√
2kv c̄tct + 2γθ1γq (kv + kθ)

c2t
+
k2v
2ϵ1

+
δ21

2γqϵ2
, (4.61)

λmin (Γv) >
γqkvϵ1

c2t
, (4.62)

δ1 =

(
2c̄t +

√
2γqγθ1
ct

)
∥Γv∥+

√
2γqkp
ct

∥Γ−1
v ∥, (4.63)

where c̄t = g+δr+δa+kp∥Γ−1
v ∥+kv+2kθ+ ϵα, and ct = g−δrz−δa−kp∥eT3 Γ

−1
v ∥−

kv − 2kθ − ϵα,, ϵ2 > 0, then the system thrust input ut is bounded and non-vanishing

such that 0 < ct < ut < c̄t, the system states (p, v, ω) are bounded and

lim
t→∞

[ p(t)− pd(t), v(t)− ṗd(t), q̃(t), ω̃(t) ] = 0, (4.64)

for all system initial conditions that satisfy

kp

(√
1 + p̃(0)Tp̃(0)− 1

)
+ 1

2X(0)TC̄X(0) < λmin (Γv)

(
2∥∆v∥
ϵ2

− 1

2

)
, (4.65)

∆v = kv

(
Γv −

γqkvϵ1

c2t
I

)
, (4.66)

X = col
[
ṽ, 1− η̃, q̃, ω̃, θa − kθh(ṽ)− θ̂1, θa − θ̂2, θb − θ̂3

]
, (4.67)

C̄ = diag
[
∥Γv∥I, 4γqI4×4, ∥Ib∥I, γ−1

θ1
I, γ−1

θ2
I, γ−1

θ3
I
]
. (4.68)

where I = I3×3 unless otherwise noted. Furthermore, the adaptive estimates θ̂1, θ̂2, θ̂3

are bounded, and in particular the estimate θ̂1 converges asymptotically to the constant

unknown disturbance θa.

Sketch of Proof:
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(For a complete version of the proof please see Appendix B.4.4 on page 173).

Similar to the proof of theorem 4.2, we first show that µd ∈ U , and the thrust

control input is bounded and non-vanishing. Using the same Lyapunov function

candidate (4.56), we now find the time-derivative of V to be given by

V̇ ≤ −ṽT∆̄vh(ṽ)− γq q̃
T∆̄q q̃ −

kθ
γθ1

θ̃T1 ϕh(ṽ)θ̃1 − ω̃TKωω̃ (4.69)

where ∆̄q = γq∆q − δ21/(2ϵ2)I3×3 and ∆̄v = 1/
√
1 + ṽTṽ∆v − ϵ2/2I3×3. Therefore,

we find ∆̄v > 0 and V̇ ≤ 0 if ∥ṽ∥2 < 4/ϵ22∥∆v∥2− 1. Since ∥ṽ∥2 ≤ 2Vλmin(Γv)
−1, we

find for all initial conditions which satisfy (4.65), V̇(t) ≤ 0 for all t ≥ t0. Barbalat’s

Lemma is then invoked to show V̇ → 0, ˙̃v → 0 and therefore p̃→ 0.

Remark 9. For both adaptive controllers, there are two antipodal equilibrium solu-

tions given by (p̃ = 0, ṽ = 0, η̃ = ±1, q̃ = 0). The equilibrium solution characterized

by η̃ = 1 is stable, while the one characterized by η̃ = −1 is unstable (repeller equi-

librium), and therefore the equilibrium solution characterized by (p̃ = 0, ṽ = 0, ω̃ =

0, R̃ = 0) is homoclinic, and the unwinding phenomenon exists.

4.3.2.6 Implementation

To implement the controllers given in Sections (4.3.2.4) and (4.3.2.5) consider the

following iterative procedure:

1. Obtain the signals p, v, Q, ω, and the desired reference trajectory pd and
d(i)

dt(i)
pd,

i = 2, 3, 4, and calculate the error signals p̃, ṽ.

2. Calculate the virtual control law µd using (4.41), which is used to obtain the

system thrust input ut from (4.19), desired attitude Qd using (4.20) and (4.21),

and the matrix M(µd) from (4.26).
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3. Calculate the error signals Q̃ and µ̃ from (4.29) and (4.18), respectively, which

is used to obtain τ2 from (4.44) and
˙̂
θ1 from (4.43).

4. Using the virtual control law for the desired angular velocity (4.46) (or (4.58)

for controller 2) calculate the angular velocity error ω̃ = ω−β1 (ω̃ = ω−β2 for

controller 2).

5. Using the expression for the derivative β̇1 ( β̇2 for the second control law) given

by (B.88)-(B.89) ((B.86)-(B.87) for controller 2), apply the control law u from

(4.50) ( or (4.60) for controller 2), and the estimation laws
˙̂
θ2 and

˙̂
θ3 from (4.51)

and (4.52), respectively.

4.3.3 Position Control Using Vector Measurements

Most of the existing position control laws described in the literature (including the

control law described in the previous section) require that several system states are

accurately known, including the system attitude. However, there does not exist a

sensor (to our knowledge) that can directly measure the orientation of a rigid body1.

In reality, an attitude estimation scheme is typically used in order to obtain an esti-

mate of the system attitude (for example the attitude estimation schemes described

in Chapter 3). This may present a problem since, currently, there are no guarantees

for the closed-loop system that couples an observer with a control law.

In light of this problem we are motivated to design a control scheme which does

not assume that the system attitude is known, and also does not require the use of

1. There are sensor systems which use cameras and visual feedback in order to measure
the orientation of a rigid-body. However, we exclude these solutions since they require the
rigid-body, or VTOL UAV, to operate in a region viewed by the camera. We refer to the
lack of a sensor which can measure the system orientation in environments where visual
feedback is not available.
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an attitude observer to provide estimates of the system attitude. One might recall

from Chapter 3, that the attitude estimation schemes typically depend upon a set of

vector measurements in order to recover the attitude of a rigid body. Instead of using

these vector measurements with an attitude observer, we now incorporate the vector

measurements directly in the control design, thereby eliminating the requirement for

the measurement of the system attitude. For this particular problem, we assume that

there are no external disturbances (forces or torques) that are exerted on the system.

Therefore, considering the model defined by (4.10) and (4.12), we assume that the

disturbances δt = 0 and δr = 0.

We consider a set of n inertial vectors ri, i = 1, 2, ..., n, which are known in

the inertial frame I, and are measured in the frame B (which is rigidly attached to

the system COG) to give bi = Rri. In the design of the control laws we place some

restrictions on the inertial vectors which are stated by the following assumption.

Assumption 4.4. There are at least two non-collinear vectors ri which are known

and constant in the inertial frame I.

Since the vector measurements provide information (in some way) about the

system attitude, they are involved later in the control design when we consider the

system rotational dynamics. Before this step, we first must consider the desired

translational dynamics of the system. Recall from Section 4.3.1 the virtual control

law µd (desired linear acceleration), used to extract the system thrust ut and desired

system attitude Qd, which we now choose as follows

µd = p̈d − Γv
(
kph(p̃) + kvh(ṽ)

)
, (4.70)

where Γv = ΓTv > 0, kp, kv > 0 and h(·) is the bounded function defined by

(2.27). Provided that the acceleration of the reference trajectory is bounded, (4.70)
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is bounded a priori. To ensure that µd is contained within the set U (and therefore

the extraction for the desired attitude exists) we wish to choose the gains such that

∥eT3 µd∥ < g. In light of Assumption 4.1, we can place the following restriction

δpz +
(
kp + kv

)
∥eT3 Γv∥ < g, (4.71)

which guarantees µd ∈ U and therefore the system thrust ut and attitude Qd can

be obtained using (4.19)-(4.21). In light of (4.9)-(4.12), (4.14), (4.15) and (4.70) the

dynamics of the position and velocity error are given by

˙̃p = ṽ, ˙̃v = −kpΓvh (p̃)− kvΓvh (ṽ) + µ̃, (4.72)

where µ̃ = µ − µd. Using the extraction method provided in Section 4.3.1.1 and

the value of µd from (4.70) we obtain the required system thrust ut and the desired

attitude Qd. Since Assumption 4.1 is satisfied, there exists a positive constant δp such

that ∥p̈d∥ < δp. Furthermore, (4.19) and (4.71) ensures that the thrust is positive

and bounded such that

0 < ct < ut < c̄t, (4.73)

where c̄t = g+ δp+
(
kp + kv

)
∥Γv∥ and ct = g− δpz−

(
kp + kv

)
∥eT3 Γv∥. Also, due to

the lower bound of the thrust specified by (4.73), the matrix M(µd) (which is used

to calculate the desired angular velocity ωd from (4.25)) has an upper-bound defined

by

∥M(µd)∥ ≤
√
2/ct. (4.74)

To obtain details on how to find this bound, the reader is referred to the proof

of Theorem 4.2. Using the desired quaternion Qd obtained using (4.20)-(4.21) we
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obtain the corresponding desired rotation matrix Rd = R(Qd) from (2.8). Using the

rotation matrix Rd and the n known inertial vectors ri we define the desired vector

measurements as

bdi = Rdri i = 1, 2, · · · , n. (4.75)

The attitude error, or the error between the actual and desired orientation, is defined

using the unit-quaternion Q̃ = (η̃, q̃) and rotation matrix R̃ by Q̃ = Q ⊙ Q−1
d and

R̃ = RT
dR, which have the time derivatives

˙̃Q =
1

2

 −q̃T

ηeI3×3 + S(q̃)

ωe, ˙̃R = −S(ωe)R̃,

ωe = RT
d (ω − ωd) ,

(4.76)

where ωd =M(µd)µ̇d is obtained using (4.25) and differentiating (4.70) (which is not

exactly known since it depends on the system attitude (Q,R)). At this stage in the

procedure, our objective is to force the actual system attitude to the desired attitude

R → Rd using ω, which is equivalent to R̃ → I3×3 or Q̃→ (±1, 0). However, since ω

is a state we define the virtual control law ω̄ that forces R → Rd and define the error

ω̃ = ω − ω̄ where we choose ω̄ to be

ω̄ =M(µd)fµd +
n∑
i=1

γiS(b
d
i )bi, (4.77)

where fµd = p
(3)
d + kpkvΓvϕh(ṽ)Γvh(p̃) − kpΓvϕh(p̃)ṽ. The time derivative of ω̄ is
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given by ˙̄ω = fω̄ + gω̄eµ where

fω̄ = Z
(
µd, fµd

) (
fµd + k2vΓvϕh(ṽ)Γvh(ṽ)

)
+M (µd)

(
p
(4)
d

+kpkvΓvϕh(ṽ)Γvϕh(p̃)ṽ − kpkvΓvfϕ (ṽ,Γvh(p̃)) Γv
(
kph(p̃) + kvh(ṽ)

)
− kpΓvfϕ (p̃, ṽ) ṽ + k2pΓvϕh(p̃)Γvh(p̃) + kpkvΓvϕh(p̃)Γvh(ṽ)

)
+
(∑n

i=1 γiS
(
bdi

)
S (bi)

)
ω −

(∑n
i=1 γiS (bi)S

(
bdi

))(
M (µd) fµd

+k2vM (µd) Γvϕh(ṽ)Γvh(ṽ)
)
, (4.78)

gω̄ = −kvZ
(
µd, fµd

)
Γvϕh(ṽ) + kv

(∑n
i=1 γiS (bi)S

(
bdi

))
M (µd) Γvϕh(ṽ)

−kpM (µd) Γvϕh(p̃) + kpkvM (µd) Γvfϕ (ṽ,Γvh(p̃)) , (4.79)

where Z(µd, v) is the function defined by (4.27). Finally, the proposed control torque

input is defined as

u = S(ω)Ibω + Ibfω̄ −Kωω̃, (4.80)

where Kω = KT
ω > 0.

Theorem 4.4 (Roberts and Tayebi (2011e)). Consider the system defined by (4.9)-

(4.12) where δt = δr = 0, the system thrust ut is defined by (4.19) using the virtual

control law (4.70) under the restriction (4.71), and the torque control input u is

defined by (4.80). Let Assumptions 4.1 and 4.4 be satisfied. Then, for any initial

condition η̃(t0) ̸= 02 there exists positive constants γ̄i, i = 1, 2, · · · , n, such that for

γi > γ̄i the system states p̃, ṽ and ω̃ are bounded and limt→∞ [p̃(t), ṽ(t), ω̃(t)] = 0.

Sketch of Proof: (For a detailed proof the reader is referred to Appendix B.5)

2. This condition can be easily satisfied if the system is at rest at the time t0, i.e.
R(t0) = I3×3, since in this case q = 03×1, η = ±1, and therefore η̃ = ±ηd. In this case, from
(4.20) one can see that for any value of µd, inf

µd∈U
{|η̃(t0)|} = inf

µd∈U
{|ηd(t0)|} = 1/

√
2 > 0.
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Consider the Lyapunov function candidate

V = kp

(√
1 + ∥p̃∥2 − 1

)
+

1

2
ṽTΓ−1

v ṽ + γq

(
1− η̃2

)
+

1

2
ω̃TIbω̃. (4.81)

In light of the control law, we eventually find an upper-bound for the time derivative

of V . In order to show that V̇(t) ≤ 0 for all t ≥ t0, we must show that there exists a

positive constant η̃∗ such that η̃(t) ≥ η̃∗ for all t ≥ t0 (η̃ does not vanish). To show

that this fact is true, we define the function J = η̃2/2. In light of the control law,

we find the time-derivative of J is guaranteed to be non-decreasing (and therefore |η̃|

is non-decreasing) if η̃ is contained within the open-set D := (η̃ℓ, η̃u). We show that

the upper and lower limits of D can be arbitrarily increased using the control gains

such that D → (0, 1). Therefore, for all η̃(t0) ̸= 0, the control gains can be increased

to ensure η̃ℓ < η̃(t0) and therefore |η̃(t)| is always non-decreasing for all t ≥ t0, and

η̃∗ = inf |η̃(t)| > 0 exists. Using this fact we then show that V̇(t) ≤ 0 for all t ≥ t0.

Applying Barbalat’s Lemma we show that (p̃, ṽ, q̃, ω̃) → 0 and η̃ → sgn(η̃(t0)).

Remark 10. This proposed control law has two clear advantages. First, since the

vector measurements are used directly in the control law, it does not require the direct

knowledge of the system attitude, and therefore does not require an attitude observer

or other estimation scheme when implemented on a VTOL UAV. Second, we show

that the quaternion scalar does not cross zero (i.e. |η̃(t)| > 0 for all t ≥ t0), and there

are two asymptotically stable antipodal equilibria given by (p̃ = 0, ṽ = 0, ω̃ = 0, η̃ =

sgn(η̃(t0)), q̃ = 0). Therefore, the problem of unwinding is avoided.

Practical considerations for vector-measurement-based position con-

troller: In many cases, two vector measurements are available which are obtained

using a magnetometer (measures the earth’s magnetic field in B), and an accelerom-

eter which is intended to measure the direction of the gravity vector in B. However,
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since the accelerometer measures forces due to system accelerations (in addition to

the gravity force), this approximation is valid for low-acceleration conditions. Let b2

denote the accelerometer output (we reserve the use of b1 for the measurement of the

magnetometer). A well-known model for the accelerometer is given by

b2 = R (v̇ − ge3) . (4.82)

In order to use the acceleromter to measure the gravity vector in B we must assume

∥v̇∥ ≤ ϵ for some sufficiently small ϵ > 0, and therefore

b2 = Rr2, (4.83)

where r2 is the approximated (inverted) gravity vector in the inertial frame, r2 ≈

−ge3. Therefore, for the proposed controller to be applicable, the acceleration of the

reference trajectory p̈d(t) and the desired acceleration µd (bounded a priori) should

be chosen to satisfy the low-acceleration condition. Therefore, in light of (4.70), in the

case where an accelerometer is used as a vector measurement we place the additional

constraint

δp +
(
kp + kv

)
∥Γv∥ < ϵ. (4.84)

Therefore, for certain slowly-accelerating reference trajectories, by choosing suffi-

ciently small control gains for kp, kv and Γv the proposed controller can be imple-

mented in the case where an accelerometer is used as one of the vector measurements.

However, in practice it can be difficult to determine ϵ quantitatively. Therefore,

in the case where the accelerometer is used, a better solution may involve using

the accelerometer to measure the system apparent acceleration (rather than just the

gravity vector). In fact, a vector-measurement based position control law, which uses
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the accelerometer similar to the velocity-aided attitude observer discussed in Section

3.3.5, has been proposed which is discussed in the following section.

4.3.4 Position Regulation Using GPS and IMU

Measurements

In Section 4.3.3 we described a position control scheme which assumes that the sys-

tem attitude cannot be measured. By using vector measurements directly in the

control design procedure, this control scheme also eliminates the need for an atti-

tude observer, thus reducing the complexity of the closed-loop system. However,

the development of the control laws required that the inertial vectors ri were con-

stant and known in the inertial frame I. In reality, it is difficult to find sensors that

provide a measurement of vectors which meet these criteria. The most commonly

used sensor set, typically referred to as an inertial measurement unit (IMU), con-

tain an accelerometer and magnetometer, which are rigidly attached to the vehicle

(body-frame B). The magnetometer is used to provide a measurement of the ambient

magnetic field (for example the Earth’s magnetic field) which we assume is constant

and known. In most applications, the accelerometer is used to measure the direction

of the gravity vector in the body-frame. However, since the accelerometer actually

measures the body-referenced apparent acceleration (which includes the gravity forces

and forces due to linear accelerations), in these cases we must assume that the body-

frame is non-accelerating, which may be an unrealistic assumption, especially for

VTOL UAVs. The same can also be said for position-controllers which use attitude

estimates from an attitude observer which assumes the accelerometer measures only

the gravity vector.

One may recall, that this was also the motivation for the development of the
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velocity-aided attitude observers (for example, the observers defined in Section 3.3.5),

which use the accelerometer to measure the system apparent acceleration and there-

fore are better suited for applications where the system is subjected to significant

linear accelerations. To achieve this result for the attitude estimation case, a spe-

cial filter was derived which used the system linear velocity. This filter proved to be

useful since the filtered version of the system velocity can be used to provide some

information about the system attitude.

In the following sections, using the techniques described in the development of

the attitude observers, we extend these concepts to the problem of position control

of VTOL UAVs. Using an accelerometer to measure the system apparent acceler-

ation, we design a position controller which uses the vector measurements directly,

rather than using the orientation (which cannot be directly measured). The resulting

position controller therefore does not require the use of an attitude observer when

implemented on a VTOL UAV. Furthermore, the position controller is likely to yield

improved performance when the system experiences forces due to linear acceleration,

when compared with other position controllers which use estimates of the orientation

that are obtained by assuming the accelerometer only measures the gravity vector.

Due to the complexity involved in the stability analysis, one drawback associ-

ated with the proposed control scheme, is that we assume the system angular velocity

ω is available as a control input (and not the control torque u). Note that some other

works have also used the angular velocity as a control input, for example Hua et al.

(2009), where in this case we use a high-gain feedback for the control torque u in

order to achieve the desired value of ω specified by the control law. In this case, the



Chapter 4: VTOL UAV Control Design 110

truncated model is given by

ṗ = v, (4.85)

v̇ = µ+ δt, µ = ge3 − utR
Te3, (4.86)

Q̇ =
1

2

 −qT

ηI3×3 + S(q)

ω, (4.87)

The system output is defined as y = [p, v, b1, b2]
T where b2 is the signal obtained

using an accelerometer, b1 = Rr1 is a signal obtained using a magnetometer, and r1

is the magnetic field of the surrounding environment which is assumed to be known

and constant. Note that the system attitude R (or Q) is not assumed to be a known

output of the system. Due to the use of the VTOL UAV model, the description of the

dynamics v̇ are no longer specified as a function of the apparent acceleration vector

r2. However, using the definition of the accelerometer model given by

b2 = R (v̇ − ge3) = −ute3 +Rδt = R
(
−utRTe3 + δt

)
= Rr2, (4.88)

one can find the expressions for the system velocity, and apparent acceleration also

satisfy

v̇ = ge3 + r2, r2 = − utR
Te3 + δt. (4.89)

Note the proposed control strategy is not adaptive in nature. Therefore, one

may question why we include the aerodynamic disturbance force δt in our system

model. In fact, it is interesting to note this aerodynamic disturbance force is actually

important in recovering the attitude of the system using the accelerometer and the

linear velocity measurements. In situations where the VTOL UAV model (4.86) is

used, and where the aerodynamic disturbance vector δt is assumed to be negligible



Chapter 4: VTOL UAV Control Design 111

(δt ≈ 0), then the accelerometer provides the measurement b2 = −ute3, which is

the constant vector e3 multiplied by the system thrust. In this case the use of the

accelerometer seems trivial since its measurement is known a priori and does not

contain any information about the system attitude. This fact is counter-intuitive,

especially since the accelerometer has been typically used to provide the measurement

of the gravity vector, or b2 = gRe3 in the case where v̇ ≈ 0. Therefore, we see that

for the VTOL UAV system, the assumption that the accelerometer measures only

the gravity vector may be a dangerous assumption which may lead to unexpected

performance, even in the case where v̇ ≈ 0. In fact, it seems that the utility of the

accelerometer measurements is related to the measurement of the vector δt since the

accelerometer in reality measures b2 = −ute3+Rδt, which is likely the reason why the

use of the accelerometer has been effective in practice. For this reason we believe that

it is important to include a model of the aerodynamic disturbances. Furthermore,

these facts highlight some serious concerns for the use of the accelerometer to measure

only the gravity vector, in applications involving VTOL UAVs.

Since we do not employ adaptive control for this problem, in light of the dis-

turbance force δt we consider only the position regulation problem (and not position

tracking). Therefore, we require that the desired position pd is constant (or slowly

varying). We also require some mild restrictions on the apparent acceleration vector

r2.

Assumption 4.5. There exists positive constants c1 and c2 such that ∥r2∥ ≤ c1 and

∥ṙ2∥ ≤ c2.

Assumption 4.6. Given two positive constants, γ1 and γ2, there exists a positive
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constant cw(γ1, γ2) such that cw < λmin(W ) where

W = −γ1S(r1)2 − γ2S(r2)
2. (4.90)

The second assumption is true if the apparent acceleration vector r2 is non-

vanishing and is not-collinear to the magnetic field vector r1. Note the case where

r2 = 0 implies that the system is in free-fall which is not a likely operating mode for

this system. In addition to this assumption, we also require some conditions on the

aerodynamic force vector δt.

Assumption 4.7 (Aerodynamic Forces). In light of the fact that the disturbance

force δt is due to aerodynamic forces exerted on the vehicle we make the following

simplifying assumptions:

(a) The aerodynamic disturbance δt is dissipative with respect to the system transla-

tional kinetic energy and satisfies δTt v ≤ 0.

(b) The aerodynamic disturbance force δt is only dependant on the system transla-

tional velocity, and there exists a positive constant c1 such that ∥δt∥ ≤ c1∥v∥2.

(c) There exists positive constants c2 and c3 such that ∥δ̇t∥ < c2 + c3∥v∥3.

To help justify Assumptions 4.7(a) and 4.7(b) we normally assume the system is

operating in an environment where the exogenous airflow is negligible (no wind). As-

sumption 4.7(c) can be satisfied when the system geometry is sufficiently symmetrical

such that the system aerodynamic forces do not significantly depend on the system

orientation. Although this assumption may be reasonable for certain VTOL type
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aircraft, for example the ducted-fan, this assumption may not be the case with cer-

tain systems, for example fixed wing aircraft, where the system aerodynamics depend

largely on the orientation of the vehicle.

4.3.4.1 Position Controller

Similar to the design of the previous controllers, we rely on the thrust and attitude

extraction algorithm defined in Section 4.3.1.1, which provides an expression for the

system thrust ut and desired attitude Qd ∈ Q which corresponds to the desired linear

acceleration µd. Given the desired position pd we define the position error p̃ = p−pd.

Using the position error and measurement of the system linear velocity, we specify

the virtual control law for the desired acceleration µd as

µd = −kph(p̃)− kvh(v) (4.91)

which is used to obtain the system thrust ut and desired attitude Qd = (ηd, qd) ∈ Q

using (4.19)-(4.21). The desired attitude given in the SO(3) parametrization, denoted

as Rd = R(Qd), is subsequently obtained using (2.8). To represent the relative

orientation of the desired attitude Qd with respect to the actual attitude Q, we let

Q̃ = (η̃, q̃) ∈ Q and R̃ = R(Q̃) ∈ SO(3) denote the attitude error which is defined by

Q̃ = Q⊙Q−1
d , R̃ = R(Q̃) = RT

dR, (4.92)

where Qd is the unit quaternion obtained using (4.20) and (4.21). In light of Q̇ and

Q̇d, as defined by (4.87) and (4.23), respectively, the time derivative of the attitude
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error is found to be

˙̃Q =
1

2

 −q̃T

η̃I + S(q̃)

 ω̃, ˙̃R = −S(ω̃)R̃, (4.93)

ω̃ = RT
d (ω − ωd) , (4.94)

where ωd is the desired angular velocity of the desired attitude (Rd and Qd) as de-

fined by (4.25). One of the objectives of the control design is to force the system

orientation to the desired attitude, or in terms of the rotation matrices, to force

R → Rd (and therefore µ→ µd), in order to obtain the desired translational dynam-

ics. As mentioned in Section 2.1, this corresponds to two possible solutions for the

unit-quaternion which are given by Q̃ = (±1,0).

Since the system attitude is not known, similar to the design of the velocity-

aided attitude observers in Section 3.3.5, we use a new adaptive state vector v̂ ∈ R3

and define the error function ṽ = v − v̂. As demonstrated by the previous attitude

observers, based upon a suitable adaptation law for v̂, the use of the error function

ṽ can provide some information relating to the system unknown apparent accelera-

tion vector r2. Since this vector is known in the body fixed frame (measured using

an accelerometer to obtain b2 = Rr2), the error function ṽ can be used with the

accelerometer measurement to provide information related to the system attitude.

After these steps, the remaining control design is focused on forcing the actual sys-

tem attitude to the desired attitude using the control input ω.
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The proposed control law is given as follows:

ω =M(µd)
(
fµd − kvϕ(v)R

T
d (b2 + ute3)

)
+ ψ, (4.95)

fµd = −kpϕ(p̃)v + kvϕ(v)
(
kph(p̃) + kvh(v)

)
, (4.96)

ψ = γ1S(Rdr1)b1 + γ2k1S (Rd (v − v̂)) b2, (4.97)

˙̂v = ge3 +RT
d b2 + k1 (v − v̂) +

1

k1
RT
d S(b2)ψ, (4.98)

where k1, γ1, γ2 > 0, M(µd) is the function defined by (4.26), ϕ(·) is the bounded

function defined by (2.28), ut = ∥µd − ge3∥, Rd = R(Qd) and Qd = (ηd, qd) is

obtained from the value of µd using the attitude extraction algorithm defined in

Section 4.3.1.1.

Theorem 4.5 (Roberts and Tayebi (2011b)). Consider the system given by (4.85)-

(4.87), where we apply the control laws ut = ∥µd − ge3∥, ω as defined by (4.95), and

µd as defined by (4.91) where kp > 0 and kv > 0 are chosen such that kp + kv < g.

Let Assumptions 4.6 and 4.7 be satisfied. Then the system thrust ut is bounded and

non-vanishing such that

0 < ct ≤ ut(t) ≤ c̄t, ct = g − kp − kv, c̄t = g + kp + kv, (4.99)

and for all initial conditions η̃(t0) ̸= 0 (or equivalently ∥q̃(t0)∥ ̸= 1), there exists

strictly positive constants γ̄1, γ̄2, κ1 > 0 such that for γ1 > γ̄1, γ2 > γ̄2, k1 > κ1, the

system states p̃ and v are bounded and limt→∞ p̃(t) = limt→∞ v(t) = 0.

Sketch of Proof: (For a detailed proof the reader is referred to B.6 on page

187)

First, we show that due to the bound of the function h(·), one can arrive at

the upper and lower bounds of the thrust input ut using straightforward arguments.
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We then define the error function r̃2 = k1ṽ − (I − R̃)r2, and consider the following

Lyapunov function candidate:

V = γkp

(√
1 + p̃Tp̃− 1

)
+
γ

2
vTv +

γkr
2
r̃T2 r̃2 + γq(1− η̃2), (4.100)

where kr, γ, and γq are strictly positive constants. We subsequently find the time

derivative of V along the system trajectories. By making appropriate choices on

the controller parameters and gains, we first show that V̇(t0) ≤ 0 and further show

that V̇(t) ≤ 0 provided that the quaternion scalar satisfies η̃(t) ≥ ρ, where ρ is a

strictly positive constant which is assumed to be chosen such that 0 < ρ < η̃(t0).

Subsequently, we show that η̃(t) ≥ ρ for all t ≥ t0 by using a contradiction argument.

Therefore, this implies V̇(t) ≤ 0 for all t ≥ t0. This fact is used with Barbalat’s

Lemma to show that the states (ṽ, r̃2, q̃) → 0 and η̃ → sgn(η̃(t0)).

4.4 Simulations

4.4.1 Adaptive position Controllers

Simulation results have been performed for the two adaptive position tracking control

laws. To test the performance of the adaptive disturbance estimation, an approximate

aerodynamic model for the ducted fan VTOL UAV is used, which considers aerody-

namic drag forces in addition to other aerodynamic effects due to the airflow created

by the duct-enclosed propellers. Both proposed control laws are applied to the full

system model (including the control-torque coupling term) defined by (2.15)-(2.18),

where we use the (translational) disturbance model

δt =
1

mb
Fd −

1

mbℓ
RTS(e3)u, (4.101)
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where Fd are aerodynamic forces created due to external airflow. Recall from As-

sumption 4.2 we previously assumed that this coupling term (due to the control

torque input u) was assumed to be negligible, which may not always be the case, and

therefore is included in the simulation to test the robustness of the proposed control

strategy. Furthermore, to aid in the development of the adaptive control laws, As-

sumption 4.3 stated that the disturbance forces were assumed to be constant in the

inertial frame. However, these may be unlikely and/or unrealistic assumptions since

the disturbance forces are dependant on system aerodynamic forces caused by wind

and the motion of the system. Therefore, we consider a disturbance model which

includes aerodynamic drag forces applied to the vehicle. We consider that the system

is operating in the presence of a constant and uniform wind, where the wind velocity

is denoted by vw ∈ R3. We consider the following aerodynamic drag model:

Fd = Fdrag + Fram,

Fdrag = ∥vw − v∥RTCdR (vw − v) ,

Fram =

√
TρA

2
RTIxyR (vw − v) ,

where Fdrag are frictional drag forces that are proportional to the square of the

external airflow, Fram is the ram-drag force3, Ixy = diag (1, 1, 0), ρ is the air density,

A is the duct cross-sectional area and Cd ∈ R3 is a matrix that consists of system-

dependant aerodynamic constants expressed in the body-fixed frame. Assuming that

3. For the ducted-fan VTOL UAV, in addition to generating the thrust T along the
body-referenced vertical axis e3, the change in momentum of the airflow (due to the system
rotors/propellers) can cause an additional force when the external duct airflow velocity has a
component which is orthogonal to the thrust vector Te3. This force (which is also orthogonal
to the thrust vector) is caused due to the deceleration of the horizontal component of the
airflow, and is known as the ram-drag. For further information the reader is referred to Ko
et al. (2007).



Chapter 4: VTOL UAV Control Design 118

the external airflow is uniform, due to the cylindrical symmetry of the system the net

aerodynamic force is assumed to be applied at a point on the body-referenced z-axis,

located at a constant distance of ϵM from the system center of gravity, which is often

referred to as the aerodynamic center-of-pressure (see Figure 4.4).

Also, to simulate uncertainty in the system inertia tensor (which can be difficult

to measure), the controllers were implemented using an expected value of the inertial

tensor Ib, where the actual value was chosen to be a different value. To obtain

these expected and actual values for the inertial tensor, in addition to the system

parameters, control gains and initial conditions used in the simulation, please see

Table 4.1.

Figure 4.4: Torque-Generating Aerodynamic Forces As a Result of Airflow in
Body-Fixed Frame

The simulation results are given by Figures 4.5 and 4.6 for the first and sec-

ond adaptive control laws, respectively. Although the second controller is easier to

implement, in situations where the system initial conditions are sufficiently far from

the desired trajectory, some control gains are required to have extremely large values

(as specified by requirements (4.61)-(4.65)). These requirements are likely conserva-

tive, and simulations suggest that the domain of attraction is actually larger than the
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Figure 4.6: Simulation Results for Second Adaptive Position Controller (continued)



Chapter 4: VTOL UAV Control Design 123

region specified by (4.65).

The simulations show that both controllers are successful in forcing the system

to the desired trajectory. For each case the system attitude was initialized at Q =

(0, 1, 0, 0), which corresponds to the system being completely inverted. This is done

to demonstrate the effectiveness of the control laws for extreme deviations in the

system attitude. The control laws were effective despite the time-varying disturbance

due to aerodynamic drag, the coupling term which was omitted during the control

design, and uncertainty in the inertia tensor.

4.4.2 Vector Measurement Based Position Control

Simulations were performed to test the proposed vector-measurement-based position

controller applied to the system (4.9) -(4.12). Unlike the adaptive position tracking

control law, the vector-measurement-based position control strategy does not attempt

to compensate for disturbances which are applied to the vehicle. Instead, this simula-

tion attempts to show how the closed loop system performs (in an ideal environment)

in the case where vector measurements are used instead of the direct measurement of

the system attitude (given in terms of the unit-quaternion Q of rotation matrix R).

Therefore, no aerodynamic model was used for this simulation, and therefore we have

δt = δr = 0.

A desired position trajectory was chosen similar to the one shown in the previous

simulation by Figure 4.5a. To obtain the system parameters, control gains, initial

conditions, and the three inertial vectors that were used please see Table 4.2. The

simulation results are given by Figure (4.7).



Chapter 4: VTOL UAV Control Design 124

0 10 20 30 40 50
−20

0

20

40

60

80

100

t (s)

p̃
(m

)

 

 
x
y

z

(a) Position Error

0 10 20 30 40 50
−12

−10

−8

−6

−4

−2

0

2

4

t (s)

ṽ
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4.4.3 Position Control Using IMU and GPS Measurements

Simulation results have been provided for the system defined by (4.9)-(4.12) using the

proposed control law (4.95). Recall in the development of this control law we assumed

the angular velocity ω was an available control input. However, since ω is a state, we

let ωd denote the desired angular velocity as defined by (4.95) and use the control law

u = −Kw(ω−ωd), where u is the control torque input used in the dynamic equation

(4.12). During the design of this control strategy, Assumption 4.7(b) stated that δ̇ was

only dependant on the system linear velocity. However, when the system geometry

is not exactly symmetrical the time-derivative of the aerodynamic forces may depend

on other states, such as the angular velocity. In order to test the robustness of

the proposed control method we use an aerodynamic disturbance model (similar to

the drag model used by the adaptive position controller) which is dependant on the

orientation of the system, and therefore may violate some of the assumptions. The

following disturbance model was used:

δt = − 1

mb
∥v∥RTCdRv (4.102)

where mb is the system mass and Cd = CT
d > 0 is a constant positive definite matrix

that represents body-referenced aerodynamic drag coefficients that are dependant on

the system geometry. We assumed that no disturbance torque was applied to the

vehicle and therefore we set δr = 0. To obtain the system parameters, control gains

and initial conditions please see Table 4.3 simulation results are given by Figure 4.8.
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Figure 4.8: Simulation Results for IMU/GPS Measurement Based Position Control
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4.5 Concluding Remarks

In this chapter we proposed a vector-measurement-based velocity-free attitude sta-

bilization controller, two adaptive position controllers, and two vector-measurement-

based position control laws for VTOL UAVs. All of the proposed position control

strategies are dependant on a thrust and attitude extraction method, which provides

an expression for the system thrust and desired attitude in terms of the ideal linear

acceleration which satisfies the control objectives. The attitude extraction algorithm

provides an expression for the desired attitude in terms of the unit-quaternion pa-

rameterization, which always exists provided that the desired acceleration meets some

mild criteria. These criteria are met by using bounded expressions in the virtual con-

trol law for the desired linear acceleration.

The requirement of the bounded expression for the desired linear acceleration is

somewhat more complicated for the case of the adaptive controllers, since the desired

acceleration has to include some estimate of the disturbance force which is applied to

the vehicle. This fact presented a problem since we had to ensure that the disturbance

estimates were bounded a priori in order to meet specific requirements regarding the

bound of the desired linear acceleration. Thus, the projection mechanism was adopted

which modifies the adaptive estimation law (which is obtained using standard adap-

tive control) in such a way that the adaptive estimate is guaranteed to remain within

a user-defined set (bounded), and has convenient properties which helps to ensure the

Lyapunov function derivatives remain negative semi-definite (despite the perturbation

involved in the projection mechanism). A consequence of the projection mechanism

is that we require some knowledge of the disturbance force (i.e. the upper-bound

for the magnitude of the disturbance). To arrive at the control law (in terms of the

torque applied to the rotational system dynamics), we required that the expression
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for the desired linear velocity was differentiable twice (with respect to time). This

required that the projection-based estimation law was required to be (once) differen-

tiable, which is not always possible with the projection-based algorithms available in

the literature. Fortunately, a sufficiently-smooth projection algorithm was available

which satisfied all of our requirements Cai et al. (2006).

Unfortunately, the two adaptive position tracking controllers have some dis-

advantages. First, they are by far the most complicated of all the position con-

trol laws proposed in this thesis (largely due to the estimation of the disturbance

forces and torques). Second, they both assume that the system orientation is known

or directly measured. Of course, the system attitude is typically obtained using a

vector-measurement-based attitude estimation scheme, which is not considered in the

design of the adaptive position control laws. Therefore, we have no choice but to

rely on the robustness of the control system in order to deal with unmodeled dy-

namics or other unexpected errors due to the observers. This disadvantage has led

us to study the vector measurement based control law in Section 4.3.3. This con-

trol strategy allows the use of vector measurements directly in the position control

laws, and therefore does not require the system orientation explicitly, nor the use

of an attitude observer when implemented on the system. However, this control

strategy does not take into consideration disturbance forces (or torques) which are

applied to the vehicle. Yet this disadvantage may be off-set by the resulting simplicity

of the (disturbance-estimate-free) vector measurement based control scheme (when

compared to the adaptive position control system).

Another problem associated with the vector-measurement-based control strat-

egy, is due to the assumption that the inertial vectors are known and constant in the

inertial frame of reference. Unfortunately, there are limited sensors which provide

measurements of inertial vectors which satisfy these criteria. This is especially true
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when the popular accelerometer sensor is used (in most cases to measure the gravity

vector). Since the accurate measurement of the gravity vector requires the system to

be non-accelerating (or weakly-accelerating), this vector measurement based position

control scheme may not be ideal when an accelerometer is used to provide a vector

measurement. This motivated the research community to use the accelerometer in a

more realistic manner: to measure the body-reference system apparent acceleration.

Similar to the design of the velocity-aided attitude observers, we developed a vector-

measurement-based position control law which uses the accelerometer in this manner.

Since the system linear velocity is intrinsically related to the apparent acceleration

(i.e. through an integration), by using a filtered version of the linear velocity we are

able to obtain information about the system attitude. Also, rather than estimating a

disturbance force, this position control scheme is shown to be effective in the presence

of aerodynamic forces, where we take advantage of the fact that aerodynamic forces

are dissipative with respect to the linear velocity (kinetic energy) of the system, which

is realistic in the case where there is no wind. Unfortunately, this position control

scheme also has some disadvantages. First, due to the aerodynamic disturbances,

we can only guarantee that the system position converges to a constant (or slowly

moving) desired position, instead of converging to a desired trajectory. Second, due

to the complexity involved in the stability analysis, we provide the control laws in

terms of the system angular velocity (one integrator away from the control input). In

this case, a high-gain feedback law is required (for the torque control-input) to force

the actual system attitude to the desired value. Despite this limitation, we are still

confident that the performance of this position control law may be superior to the

previous control laws due to the effect of linear accelerations on the accelerometer

measurement.
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Description Parameter Value

Reference Trajectory pd

 10t
30 sin(0.1t+ 3.49)
20 sin(0.1t+ 4.71)

 m

System Inertia Tensor (expected) Ib diag(0.5,0.5,0.25) kg ·m2

System Inertial Tensor (actual) Ib diag(0.6, 0.6, 0.3)kg ·m2

System Mass mb 5 kg
Control Torque Moment Lever arm ℓ 0.5m
Disturbance Moment Lever Arm ϵM 0.1m

Upper bound for θa = Fd/m δa 5m · s−2

Upper bound for θb = ϵMFd δb 3m · s−2

Duct cross-sectional area A 0.114m2

Gravitational acceleration g 9.81m/s2

Air density ρ 1.2kg/m3

Wind vector vw [−1,−1, 0]m/s
Aero. drag coefficient matrix Cd diag(0.1, 0.1, 0.05)kg/m
Initial Conditions p(t0) col [50, 10, 0] m

v(t0) col [5, 0, 0.5] m/s
Q(t0) col [0, 1, 0, 0]
ω(t0) col [0, 0, 0] rad/s

Control Gains kp 1
kv 0.1
Γv diag [0.2, 0.2, 0.8]
kθ 1
γq 10
Kq 20I3×3
Kw 20I3×3

Adaptation Gains γθ1 0.2

γθ1 1

γθ1 1

Table 4.1: Simulation Parameters - Adaptive Position Control
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Description Parameter Value

Reference Trajectory pd

 10t
30 sin(0.1t+ 3.49)
20 sin(0.1t+ 4.71)

 m

System Inertia Tensor Ib diag(0.5,0.5,0.25) kg ·m2

System Mass mb 5 kg

Gravitational acceleration g 9.81m/s2

Initial Conditions p(t0) col [100, 50, 20] m
v(t0) col [0, 0, 0] m/s
Q(t0) col [0.71, 0, 0.71, 0]
ω(t0) col [0, 0, 0] rad/s

Control Gains kp 1
kv 0.8
Γv diag [5, 5, 1]
γ1 5
γ2 5
γ3 5
Kw 10I3×3

Inertial Vectors r1 [0, 0, 1]
r2 [0, 1, 0]
r3 [1, 0, 0]

Table 4.2: Simulation Parameters - Vector Measurement Based Position Control
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Description Parameter Value

Desired Position pd [0, 0, 0]m

System Inertia Tensor Ib diag(0.5,0.5,0.25) kg ·m2

Aerodynamic Coefficients Cd diag(0.1, 0.1, 0.05)kg/m
System Mass mb 5 kg

Gravitational acceleration g 9.81m/s2

Initial Conditions p(t0) col [100,−80, 20] m
v(t0) col [0, 0, 0] m/s
Q(t0) col [1, 0, 0, 0]
ω(t0) col [0, 0, 0] rad/s

Control Gains kp 5
kv 2
γ1 10
γ2 3
k1 15
Kw 50I3×3

Magnetic Field Vector r1 [0.1, 0, 0.5]G

Table 4.3: Simulation Parameters - Position Control Using IMU and GPS
Measurements
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Control Scheme Advantages Disadvantages

Velocity free attitude
stabilization

• Does not require mea-
surement of attitude (or
attitude observer).

• Does not offer attitude
tracking.

• Does note require an-
gular velocity.

• Can be affected by
rigid-body accelerations.

Adaptive Position
Tracking Controllers

• Can estimate constant
disturbance forces and
torques.

• Requires attitude ob-
server (no proofs for sta-
bility when coupled with
observer).

• Affected by unwinding.

• Complicated control
laws.

• Can result in slower
rates of convergence.

Vector Measurement
Based Position Track-
ing Controller

• No attitude observer
required.

• No disturbance estima-
tion.

• Simplified control laws. • Affected by rigid-body
accelerations.

IMU/GPS Based Po-
sition Controller

• No attitude observer
required.

• Does not offer position
tracking.

• Simplified control laws. • Gives control law in
terms of angular velocity
(high gain controller re-
quired for torque).

Table 4.4: Comparison of Control Strategies
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Chapter 5

Thesis Summary and Future Work

In this thesis we have studied two of the fundamental problems associated with the

autonomous control of VTOL UAVs: rigid-body attitude estimation, and the devel-

opment of algorithms to control the orientation and/or position of the vehicle. These

two problems have been studied separately in the literature. Yet, practitioners and

control engineers are faced with these two problems simultaneously when developing

these systems.

The study of attitude estimation has resulted in the development of several

strategies which use vector measurements, for example, the attitude reconstruction

algorithms given in Section 3.1, the complementary filter given in Section 3.2, and the

vector-measurement based attitude observers given in Section 3.3.3 and 3.3.4. There

have also been a variety of numerical iterative-based algorithms based upon optimiza-

tion techniques, and substantial efforts to apply Extended Kalman Filtering to solve

this problem. Yet all of these methods have a common downfall associated with the

use of the accelerometer. Since, in most cases, the accelerometer is used to obtain

body-referenced coordinates of the gravity vector, these vector-measurement-based

estimation strategies listed above will exhibit degraded performance in proportion

to the magnitude of the linear inertial-acceleration experienced by the rigid body.

This downfall has led the research community to the development of the velocity-

aided attitude observers, which use the accelerometer in a more realistic manner: to
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measure the body-referenced apparent acceleration (which contain forces due to the

gravity vector and linear acceleration). For a period of time, this type of observer

was only known to be locally stable. Fortunately, further investigations revealed that

this type of observer exhibited performance which was close to semi-global stability

(semi-global stability in a domain which is almost the entire space, except for a set of

Lebesque measure zero). However, the required proofs were very complicated and did

not intuitively reveal how the linear velocity measurement aided in the estimation of

the system attitude. This difficulty led us to the development of the velocity-aided

attitude observers proposed in Section 3.3.5. These proposed observers, through the

use of a new estimation law, in our opinion offer greatly simplified proofs when com-

pared to the existing literature, and offer new insights into the mechanism which

allows the use of the linear velocity measurement to obtain information about the

system attitude.

Until quite recently, the state-of-the-art in control systems for these vehicles

required that at least the system attitude was known. Yet, due to the unavailability

of sensors which can directly measure the attitude of a rigid-body, one is left with no

choice but to couple an attitude observer (such as the ones describe above) with the

desired controller, in order to successfully achieve the desired autonomous capabili-

ties. This is also the case with the adaptive position tracking control laws proposed in

Section 4.3.2. Due to this disconnect between these two fundamental system objec-

tives (estimation and control), we were motivated to develop new control strategies

which considered these two problems together. This led to the development of the

vector-measurement based attitude stabilization and position control laws given in

Sections 4.2 and 4.3.3, respectively. By utilizing the vector measurements, these con-

trol laws can be implemented without the use of an attitude estimation scheme, which

as an added benefit, also reduces the complexity of the overall system. This proposed
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strategy addresses the concern of using an attitude observer with a control system

which assumes the system orientation is directly measured. However, similar to the

vector-based attitude observers, the vector based control strategies can be negatively

affected when the accelerometer is used to measure the gravity vector. Fortunately,

in light of the insight we obtained through the development of the velocity-aided atti-

tude observer, we were able to extend these concepts to develop the control strategy

proposed in Section 4.3.4.1. Since this new vector-measurement based position con-

troller uses the accelerometer to measure the system apparent acceleration (instead

of the gravity vector), we feel that this control strategy is better suited for VTOL

UAVs, for flights requiring high linear accelerations.

In light of these contributions, most of the proposed control strategies assume

the aircraft are equipped with a common sensor set which includes a GPS, in order to

measure the system inertial-referenced position and velocity. Consequently, the esti-

mation and control strategies proposed in this thesis are best suited for applications

where the system is assumed to operate in an external (outdoor) environment, where

GPS signals are available. With this characteristic in mind, aircraft which utilize the

proposed control strategies may be best suited for applications which involve distant

locations or operation in regions which are difficult to reach (for example, the side of

a building). Although the quality of the data obtained using a GPS has been improv-

ing as a result of technological advancements, in general these measurements can be

affected by a variety of problems (i.e., delay, low sampling-time, noise, atmospheric

disturbances, multi-path, indoor operation, etc.). One way to address the problems

associated with the GPS is to use robust control techniques in order to demonstrate

the performance of the proposed estimation and control strategies in the presence of

these disturbances. However, another interesting area of future research may involve

the use of other sensors to provide information about the position and velocity of the
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system. For example, there are a variety of Doppler-based radar sensors which are

becoming increasingly small, lightweight and inexpensive (such as the sensors used

for collision avoidance in automobiles). These sensors can successfully measure rel-

ative linear velocity and may be used for applications where the system is operated

inside (for example, by measuring the relative velocity with respect to the floor and

surrounding walls). Therefore, future work may consider the use of these sensors to

reduce the dependance on the data from a GPS. In addition to the Doppler-based

velocity sensors, other technologies have also been studied to measure the system

position and velocity (i.e., proximity sensors, RF based positioning, motion capture,

etc.). Many motion capture systems use a set of cameras which are mounted on

the surrounding walls and ceiling in order to observe the vehicle. Usually, reflective

surfaces are placed on the vehicle which can easily be recognized by the computer

programs which process the camera data. Furthermore, the use of motion capture has

also been used to remove the requirement of the IMU, by calculating (or estimating)

the orientation of the vehicle using multiple reflective surfaces which are strategi-

cally positioned on the vehicle. However, when using technology such as motion

capture, the aircraft is confined to a relatively small workspace which is observed by

the motion-capture-enabling cameras, and are not necessarily equipped for operation

outside of these regions. Despite this limitation, this is still a very interesting area of

research which we may consider in future endeavors.

In other applications where cameras have been placed on the system, typically

colored or patterned targets have been used which are intended to be viewed by the

cameras, and thus the usefulness of the proposed strategies depends upon the close

proximity of the vehicle to the target. In light of these advancements, an interesting

problem is to develop vision-based strategies which, unlike previous work, does not

depend on a classic or well-defined target. Instead, it may be possible to use the



Chapter 5: Thesis Summary and Future Work 138

camera to detect features which appear naturally in the aircraft environment. In fact,

a relatively new research area involves the study of optical flow, where a camera is used

to detect the apparent motion of the system due to linear motion. In most cases, this

strategy also uses a gyroscope in order to compensate for the motion of the camera

due to rotational motion of the vehicle. Using this strategy, it is possible to obtain

measurements of the system linear velocity using only visual feedback. Therefore,

one possible contribution may involve the use of optical flow with the velocity-aided

attitude observers and/or position controller, where the velocity data is retrieved from

a camera using optical flow data, rather than from the GPS. Consequently, in this case

the system may be able to operate in environments where GPS data is unavailable.
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Appendix A

Proof for Lemmas and Propositions

A.1 Proofs for Lemmas

A.1.1 Proof for Lemma 3 (Single-Measurement Attitude

Reconstruction)

One definition of a unit-quaternion as it pertains to a rotational transformation is

given by Q =
(

cos (δ/2) , sin (δ/2) k̂
)
, where δ is an angle of rotation about the

normalized axis of rotation k̂. One possible solution for the angle and axis of rotation

can be found by using the scalar and vector products, i.e. rTb = ∥r∥∥b∥ cos(δ) and

S(b)r = ∥r∥∥b∥ sin(δ)k̂. From the definition of the scalar product, we find cos(δ) =

rTb
∥r∥2 , where we assume ∥r∥ = ∥b∥. The result sin(δ) = 1

∥r∥2

√(
∥r∥2 + rTb

) (
∥r∥2 − rTb

)
follows from the fact that sin2 (δ) = 1− cos2 (δ). Applying the double angle formula

cos(δ) = 1 − 2 sin2 (δ/2), we obtain sin(δ/2) = 1
∥r∥

√
∥r∥2−rTb

2 . Subsequently, the

normalized axis of rotation is given by k̂ =
((

∥r∥2 + rTb
)(

∥r∥2 − rTb
))−1/2

S(b)r.

Therefore, the solution for the vector and scalar parts of the quaternion are given by

k̂ sin (δ/2) =
1

∥r∥

√
1

2
(
∥r∥2 + rTb

)S(b)r,

cos(δ/2) =
sin(δ)

2 sin(δ/2)
=

1

∥r∥

√
∥r∥2 + rTb

2
.
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A.1.2 Proof for Lemma 4 (Properties of zγ and W )

First, let us show that the matrix W := −
∑n
i=1 γiS(ri)

2 is positive definite. Due to

the property 2.21, it is clear W = WT. Let us define α(x) = xTWx, where x ∈ R3,

and let αi(x) = −γixTS(ri)2x such that α(x) =
∑n
i=1 αi(x). Then, due to property

2.25, it is clear that αi(x) ≥ 0 for any x ∈ R3, and αi(x) = 0 implies that x is

collinear to the vector ri (null-space of S(ri)
2). In light of Assumption 3.2, let r1

and r2 denote two non-collinear vectors. Then, if α1(x) = 0 it is true that α2(x) ̸= 0

since the vector x cannot be collinear to both r1 and r2. It follows that the condition

α(x) = 0 is only possible if and only if x = 0, and therefore W is positive define.

To prove (b), we use the fact bi = Rri, b̂i = R̂ri, and the definition of the

attitude error R̃ = R̂TR, then applying the property (2.23) to zγ yields

zγ =
n∑
i=1

γiS(b̂i)bi = R̂

n∑
i=1

γiS(ri)R̃ri. (A.1)

Using (2.8) and the property (2.22) with R̃, we find

zγ = 2R̂
n∑
i=1

γiS(ri)(q̃q̃
T − η̃S(q̃))ri = −2R̂(S(q̃)M + η̃W ), (A.2)

where M =
∑n
i=1 γirir

T
i . Due to the property (2.22), we find M = µI −W , µ =∑n

i=1 γir
T
i ri. Substituting this expression for M we arrive at (3.28).

To prove (c) we first note zγ = 0 is equivalent to

(η̃I − S(q̃))Wq̃ = 0. (A.3)
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From this result it is clear that q̃ = 0 is a trivial solution, where due to the unity-norm

constraint further implies η̃ = ±1. For the case where q̃ ̸= 0, let us pre-multiply the

result (A.3) by q̃T ̸= 0 to obtain η̃q̃TWq̃ = 0, from which it is clear that η̃ = 0 is

the only solution since W is a positive definite matrix. In the case where η̃ = 0 (and

therefore ∥q̃∥ = 1), (A.3) becomes S(q̃)Wq̃ = 0, which implies thatWq̃ (which is non-

zero) is collinear to q̃. Therefore q̃ must be collinear to v, where v is unit-eigenvector

of W .

A.2 Proofs for Propositions

A.2.1 Proof for Proposition 1 (Complementary Filtering)

In light of the attitude error defined by (3.15), since Q̄ = Q̂⊙ Q̃, we obtain the time

derivative Q̂⊙ ˙̃Q = ˙̄Q− ˙̂
Q⊙ Q̃. Using the quaternion multiplication operation ⊙, we

multiply by Q̂ to obtain

˙̃Q =
1

2
Q̂−1 ⊙ Q̄⊙ (0, ω)− 1

2
(0, β)⊙ Q̃ (A.4)

=
1

2
Q̃⊙ (0, ω − R̃β) (A.5)

Let us consider the following Lyapunov function candidate:

V = q̃Tq̃ + (1− η̃)2 +
1

2
ω̃Tb Γ

−1
2 ω̃b = 2(1− η̃) +

1

2
ω̃Tb Γ

−1
2 ω̃b, (A.6)

where we note V can be expressed using only the quaternion scalar η̃ due to the unit-

norm constraint η̃2+ q̃Tq̃ = 1. In light of (A.5) the time-derivative of the quaternion

scalar is given by η̃ = −1/2q̃T(ω − R̃β). Using the fact that q̃TR̃β = q̃Tβ and
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ωb = ω̂b − ω̃b, the time-derivative of V is given by

V̇ = − q̃T(β − ωg + ω̂b − ω̃b) + ω̃Tb Γ
−1
2

˙̂ωb (A.7)

Applying the observer estimation laws (3.13) and (3.14) we obtain

V̇ = − q̃TΓ1q̃. (A.8)

Due to the boundedness of ˙̃q (since we assume ω is bounded), Barbalat’s Lemma can

be applied to show that V̇ → 0 and therefore q̃ → 0. Also, due to the boundedness

of ω̇ we have ˙̃Q→ 0 which implies β → ω, and therefore ω̂b → ωb.

A.2.2 Proof for Proposition 2 (Vector-Measurement Based

Attitude Observer)

Let b̃i = b̂i − bi and consider the following Lyapunov function candidate

V =
1

2

n∑
i=1

γib̃
T
i b̃i (A.9)

In light of (3.18) and (3.20) the derivative of V is given by

V̇ =
n∑
i=1

γib̃
T
i (S(ω)(b̃i + b̂i)− S(β)b̂i) = − zTγ zγ (A.10)

Therefore, all signals involved in the control scheme are bounded, V is non-increasing

and converges to a constant as t goes to infinity. Since ω and β are bounded, V̈ is also

bounded which guarantees V̇ is uniformly continuous. Barbalat’s lemma therefore
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implies

lim
t→∞

zγ(t) = 0 (A.11)

Invoking Lemma (4) we conclude that the observer dynamics has the following equi-

libria: (η̃ = 0, q̃ = ±v) and (η̃ = ±1, q̃ = 0).

To show that the manifold Ψ is invariant, we study the dynamics of η̃2. Using

(3.23) we find

d

dt

(
η̃2
)

= 2η̃

(
−1

2
q̃TR̂T(ω − β)

)
= η̃2q̃TWq̃ (A.12)

from which it is clear ˙̃η = 0 when η̃ = 0, which shows the invariance of Ψ. The non-

attractiveness of Ψ follows from the fact that for any η̃(t0) ̸= 0, |η̃| is always increasing

(sinceW is positive-definite) and therefore |η̃| must converge to an upper limit. Since

we know that zγ → 0, then this must imply that limt→∞ η̃(t) = sgn(η̃(t0)). There-

fore, for all initial conditions satisfying η̃(t0) = 0, invoking Lemma 4 implies that

limt→∞ η̃(t) = 0 and limt→∞ q̃(t) = v.

A.2.3 Proof for Proposition 3 (Attitude Observer Using

Filtered Vector-Measurements)

Let b̃i = b̂i − bi denote the vector-measurement error, and consider the following

Lyapunov function candidate

V =
1

2

n∑
i=1

γib̃
T
i b̃i +

1

2
ψTψ (A.13)
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In light of (3.18) and (3.19) it follows that
˙̂
bi = −S(β)b̂i and ḃi = −S(ω)bi =

−S(ω)(b̂i − b̃i). Therefore, the time derivative of V is given by

V̇ =
n∑
i=1

γib̃
T
i

(
S(b̂i)(β − ω)

)
+ ψTψ̇ = zTγ (β − ω) + ψTψ̇ (A.14)

Applying the expressions for β and ψ̇ from (3.33) and (3.34), respectively we obtain

V̇ = −αψTψ (A.15)

which implies that ψ is bounded, and therefore ψ̇ = −αψ + αzγ is bounded since zγ

is bounded by definition (the vectors ri and bi are bounded). Therefore, since V̈ is

bounded, then V̇ is uniformly continuous and Barbalat’s lemma implies V̇ → 0 and

therefore ψ → 0. Similarly, since ψ̈ = −αψ̇ + αżγ , and since żγ is a function of β

and ω (which are bounded), then it follows that ψ̈ is also bounded. Then ψ̇ → 0

and therefore zγ → 0. Invoking Lemma 4 we find the estimator has the equilibria

(η̃ = ±1, q̃ = 0, ψ = 0) or (η̃ = 0, q̃ = ±v, ψ = 0).

Now, let us show that the undesired equilibria (η̃ = 0, q̃ = ±v, ψ = 0) are

unstable, which we will do using Chetaev’s theorem (Khalil (2002)). First we define

δ := q̃TR̂Tψ, and consider the dynamics of η̃ and δ around the undesired equilibria

˙̃η = −αδ/2 (A.16)

δ̇ = −αδ − 2αξη̃ + vTR̂TS(ω)ψ (A.17)

where ξ := vTWv and v is a unit-eigenvector of W which corresponds to the equilib-

rium point. Note that by definition, ξ is equal to one of the eigenvalues of W , and

therefore must satisfy ξ ≥ λmin(W ) > 0. Now let us consider the following Chetaev
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function candidate:

Vc = −η̃δ (A.18)

Let 0 < r < 1 and define a ball

Br = {x := (η̃, δ) ∈ [−1, 1]× R, ∥x∥ < r} (A.19)

where r > 0 is chosen sufficiently small such that the linearized model given by (A.16)

and (A.17) is valid, and also define a subset of Br where Vc > 0 given by

U = {x ∈ Br, Vc(x) > 0} (A.20)

Note that Ur is non-empty for all 0 < r < 1. In light of (A.16) and (A.17), the

time-derivative of Vc is given by

V̇c = αδ2/2 + 2αξη̃2 + αη̃δ − η̃vTR̂TS(ω)ψ

≥ αδ2/2 + 2αλmin(W )η̃2 − α(ϵ1η̃
2 + δ2/(4ϵ1)− ∥ω∥(ϵ2η̃2 + κ2δ2/(4ϵ2))

≥ k1δ
2 + k2η̃

2 (A.21)

where k1 = α/2−α/(4ϵ1)−kωκ2/(4ϵ2) and k2 = 2αλmin(W )−αϵ1−kωϵ2, and kω is

the upper bound of ω. We also used the fact that ψ and δ are bounded to guarantee

that, for any (δ, η̃) ∈ Ur, there exists a finite parameter κ > 0 such that ∥ψ∥ ≤ κ|δ|.

Note that Young’s inequality has been used, with arbitrary ϵ1 > 0 and ϵ2 > 0, to

obtain the result (A.21). Note that the eigenvalues of W can be arbitrarily increased

using the gains γi. Therefore, we choose α > 0, ϵ1 > 0 and ϵ2 > 0 such that k1 > 0,

and choose the gains γi such that λmin(W ) > kξ := (αϵ1 + kωϵ2)/(2α) to ensure

k2 > 0. Then, V̇c > 0 for all (η̃, δ) ∈ Br.
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If we choose initial conditions near the equilibrium point such that x(0) ∈ Ur

and Vc(x(0)) = σ > 0, it is clear x(t) must leave Ur since Vc(x) is bounded on Ur

and V̇c(x) > 0 everywhere in Ur. Since Vc(x(t)) ≥ σ, it is clear x(t) must leave Ur

through the radial boundary ∥x∥ = r and not through the edges Vc(x) = 0, (i.e.

δ = 0 or η̃ = 0). Since this can happen for arbitrarily small r it is clear (η̃ = 0, δ = 0)

is an unstable equilibrium.
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Appendix B

Proof for Theorems

B.1 Proof for Theorem 3.1

(Second Order Attitude Observer Using IMU and GPS Measurements)

Let us first define the following error function

r̃2 = k1ṽ − (I − R̃)r2. (B.1)

To find the time-derivative of this signal we recall the expressions (3.36), (3.21), (3.24),

which are used to obtain ˙̃r2 = k1(ge3+r2− ˙̂v)−S(−R̂Tσ)R̂Tb2−(I−R̃)ṙ2. Applying

the expression for ˙̂v from (3.43), and using the fact that −k1ṽ + r2 − R̂Tb2 = −r̃2,

we obtain the result

˙̃r2 = −k1r̃2 − (I − R̃)ṙ2. (B.2)

At this point it is obvious that if the signal r2 was constant, the error signal r̃2 would

exponentially converge to zero, which is equivalent to ṽ converging to (I− R̃)r2. This

offers some insight on how the error function ṽ aids in the attitude observer in the

case where the signal r2 is unknown. However, since the signal r2 is not constant

we must continue with the stability-analysis. Using these results, we now study the

dynamics of the attitude error, by finding the time-derivative of the quaternion scalar
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η̃. Using the expression of ω̃ from (3.24), in addition to the expression for σ from

(3.42), the definition of the error signal defined by (B.1), the property (2.23), and

the fact that S(R̃r2)R̃r2 = 0, the time-derivative of the attitude error in terms of the

quaternion scalar η̃ is given by

˙̃η = − 1

2
q̃T
(
γ1S(r1)R̃r1 + γ2S(r2)R̃r2 + γ2S(r̃2)R̃r2

)
. (B.3)

Using (2.8) and the property (2.22), one can further show that

q̃TS(ri)R̃ri = 2q̃TS(ri)(q̃q̃
T − η̃S(q̃))ri = 2η̃q̃TS(ri)

2q̃, (B.4)

where ri ∈ R3. Therefore, the time-derivative of η̃ is found to be

˙̃η = η̃q̃TWq̃ +
γ2
2
q̃TS(R̃r2)r̃2, (B.5)

where W is the matrix defined by (3.40). Using this framework, we now wish to

show that q̃ converges to zero (or equivalently η̃2 converges to one), using Lyapunov

arguments. With this goal in mind, let us consider the following Lyapunov function

candidate:

V =
γ

2
r̃T2 r̃2 + γq q̃

Tq̃ =
γ

2
r̃T2 r̃2 + γq(1− η̃2), (B.6)

where γ and γq are strictly positive constants. As shown by (B.6), V can be expressed

using either the quaternion vector q̃ or the quaternion scalar η̃ due to the constraint

η̃2+ q̃Tq̃ = 1. Using the expressions (B.2) and (B.5) the time-derivative of V is found

to be

V̇ = −γk1r̃T2 r̃2 − 2γqη̃
2q̃TWq̃ − γ2γqη̃ q̃

TS(R̃r2)r̃2 − γr̃T2 (I − R̃)ṙ2. (B.7)
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To determine the upper bound for V̇ , in light of Assumption 3.3, using Young’s

inequality we find

γ2γqη̃q̃
TS(R̃r2)r̃2 ≤

ϵ1γ2γqc
2
1

2
r̃T2 r̃2 +

γ2γq
2ϵ1

η̃2q̃Tq̃, (B.8)

γr̃T2 (I − R̃)ṙ2 = 2γr̃T2 (S(q̃)− η̃I)S(ṙ2)q̃ ≤ ϵ2γc
2
2r̃

T
2 r̃2 +

γ

ϵ2
q̃Tq̃, (B.9)

where ϵ1 and ϵ2 are strictly positive constants, and where we used the fact that

∥S(q̃)− η̃I3×3∥2 = ∥η̃2I3×3−S(q̃)2∥ = 1 due to (2.25) and the unity-norm constraint

η̃2 + q̃Tq̃ = 1. Using these results, one obtains

V̇ ≤ −γ

(
k1 − ϵ1

γ2γqc
2
1

2γ
− ϵ2c

2
2

)
∥r̃2∥2 − ∥q̃∥2

((
2γqcw −

γ2γq
2ϵ1

)(
1− ∥q̃∥2

)
− γ

ϵ2

)
,

(B.10)

where cw > 0 is the lower bound of the minimum eigenvalue of W as defined in

assumption (3.4). Using this result we find V̇ ≤ 0 if

k1 > κ1(ϵ1, ϵ2) := ϵ1γ2γqc
2
1/(2γ) + ϵ2c

2
2, (B.11)

and q̃ is contained within the set D :=
{
q̃ ∈ R3, ∥q̃∥ <

√
1− γ/(ϵ2ξ)

}
, where

ξ = 2γqcw − γ2γq/(2ϵ1) and we assume that ϵ1 and ϵ2 are taken sufficiently large to

ensure ξ > 0, and 1− γ/(ϵ2ξ) > 0, respectively. Since V ≥ γq∥q̃∥2, it follows that the

domain of attraction contains the set

U :=

{
(r̃2, q̃) ∈ R3 × R3,

γ

2
∥r̃2∥2 + γq∥q̃∥2 < γq

(
1− γ

ϵ2ξ

)}
. (B.12)



Appendix B: Proof for Theorems 158

Note that by decreasing the parameter γ, the set U can be arbitrarily increased to

contain almost any initial condition for r̃2 and q̃ except for when ∥q̃∥ = 1. This choice

for γ must be followed by a choice of k1 to satisfy (B.11). For all (r̃2(t0), q̃(t0)) ∈ U ,

then V̇ ≤ 0 for all t > t0 which implies that r̃2 is bounded. Since r2 is bounded (due

to Assumption 3.3), it follows from the definition of r̃2 that the error function ṽ is

bounded, and therefore σ and v̂ are bounded. In light of Assumption 3.1, it follows

that the observer input (ω + σ) is bounded. This proves that all associated observer

signals are bounded.

The result V̇(t) ≤ 0 also implies that a lower bound for (1−∥q̃∥2) = η̃2 > 0 exists

for all initial conditions in U . To show exponential convergence, we will now define this

bound quantitatively. For the remainder of the proof, assume that (r̃2(t0), q̃(t0)) ∈ U .

Therefore, V(t0)/γq < 1 − γ/(ϵ2ξ) < 1, due to the choices for ϵ1 and ϵ2. Also, since

V/γq ≥ ∥q̃∥2, this further implies 1 − ∥q̃∥2 ≥ 1 − V/γq. Since V is a non-increasing

function, it follows that the lower bound for the quaternion is given by

1− ∥q̃(t)∥2 = η̃(t)2 ≥ 1− V(t0)/γq > 0, ∀t ≥ t0. (B.13)

Therefore, an upper-bound for V̇ is given by

V̇ ≤ −δr∥r̃2∥2 − δq∥q̃∥2, (B.14)

δr = γ
(
k1 − ϵ1γ2γqc

2
1/(2γ)− ϵ2c

2
2

)
, (B.15)

δq = ξ
(
1− V(t0)/γq

)
− γ/ϵ2, (B.16)

for all t ≥ t0. Therefore, since δq > 0 for initial conditions starting in U , and δr > 0
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due to the choice for k1, we can further see that

V̇ ≤ −ϵvV , ϵv = min(δr, δq)/max(γ/2, γq), (B.17)

which implies that the states r̃2, q̃ and therefore ṽ converge exponentially to zero.

Since q̃ exponentially converges to zero, and since η̃(t) never crosses zero, then this

suggests that η̃ converges exponentially to sgn(η̃(t0)), which concludes the proof.

B.2 Proof for Theorem 3.2

(Third Order Observer Using IMU and GPS Measurements)

From (3.46) we see that due to the choice for (3.47), the attitude observer is

now updated using the error function ṽ in addition to the dynamic state ψ. In this

more general case, we define the error function r̃2 as follows:

r̃2 = k2ψ + k3ṽ + (R̃− I)r2. (B.18)

Using this error function, we now wish to write the time-derivative of the error func-

tion ṽ in terms of r̃2. Using (3.36), (3.49), and substituting the value for ψ using

(B.18) we find

˙̃v = −k1ṽ + (I − R̃)r2 −
k6
k2

(
r̃2 − k3ṽ − (R̃− I)r2

)
= α1ṽ + α2r̃2 + α3(R̃− I)r2, (B.19)

where α1 = −k1+ k3k6/k2, α2 = −k6/k2 and α3 = k6/k2− 1. Using the expressions

for the time-derivatives of ψ, ṽ and R̃ from (3.48), (B.19) and (3.23), respectively,

and the expression for ω̃ from (3.24), we now find the time-derivative of r̃2 to be given
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by

˙̃r2 = −k2k4ψ + R̂TS(b2)σ − k2k5ṽ + k3

(
α1ṽ + α2r̃2

+ α3(R̃− I)r2

)
+ S(R̂Tσ)R̂Tb2 + (R̃− I)ṙ2

= α4r̃2 + α5ṽ + α6(R̃− I)r2 + (R̃− I)ṙ2, (B.20)

where α4 = −k4 − k3k6/k2, α5 = k3k4 + k23k6/k2 − k2k5 − k1k3 and α6 = k4 − k3 +

k3k6/k2. Note that in light of the choices of k5 and k6 from (3.50), the coefficients

αi are subsequently found to be

α1 = −k1 + k3 − k4, α4 = −k3,

α2 = k4/k3 − 1, α5 = 1/γr(1− k4/k3),

α3 = −k4/k3, α6 = 0.

(B.21)

Consequently, one can see that α2 + γrα5 = 0. Now, let us consider the dynamics of

the quaternion scalar η̃. Using a similar procedure as in the proof for the first observer,

in light of (3.23), (3.24), (3.46), (3.47) and the property (2.23) the time-derivative of

η̃ is given by

˙̃η = −1

2
q̃T
(
γ1S(r1)R̃r1 + γ2S(r̃2 + (I − R̃)r2)R̃r2

)
= η̃q̃TWq̃ +

γ2
2
q̃TS(R̃r2)r̃2. (B.22)

Now, let us consider the following Lyapunov function candidate:

V =
γ

2
(ṽTṽ + γrr̃

T
2 r̃2) + γq q̃

Tq̃ =
γ

2
(ṽTṽ + γrr̃

T
2 r̃2) + γq(1− η̃2), (B.23)

where γ, γq, γr > 0. In light of the expressions for the time-derivatives of ṽ, r̃2 and η̃
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from (B.19), (B.20) and (B.22), respectively, in addition to the fact that α2+γrα5 = 0

and α6 = 0, the time-derivative of V is given by

V̇ = γα1ṽ
Tṽ + γγrα4r̃

T
2 r̃2 + γα3ṽ

T(R̃− I)r2 − 2γqη̃
2q̃TWq̃ − γ2γqη̃q̃

TS(R̃r2)r̃2.

(B.24)

To find an upper bound for this result, in light of Assumption 3.3 and the expressions

for the coefficients αi given by (B.21), we use Young’s inequality to find the bounds

of the following cross terms:

γα3ṽ
T(R̃− I)r2 = 2γα3ṽ

T(η̃I − S(q̃))S(r2)q̃

≤ ϵ1
γc21k

2
4

k23
ṽTṽ +

γ

ϵ1
q̃Tq̃, (B.25)

γγrr̃
T
2 (R̃− I)ṙ2 ≤ ϵ2γγrc

2
2r̃

T
2 r̃2 +

γγr
ϵ2

q̃Tq̃, (B.26)

γ2γqη̃q̃
TS(R̃r2)r̃2 ≤ ϵ3

γqc
2
1γ

2
2

2
r̃T2 r̃2 +

γq
2ϵ3

η̃2q̃Tq̃, (B.27)

where ϵ1,2,3 > 0. Therefore, we have

V̇ ≤ −γ (k1 − κ1(ϵ1)) ∥ṽ∥2 − γγr (k3 − κ3(ϵ2, ϵ3)) ∥r̃2∥2

− γq

(
ξ1(1− ∥q̃∥2)− γξ2

)
∥q̃∥2, (B.28)

κ1(ϵ1) := k3 − k4 + ϵ1c
2
1k

2
4/k

2
3, (B.29)

κ3(ϵ2, ϵ3) := ϵ2c
2
2 + ϵ3γqc

2
1γ

2
2/(2γγr), (B.30)

ξ1 = 2cw − 1

2ϵ3
, ξ2 =

1

γq

(
1

ϵ1
+
γr
ϵ2

)
. (B.31)
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Therefore, if k3 > κ3(ϵ2, ϵ3) and k1 > κ1(ϵ1), a sufficient condition for V̇ ≤ 0 is that

q̃ is contained within the set

D :=
{
q̃ ∈ R3, ∥q̃∥ <

√
1− γξ2/ξ1

}
, (B.32)

where we assume that ϵ3 is chosen sufficiently large such that ξ1 > 0, and ϵ1 and ϵ2

are chosen sufficiently large to ensure γξ2/ξ1 < 1. Since V ≥ γq∥q̃∥2, it follows that

the domain of attraction contains the set

U :=
{
(ṽ, r̃2, q̃) ∈ R3 × R3 × R3; γ

(
∥ṽ∥2/2 + γr∥r̃2∥2

)
+γq∥q̃∥2 < γq (1− γξ2/ξ1)

}
.

(B.33)

Note that by decreasing the parameter γ, the set U can be arbitrarily increased to

contain almost any initial condition for ṽ, r̃2 and q̃ except when ∥q̃∥ = 1. This choice of

γ is followed by a choice of k3 and k1 to ensure k3 > κ3 and k1 > κ1, and k2 and k4 can

be arbitrarily chosen1. Therefore, for all initial conditions (ṽ(t0), r̃2(t0), q̃(t0)) ∈ U ,

it follows that V̇ ≤ 0 for all t ≥ t0. This implies that ṽ and r̃2 are bounded. Note

that ω and v are bounded due to Assumption 3.1. Therefore, due to the bound of ṽ

then v̂ is also bounded. The bound of the signal ψ follows from the fact that r̃2 and

r2 are bounded (due to Assumption 3.3). Therefore, the signal σ, and consequently

the observer input (ω + σ), are bounded, thus proving that all associated observer

signals are bounded.

To prove exponential convergence, we must first show that there exists a lower

1. Although the gain k4 can be chosen to take any value, from a practical standpoint this
gain should be chosen to be positive since this introduces a leakage term in the dynamics
of ψ, and can improve the performance of the observer in the presence of noise and other
disturbances. For more information on this leakage term, in addition to other practical
tools in the area of adaptive control, the reader is referred to Ioannou and Sun (1996).
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bound for the signal η̃2 = 1−∥q̃∥2, which is strictly positive, for all initial conditions

in U . For the remainder of the proof let us assume (ṽ(t0), r̃2(t0), q̃(t0)) ∈ U . Recall

the parameters ϵ2 and ϵ3 were chosen sufficiently large to ensure 1 − γξ2/ξ1 > 0. If

we start within the set U , then

V(t0) < γq (1− γξ2/ξ1) . (B.34)

Since V ≥ γq∥q̃∥2, and due to the fact that V is non-increasing in U , then the lower

bound for the quaternion is given by η̃2 = 1− ∥q̃∥2 ≥ 1− V(t0)/γq > γξ2/ξ1 > 0 for

all t ≥ t0. Therefore, one has

V̇ ≤ −δrr̃T2 r̃2 − δv ṽ
Tṽ − δq q̃

Tq̃, (B.35)

δr = γγr (k3 − κ3(ϵ2, ϵ3)) , (B.36)

δv = γ (k1 − κ1(ϵ1)) , (B.37)

δq = ξ1(γq − V(t0))− γγqξ2, (B.38)

for all t ≥ t0, where δq is positive for initial conditions in U , and δr and δv are positive

constants due to the choices of the observer gains k3 and k1, respectively. Also, in

light of the definition of the Lyapunov function we obtain

V̇ ≤ −ϵvV , (B.39)

where ϵv = min(δv, δr, δq)/max(γ/2, γγr/2, γq), which implies that V converges ex-

ponentially to zero. This implies that r̃2, q̃ and ṽ converge exponentially to zero.

Since q̃ converges exponentially to zero, and η̃ never crosses zero, then this implies

that η̃ converges exponentially to sgn(η̃(t0)), which concludes the proof.
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B.3 Proof for Theorem 4.1

(Vector Measurement Based Attitude Stabilization)

Let b̃i = b̂i − bi denote the measurement error, and consider the following

candidate Lyapunov function:

V =
1

2
ωTIbω +

1

2

n∑
i=1

(
γib̃

T
i b̃i + ρi(bi − ri)

T(bi − ri)
)
. (B.40)

In light of (4.1) and (4.5), the derivatives of the corresponding rotation matrices are

given by Ṙ = −S(ω)R and
˙̂
R = −S(β)R̂. Therefore, the time-derivative of V is given

by

V̇ = ωTu+
n∑
i=1

(
γib̃

T
i S(b̂i)(β − ω) + ρi(bi − ri)

TS(bi)ω
)

(B.41)

= ωTu+
n∑
i=1

(
γib̃

T
i S(b̂i)(β − ω)− ρir

T
i S(bi)ω

)
(B.42)

= ωTu+ zTγ (β − ω) + zTρ ω. (B.43)

Applying the expressions for the estimation and control laws from (4.5),(4.6) and

(4.7) we obtain

V̇ = − zTγ zγ . (B.44)

Consequently, V is non-increasing and bounded, which implies that ω is bounded.

Note that Q, Q̂, R and R̂ are bounded by definition, which implies that bi and

b̂i are also bounded a priori. Since V̈ is bounded, due to the bound of ω, then

limt→∞ zγ(t) = 0. At this point we can apply Lemma 4 which implies limt→∞ Q̃(t) =

(±1,0) or limt→∞ Q̃(t) = (0,±v) where v is a unit-eigenvector of the matrix W

defined by (4.4). Furthermore, one can show that ¨̃Q is bounded, and therefore
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limt→∞
˙̃Q = 0, which implies limt→∞(ω(t)−β(t)) = 0. Consequently, limt→∞ ω(t) =

0 since β = −zγ tends to zero. One can also show that ω̈ is bounded, and therefore,

since limt→∞ ω(t) = 0, this implies that limt→∞ ω̇(t) = 0. This fact further implies

that limt→∞ u(t) = limt→∞ zρ(t) = 0 since zγ tends to zero.

At this point we wish to write zρ in terms of the unit-quaternion scalar q (system

attitude). Using (4.3), (2.8), and the properties (2.20) and (2.22) we find

zρ = 2R
n∑
i=1

ρiS(ri)
(
qqT + ηS(q)

)
ri (B.45)

= −2R
n∑
i=1

ρi

(
S(q)rir

T
i q + ηS(ri)

2q
)
. (B.46)

Using the fact that rir
T
i = S(ri)

2 + rTi riI we obtain

zρ = 2R(ηI + S(q))Wc q. (B.47)

Note that the matrixWc, which is defined by (4.4), is positive definite since we assume

there are at least two non-collinear vectors. The fact zρ = 0 therefore implies

(ηI + S(q))Wc q = 0, (B.48)

for which an obvious solution is q = 0 and therefore η = ±1 (desired solution). To

find other equilibria, we pre-multiply by qT ̸= 0 to obtain

ηqTWc q = 0, (B.49)

which implies that η = 0 since Wc is positive definite. When η = 0, we know from
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the unit-norm constraint that ∥q∥ = 1. In this case (B.48) becomes

S(q)Wcq = 0 (B.50)

Therefore, the equilibrium solutions corresponding to the case η = 0 is given by

Q̃ = (0,±vc) where vc is a unit eigenvector of the matrix Wc.

We now wish to show that the undesired equilibria (corresponding to η = 0)

are unstable for an appropriate choice of the gains ρi using Chetaev arguments. Let

us define δ := qTIbω and consider the dynamics of η and δ around the equilibria

(η = 0, ω = 0)

η̇ = −1

2
vTc ω, (B.51)

δ̇ = −2ξcη, (B.52)

where ξc = vTc Wcvc is an eigenvalue of the matrix Wc. Let us now consider the

following Chetaev function

Vc = − ηδ. (B.53)

Note that Vc = 0 at the equilibrium points in question, and also note there exists

a domain around the equilibrium points such that Vc > 0, which consists of the

second and fourth quadrant of the plane (η, δ). The time-derivative of Vc in light of

(B.51)-(B.52) is given by

V̇c = 2ξcη
2 +

1

2
δvTc ω ≥ (2λmin(Wc)−

1

2
kbk

2
q )η

2, (B.54)

where we used the fact that |δ| ≤ kbω, with kb = ∥Ib∥, and the fact that around the

equilibria there exists a positive parameter kq such that ∥ω∥ ≤ kq|η|. It is clear that
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by increasing the gains ρi, we can satisfy λmin(Wc) >
1
4kbk

2
q := kc, which guarantees

that V̇c > 0 for all η ̸= 0. Using Chetaev’s arguments, one can conclude that the

equilibria characterized by (η = 0, ω = 0) are unstable.

B.4 Proof for Theorem 4.2

(Adaptive Position Tracking)

In the following sections we present the proof of the control law proposed in

Section 4.3.2.4. The proof is completed in a number of stages. In Section B.4.1 we

focus on the upper and lower bounds for the system thrust as a result of the proposed

control law. In Section B.4.2 we analyze the system translational dynamics, the

dynamics of the estimation error, and the dynamics of the angular velocity associated

with the quaternion Qd. The parts of the proof contained in Section B.4.1 and B.4.2

are the same for both proposed control laws. Section B.4.3 finalizes the proof for the

first proposed control law, where the proof for the second control law can be found

in Section B.4.4. Section B.4.5 provides derivatives of a number of functions that are

necessary to implement the controller.

B.4.1 Bounded Control

The proposed control laws are based on ensuring that the virtual control law is always

contained within the set U defined by (4.22). Fortunately, the singularity can be

avoided if the third component of the virtual control law µd is bounded such that

µd3 = eT3 µd < g. Recall the expression for the signal µd given by (4.41). Due to

Assumption 4.1, the acceleration of the reference trajectory is bounded such that

eT3 p̈d < δrz < g and ∥p̈d∥ < δr where the parameters δr and δrz are known a

priori. Given the projection based estimation law (4.43) and the property (4.40), the
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disturbance estimate θ̂1 is bounded such that ∥θ̂1∥ < δa+ kθ+ ϵα. Also, the function

h(·), defined by (2.27), is bounded such that 0 ≤ ∥h(·)∥ < 1. Consequently, the signal

µd is also bounded by

∥µd∥ < µ̄d = kp∥Γ−1
v ∥+ δr + δa + 2kθ + kv + ϵα, (B.55)

|eT3 µd| < µ̄d3 = kp∥eT3 Γ
−1
v ∥+ δrz + δa + 2kθ + kv + ϵα. (B.56)

where due to (4.42), the bound on the third component of µd is limited to |eT3 µd| =

|µd3| < µ̄d3 < g. As a result we find

ct = g − µ̄d3 > 0. (B.57)

As a result of the bounds (B.55)-(B.57), the system thrust, given by (4.19), is also

bounded such that ct < ut < c̄t where c̄t = µ̄d + g. Therefore, the system thrust

never vanishes and µd is always contained within the set U given by (4.22).

B.4.2 Translational and Quaternion Dynamics

Recall the expression for the velocity error dynamics defined by (4.32), and let θ̃1

denote the following estimation error function

θ̃1 = θa − θ̂1 − kθh(ṽ). (B.58)

Given the virtual control law µd defined by (4.41) and the estimation error θ̃1, the

time derivative of the velocity error can now be written as

˙̃v = µ̃−K1h(p̃)−K2h(ṽ)− θ̂1 + θa = µ̃−K1h(p̃)− kvh(ṽ) + θ̃1, (B.59)
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where K1 = kpΓ
−1
v and K2 = (kv + kθ) I3×3. Furthermore, in light of assumption

(4.3) and the velocity error (B.59) the time-derivative of (B.58) is given by

˙̃θ1 = −kθϕh(ṽ)θ̃1 + τ1 −
˙̂
θ1, (B.60)

τ1 = −kθϕh(ṽ) (µ̃−K1h(p̃)− kvh(ṽ)) . (B.61)

The expressions for ˙̃v and ˙̃θ1 are dependant on the error function µ̃ = µ−µd. A more

convenient notation is to express the error function µ̃ in terms of the attitude error

Q̃ = (η̃, q̃) = Q−1
d ⊙Q, where Qd is the desired attitude defined by (4.20) and (4.21).

This can be achieved if we consider the rotation matrix R̃ = RRT
d (which corresponds

to the unit quaternion Q̃) and the fact that R̃ = I + 2S(q̃)2 − 2η̃S(q̃), to obtain

µ̃ = WT
1 q̃, W1 = −2utS(q̄)R, q̄ = S(e3)q̃ + η̃e3. (B.62)

Consequently, the expressions for ˙̃v and ˙̃θ1 can be written as functions of the attitude

error q̃.

At this point we focus our attention on the dynamics of the attitude error

in terms of the quaternion scalar η̃. From (4.29), we note that the time-derivative

of η̃ is given by ˙̃η = 1
2 q̃

T (ωd − ω), where from (4.25) we recall ωd = M(µd)µ̇d.

Differentiating (4.41) in light of (4.43) and (B.59), we find the derivative µ̇d to be
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given by

µ̇d = r(3) + wβ +W2h(ṽ) +W3q̃ +W4ṽ − (kθ + kv)ϕh(ṽ)θ̃1, (B.63)

W2 = k2vϕh(ṽ),

W3 = −γθ1γq (kθ + kv)ϕh(ṽ)M(µd)
T − kvϕh(ṽ)W

T
1 ,

W4 = −γθ1Γv − kpΓ
−1
v ϕh(p̃), (B.64)

wβ = kvkpϕh(ṽ)Γ
−1
v h(p̃)− γθ1α(θ̂1, δa + kθ, τ2),

from which we obtain the desired attitude dynamics

ωd = M(µd)
(
p
(3)
d + wβ +W2h(ṽ) +W3q̃ +W4ṽ

)
− (kθ + kv)M(µd)ϕh(ṽ)θ̃1. (B.65)

Since ωd is not entirely known (due to the presence of the signal θ̃1), it is necessary

to study the upper bound of the undesired terms in (B.65). For the most part, this

analysis is straightforward except for the matrix M(µd). To determine an upper-

bound for this matrix defined by (4.26), we first realize that the function M(µd) can

also be written as

M(µd) =
1

∥µd − ge3∥2c1
·


−µd1µd2 −µ2d2 + ∥µd − ge3∥c1 µd2c1

µ2d1
− ∥µd − ge3∥c1 µd1µd2 −µd1c1

µd2∥µd − ge3∥ −µd1∥µd − ge3∥ 0


(B.66)

where c1 = ∥µd−ge3∥+g−µd3 . For convenience we let ξ = col [ξ1, ξ2, ξ3] = µd−ge3.
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Applying the Frobenius norm to this expression for M(µd), we find

∥M(µd)∥F =

√
2

∥ξ∥ (∥ξ∥+ |ξ3|)
+

1

∥ξ∥2
. (B.67)

Due to the bound of µd, we find inf{∥ξ∥} = inf{|ξ3|} = ct > 0, and therefore the

norm of M(µd) is bounded and given by

∥M(µd)∥F ≤
√
2

ct
. (B.68)

We now propose the following function

V1 = kp
(√

1 + p̃Tp̃− 1
)
+

1

2
ṽTΓv ṽ + 2γq (1− η̃) +

1

2γθ1
θ̃T1 θ̃1. (B.69)

Given (4.31),(4.33), (B.59)-(B.61), (B.65) and the adaptive estimation law (4.44), we

differentiate V1 to obtain

V̇1 = − kv ṽ
TΓvh(ṽ)−

kθ
γθ1

θ̃T1 ϕh(ṽ)θ̃1 − θ̃T1 α
(
θ̂1, δa + kθ, τ2

)
+q̃T

(
Φṽ + γq

(
ω −M(µd)

(
r(3) −M(µd)wβ +W2h(ṽ) +W3q̃

)))
,

(B.70)

Φ = W1Γv − γqM(µd)W4. (B.71)

B.4.3 Angular Velocity Error Dynamics - Controller 1

Recall the expression for the angular velocity error is given by ω̃ = ω− β1. Applying

the the virtual control law β1, given by (4.46), to V̇1 defined by (B.70) we obtain

V̇1 = −kv ṽTΓvh(ṽ)−
kθ
γθ1

θ̃T1 ϕh(ṽ)θ̃1 + γq q̃
Tω̃ − θ̃T1 α

(
θ̂1, δa + kθ, τ2

)
− γq q̃

TM(µd)W2h(ṽ)− γq q̃
T (Kq +M(µd)W3

)
q̃. (B.72)
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To further simplify this result, using (2.26) and (B.68) we apply Young’s inequality

to obtain the following upper-bound

|γq q̃TM(µd)W2h(ṽ)| ≤
γqk

2
v

2ϵ1
q̃Tq̃ +

γqk
2
vϵ1

c2t
ṽTh(ṽ), (B.73)

where ϵ1 > 0. Furthermore, due to ∥S(q̄)∥ ≤ 1 and ut < c̄t = g + µ̄d, we also find

∥M(µd)W3∥ ≤ 2
√
2kv c̄t
ct

+
2γθ1γq (kθ + kv)

c2t
. (B.74)

Due to the bounds (B.73)-(B.74), the time derivative of (B.72) is bounded by

V̇1 ≤ −ṽT∆vh(ṽ)− γq q̃
T∆q q̃ −

kθ
γθ1

θ̃T1 ϕh(ṽ)θ̃1

− θ̃T1 α
(
θ̂1, δa + kθ, τ2

)
+ γq q̃

Tω̃, (B.75)

∆v = kv

(
Γv −

γqkvϵ1

c2t
I3×3

)
, (B.76)

∆q = Kq −

(
2
√
2kv c̄tct + 2γθ1γq (kθ + kv)

c2t
+
k2v
2ϵ1

)
I3×3. (B.77)

Provided that (4.54) is satisfied, then ∆v and ∆q are positive definite matrices. Using

the error signals θ̃2 = θa − θ̂2 and θ̃3 = θb − θ̂3 we introduce the Lyapunov function

candidate

V2 = V1 +
1

2
ω̃TIbω̃ +

1

2γθ2
θ̃T2 θ̃2 +

1

2γθ3
θ̃T3 θ̃3

= kp

(√
1 + p̃Tp̃− 1

)
+

1

2
XTCX, (B.78)
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X = col
[
ṽ, 1− η̃, q̃, ω̃, θ̃1, θ̃2, θ̃3

]
, (B.79)

C = diag
[
Γv, 4γqI4×4, Ib, γ

−1
θ1
I, γ−1

θ2
I, γ−1

θ3
I
]
. (B.80)

where I = I3×3 unless otherwise noted. The time-derivative of (B.78) is subsequently

found using (B.75), in addition to the control and estimation laws defined by (4.50)-

(4.52) to obtain the following result

V̇2 ≤ −ṽT∆vh(ṽ)− γq q̃
T∆q q̃ −

kθ
γθ1

θ̃T1 ϕh(ṽ)θ̃1 − ω̃TKωω̃ − θ̃T1 α
(
θ̂1, δa + kθ, τ2

)
− θ̃T2 α

(
θ̂2, δa,−f̄ T

β1
Ibω̃
)
− θ̃T3 α

(
θ̂3, δb,−RTS(e3)ω̃

)
.

Due to the property of the projection law given by (4.40) then θ̃Ti α > 0, and the

Lyapunov function derivative can be simplified as follows

V̇2 ≤ −ṽT∆vh(ṽ)− γq q̃
T∆q q̃ −

kθ
γθ1

θ̃T1 ϕh(ṽ)θ̃1 − ω̃TKωω̃.

Therefore, V̇2 ≤ 0 and the states (p̃, ṽ, ω̃) are bounded. The attitude error Q̃ is

bounded by definition, and the adaptive estimation error θ̃1,2,3 are bounded due

to assumption 2 and due to the property of the projection mechanism (4.40). Ap-

plying Barbalat’s Lemma, V̈2 is bounded due to assumption 1 which shows that(
p̃, ṽ, q̃, ω̃, θ̃1

)
→ 0 as t → ∞. Since θ̃1 → 0 and ṽ → 0, then θ̂1 → θa. Also, due

to the boundedness of v̈, ˙̃v → 0, and ˙̃v = WT
1 q̃−K1h(p̃)− (kv + kθ)h(ṽ)− θ̂1+ θa =

−K1h(p̃) = 0, then p̃→ 0 which satisfies the tracking objective.

B.4.4 Proof of Theorem 4.3

The control law considered by Theorem (4.3) is similar to the first control law consid-

ered by Theorem (4.2), except for the choice of the virtual control law for the angular
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velocity β. Consequently, the sections pertaining to the bounded control and trans-

lational and quaternion dynamics are similar to both proofs. Therefore, the reader is

referred to sections B.4.1 and B.4.2 before proceeding. Also, Appendix B.4.5 provides

derivatives of a number of functions that are necessary to implement the controller.

Using the second control scheme, the angular velocity error is now defined as

ω̃ = ω−β2, where the virtual control law β2 is given by (4.58). To study the stability

of the system using the second controller, we use the same function V1 given by

(B.69). Using the expression for V̇1 given by (B.70), in addition to the virtual control

law β2, the bounds defined by (B.73) and (B.74) and the matrices (B.76) and (B.77),

the upper-bound of the V̇1 is now given by

V̇1 ≤ − kθ
γθ1

θ̃T1 ϕh(ṽ)θ̃1 − θ̃T1 α
(
θ̂1, δa + kθ, τ2

)
+ q̃TΦṽ

− ṽT∆vh(ṽ)− γq q̃
T∆q q̃ + γq q̃

Tω̃.

Using (B.71) in addition to (B.62) and (B.64), the expression for Φ can also be written

as

Φ =
(
γθ1γqM(µd)− 2utS(q̄)R

)
Γv + γqkpM(µd)Γ

−1
v ϕh(p̃).

Due to bound of the matrix M(µd) given by (B.68) and the fact ut < c̄t = g + µ̄d,

we find the upper bound of the matrix Φ given by

∥Φ∥ ≤

(√
2γqγθ1
ct

+ 2c̄t

)
∥Γv∥+

√
2γqkp
ct

∥Γ−1
v ∥.

From the definition of δ1 given by (4.63) we see that ∥Φ∥ ≤ δ1, therefore using Young’s

Inequality we find

|q̃TΦṽ| ≤
δ21
2ϵ2

q̃Tq̃ +
ϵ2
2
ṽTṽ,
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for any ϵ2 > 0. Therefore, V̇1 is updated as follows

V̇1 ≤ − kθ
γθ1

θ̃T1 ϕh(ṽ)θ̃1 − θ̃T1 α
(
θ̂1, δa, τ2

)
+ γq q̃

Tω̃ − q̃T∆̄q q̃ − ṽT∆̄v ṽ, (B.81)

where we define the matrices

∆̄q = γq∆q −
δ21
2ϵ2

I3×3

∆̄v =
1(

1 + ṽTṽ
)1/2∆v −

ϵ2
2
I3×3. (B.82)

Using the two estimation error functions θ̃2 = θa − θ̂2 and θ̃3 = θb − θ̂3 we introduce

the following Lyapunov function

V2 = V1 +
1

2
ω̃TIbω̃ +

1

2γθ2
θ̃T2 θ̃2 +

1

2γθ3
θ̃T3 θ̃3

= kp

(√
1 + p̃Tp̃− 1

)
+

1

2
XTCX, (B.83)

where X and C are given by (B.79) and (B.80), respectively. In light of (B.81), the

estimation laws (4.51)-(4.52) and the control law (4.60), we find the following upper

bound for V̇2

V̇2 ≤ −ṽT∆̄vh(ṽ)− γq q̃
T∆̄q q̃ −

kθ
γθ1

θ̃T1 ϕh(ṽ)θ̃1 − ω̃TKωω̃

− θ̃T1 α
(
θ̂1, δa + kθ, τ2

)
− θ̃T2 α

(
θ̂2, δa,−f̄ T

β2
Ibω̃
)
− θ̃T3 α

(
θ̂3, δb,−RTS(e3)ω̃

)
.

Due to the property of the projection law (4.40), then θ̃Ti α > 0 and

V̇2 ≤ − ṽT∆̄vh(ṽ)− γq q̃
T∆̄q q̃ −

kθ
γθ1

θ̃T1 ϕh(ṽ)θ̃1 − ω̃TKωω̃.

Given the requirements (4.61) and (4.62) are satisfied, then ∆̄q > 0 and ∆v > 0.
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However, in light of (B.82), to ensure that ∆̄v > 0 we must also satisfy the following

inequality

∥ṽ∥2 <
4

ϵ22
∥∆v∥2 − 1.

Due to the definition of the Lyapunov function (B.83), the following inequality is

always satisfied

1

2
λmin (Γv) ∥ṽ∥2 ≤ V2 ≤ kp

(√
1 + p̃Tp̃− 1

)
+XTC̄X,

where C̄ is given by (4.68), which we can further simplify to obtain

∥ṽ∥2 ≤ 2λmin (Γv)
−1
(
kp

(√
1 + p̃Tp̃− 1

)
+XTC̄X

)
.

Therefore, to ensure V̇2 ≤ 0 it is sufficient to have

2λmin (Γv)
−1
(
kp

(√
1 + p̃(0)Tp̃(0)− 1

)
+X(0)TC̄X(0)

)
<

4

ϵ22
∥∆v∥2 − 1,

which is satisfied due to (4.65), and consequently ∆̄v is positive definite. Therefore,

V̇2 ≤ 0 and the states (p̃, ṽ, ω̃) are bounded. The attitude error Q̃ is bounded by

definition, and the adaptive estimation error θ̃1,2,3 are bounded due to assumption

2 and due to the property of the projection mechanism (4.40). Applying Barbalat’s

Lemma, V̈2 is bounded due to assumption 1 which shows that
(
p̃, ṽ, q̃, ω̃, θ̃1

)
→ 0

as t → ∞. Since θ̃1 → 0 and ṽ → 0, then θ̂1 → θa. Also, the bound of ¨̃v implies

˙̃v → 0, and ˙̃v = WT
1 q̃ − K1h(p̃) − K2h(ṽ) − θ̂1 + θa = −K1h(p̃) = 0, then p̃ → 0

which satisfies the tracking objective.
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B.4.5 Derivatives of Angular Velocity Virtual Control

Laws, β2 and β1

In this section we obtain the derivatives of the two virtual control laws for the angular

velocity, β1 and β2, which are given by (4.46) and (4.58), respectively. Due to the

complexity of the virtual control laws we begin by evaluating the derivatives of several

signals before continuing to the derivatives of the virtual control laws. Recall from

(4.27) the expression for Z(µd, v), which is the partial derivative of the matrixM(µd).

In addition to this function, we also require the partial derivative of the transpose

M(µd)
T. Let µd = col

[
µd1 , µd2 , µd3

]
and v = col [v1, v2, v3] denote two arbitrary

vectors. We define the function Z2 : R3 → R3 such that

Z2(µd, v) :=
∂

∂µd
M(µd)

Tv.

From the definition ofM(µd) given by (4.26), after some straightforward albeit tedious

calculations, we evaluate Z2(µd, v) to be

Z2(µd, v) = γ−1
M M(µd)

Tvfγ + γMΛ2(µd, v),
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where fγ = γ2M (ge3 − µd)
T (3c1I3×3 + S(e3)S(ge3 − µd)) , γM = ∥µd − ge3∥−2c−1

1 ,

c1 = ∥µd − ge3∥+ g − µd3 and

Λ2 =


2v2µd1 − µd2v1 utv3 − µd1v1 0

µd2v2 − utv3 µd1v2 − 2µd2v1 0

−c1v2 c1v2 0



+


µd2v3 − c1v2

c1v1 − µd1v3

0

α1(µd)
T

+

(
−utv2 utv1 µd2v1 − µd1v2

)T

α2(µd)
T,

with α1 = (µd − ge3) /∥µd − ge3∥ and α2 = α1 − e3.

In order to obtain the derivative of the projection law α, we first focus on

obtaining the derivative of the signal τ2. Leading up to this goal we first differentiate

several signals. Due to the unknown parameter θa, in general we group the derivative

of an arbitrary signal x into known and unknown components as ẋ = fx + f̄xθa.

Recall the expression for the signal µ̇d given by (B.63). This result can also be

written as µ̇d = fµd + f̄µdθa, where the functions fµd and f̄µd are given by

fµd = r(3) + wβ + (W2 + kθK2ϕh(ṽ))h(ṽ) +W3q̃

+W4ṽ +K2ϕh(ṽ)θ̂1,

f̄µd = −K2ϕh(ṽ),

where K2 = (kθ + kv) I3×3. Similarly, in light of (4.33), the derivative of ˙̃q can be
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written as ˙̃q = fq̃ + f̄q̃θa using the following expressions

fq̃ =
1
2 (η̃I + S(q̃))ω + 1

2 (S(q̃)− η̃I)
(
M(µd)fµd

)
,

f̄q̃ =
1
2 (S(q̃)− η̃I)

(
M(µd)f̄µd

)
.

From the definition of µ̃ given by (4.18), the derivative ˙̃µ = fµ̃ + f̄µ̃θa is obtained

where

fµ̃ = −
(
I + u−1

t RTe3 (µd − ge3)
T
)
fµd − utR

TS(ω)e3,

f̄µ̃ = −
(
I + u−1

t RTe3 (µd − ge3)
T
)
f̄µd .

The expression for ˙̃v, previously given by (B.59), can also be given by ˙̃v = fṽ1 + θ̃1 =

fṽ2 + θa, where the functions fṽ1 and fṽ2 are given by

fṽ1 = −K1h(p̃)− kvh(ṽ) + µ̃, fṽ2 = −K1h(p̃)−K2h(ṽ) + µ̃− θ̂1.

Since we require the derivative of the signal fṽ1 , we also find ḟṽ1 = ffṽ + f̄fṽ where

ffṽ = −K1ϕh(p̃)ṽ − kvϕh(ṽ)fṽ2 + fµ̃, f̄fṽ = − kvϕh(ṽ) + f̄µ̃.

At this point we require the derivative of the signal τ2, given by (4.44). Using the

partial derivative of ϕ(u) given by (2.29), we obtain τ̇2 = fτ2 + f̄τ2θa where

fτ2 = Γvfṽ2 −
kθ
γθ1

(
fϕh(ṽ, fṽ1)fṽ2 − ϕh(ṽ)K1ϕh(p̃)ṽ − kvϕh(ṽ)

2fṽ2 + ϕh(ṽ)fµ̃

)
+γq

(
fϕh(ṽ, K2M(µd)

Tq̃)fṽ2 + ϕh(ṽ)K2Z2(µd, q̃)fµd +ϕh(ṽ)K2M(µd)
Tfq̃

)
,(B.84)

f̄τ2 = Γv −
kθ
γθ1

(
fϕh(ṽ, fṽ1)− k2vϕh(ṽ)

2 + ϕh(ṽ)f̄µ̃

)
+γq

(
fϕh(ṽ, K2M(µd)

Tq̃) + ϕh(ṽ)K2Z2(µd, q̃)f̄µd + ϕh(ṽ)K2M(µd)
Tf̄q̃

)
. (B.85)
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In light of the work presented in Cai et al. (2006) and using the above derivatives,

we now differentiate the projection law α. Using the projection algorithm defined by

(4.36)-(4.39), in addition to the derivative of τ2 as defined by (B.84) and (B.85) we

obtain α̇(θ̂1, δa + kθ, τ2) = fα + f̄αθa where the functions fα and f̄α are given by

fα = −kαη̇1η2θ̂1 − kαη1η2
˙̂
θ1 − kαη1

η2

η2 − θ̂1τ2

(
τT2

˙̂
θ1 + θ̂T1 fτ2

)
θ̂1,

f̄α = −kαη1
η2

η2 − θ̂T1 τ2
θ̂1θ̂

T
1 f̄τ2 ,

η̇1 =

 4
(
θ̂T1 θ̂1 − θ20

)
θ̂T1

˙̂
θ1 if ∥θ̂1∥2 > θ20,

0 otherwise.

Having obtained the derivative of α, we differentiate the signal wβ given by

(4.47) to obtain ẇβ = fwβ + f̄wβθa with

fwβ = kpkvfϕh

(
ṽ,Γ−1

v h(p̃)
)
fṽ2 + kpkvϕh(ṽ)Γ

−1
v ϕh(p̃)ṽ − γθ1fα,

f̄wβ = kpkvfϕh

(
ṽ,Γ−1

v h(p̃)
)
− γθ1 f̄α.

Using the expression for q̄ given by (4.45), we also find ˙̄q = fq̄ + f̄q̄θa where

fq̄ = S(e3)fq̃ +
1

2
e3 q̃

TM(µd)fµd −
1

2
e3 q̃

Tω,

f̄q̄ = S(e3)f̄q̃ +
1

2
e3 q̃

TM(µd)f̄µd .

In light of the above results we finally obtain the derivative of the virtual control law

for the second controller, β̇2 = fβ2 + f̄β2θa, where

fβ2 = Z1

(
µd, p

(3)
d + wβ

)
fµd +M(µd)

(
p
(4)
d + fwβ

)
−Kqfq̃ (B.86)
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f̄β2 = Z1

(
µd, p

(3)
d + wβ

)
f̄µd +M(µd)f̄wβ −Kqf̄q̃, (B.87)

which is used to specify the derivative of the virtual control law for the first controller,

β̇1 = fβ1 + f̄β1θa where

fβ1 = fβ2 − γθ1Z1 (µd,Γv ṽ) fµd − γθ1M(µd)Γvfṽ2 − kpZ1

(
µd,Γ

−1
v ϕh(p̃)ṽ

)
fµd

−kpM(µd)Γ
−1
v fϕh(p̃, ṽ)ṽ − kpM(µd)Γ

−1
v ϕh(p̃)fṽ2 −

2ut
γq
S(RΓv ṽ)fq̄

+
2

γqut
S(q̄)RΓv ṽ (µd − ge3)

T fµd −
2ut
γq
S(q̄)S(ω)RΓv ṽ +

2ut
γq
S(q̄)RΓvfṽ2 ,

(B.88)

f̄β1 = f̄β2 − γθ1Z1 (µd,Γv ṽ) f̄µd − γθ1M(µd)Γv − kpZ1

(
µd,Γ

−1
v ϕh(p̃)ṽ

)
f̄µd

−kpM(µd)Γ
−1
v ϕh(p̃) +

2

γqut
S(q̄)RΓv ṽ (µd − ge3)

T f̄µd −
2ut
γq
S(RΓv ṽ)f̄q̄

+
2ut
γq
S(q̄)RΓv. (B.89)

B.5 Proof of Theorem 4.4

(Vector Measurement Based Position Control)

Consider the following Lyapunov function candidate

V = kp

(√
1 + ∥p̃∥2 − 1

)
+ 1

2 ṽ
TΓ−1

v ṽ + γq
(
1− η̃2

)
+ 1

2 ω̃
TIbω̃. (B.90)

From (4.76) and using the properties (2.23) and (2.22) and (2.20) one can obtain the
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following time derivative for the attitude error

˙̃η = −1

2
q̃TRT

d

(
ω̃ − k2vM(µd)Γvϕh(ṽ)Γvh(ṽ) +

n∑
i=1

γiS
(
bdi

)
bi + kvM(µd)Γvϕh(ṽ)µ̃

)
= η̃q̃TWq̃ +

k2v
2
q̃TRT

dM(µd)Γvϕh(ṽ)Γvh(ṽ)−
1

2
q̃TRT

d ω̃ − kv
2
q̃TRT

dM(µd)Γvϕh(ṽ)µ̃,

(B.91)

where W = −
∑n
i=1 γiS(ri)

2. Note that due to Assumption 4.4, the matrix W is

positive definite and the eigenvalues of W can be arbitrarily increased using the gains

γi. In light of (4.9)-(4.12), (4.72), (4.78), (4.79), (4.80) and (B.91) the time-derivative

of (B.90) is given by

V̇ = −kv ṽTh(ṽ)− 2γqη̃
2q̃TWq̃ − ω̃TKωω̃ + ṽTΓ−1

v µ̃− ω̃TIbgω̄µ̃+ γqη̃q̃
TRT

d ω̃

+ γqkvη̃q̃
TRT

dM(µd)Γvϕh(ṽ)µ̃− γqk
2
v η̃q̃

TRT
dM(µd)Γvϕh(ṽ)Γvh(ṽ). (B.92)

Due to (2.8), (4.16) and (4.17) the error signal µ̃ = µ−µd can be expressed in terms of

the vector part of the error quaternion, q̃, since µ̃ = 2ut (η̃I3×3 − S (q̃))S
(
RTe3

)
q̃.

Therefore, due to (4.73) the signal µ̃ is bounded by

∥µ̃∥ ≤ 2c̄t∥q̃∥. (B.93)

We now focus our attention on the bound of gω̄. Due to the bound of the thrust

(4.73), and the bound of µd due to (4.71) there exists a positive constant cZ such

that the matrix Z(µd, v) is bounded by

∥Z (µd, v) ∥ ≤ cZ∥v∥. (B.94)
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Consequently, due to Assumption 4.1, (2.26), (4.74), (B.94) and the fact that ∥ṽ∥∥ϕh(ṽ)∥≤

1, there exists a positive constant cg such that

∥gω̄∥ ≤ cg. (B.95)

Using this result in addition to (2.26), (4.74), (B.94), and (B.93) one can find ∥ṽ∥2 ≤

2λmin
(
Γ−1
v

)−1 V(t), in addition to the following inequalities

ṽTΓ−1
v µ̃ ≤ ṽTṽ/(2ϵ1) + 2ϵ1c̄

2
t ∥Γ−1

v ∥2q̃Tq̃, (B.96)

γqη̃q̃
TRT

d ω̃ ≤ γqϵ2η̃
2q̃Tq̃/2 + γqω̃

Tω̃/(2ϵ2), (B.97)

γqk
2
v η̃q̃

TRT
dM(µd)Γvϕh(ṽ)Γvh(ṽ) ≤ γqk

2
vc

4
Γϵ3η̃

2q̃Tq̃/c2t + γqk
2
v ṽ

Th(ṽ)/(2ϵ3),

(B.98)

ω̃TIbgω̄µ̃ ≤ 2c2g c̄
2
t ∥Ib∥2ω̃Tω̃/ϵ4 + ϵ4q̃

Tq̃/2, (B.99)

γqkvη̃q̃
TRT

dM(µd)Γvϕh(ṽ)µ̃ ≤ 2
√
2γqkv c̄tcΓ|η̃|q̃Tq̃/ct, (B.100)

where ϵ1,2,3,4 > 0 and cΓ = ∥Γv∥. Consequently, the expression for V̇ can be rewritten

as

V̇ ≤ −ω̃Tω̃
(
λmin (Kω)− γq/(2ϵ2)− 2c2g c̄

2
t ∥Ib∥2/ϵ4

)
−ṽTh(ṽ)

(
kv −

1

2ϵ1

√
2V (t)/λmin(Γ

−1
v ) + 1−

γqk
2
v

2ϵ3

)

−2γqη̃
2q̃Tq̃

(
λmin (W )− 1

η̃2
ϵ1c̄

2
t

γq
λmax

(
Γ−1
v

)2
− ϵ2

4

−
k2vc

4
Γϵ3

2c2t
− 1

|η̃|

√
2kv c̄tcΓ
ct

− 1

η̃2
ϵ4
4γq

)
,

(B.101)

where λmin (·) denotes the smallest eigenvalue of (·). In order to dominate some of

the unwanted terms in (B.101) (and therefore ensure that V̇ < 0), we must show that

a lower bound η̃⋆ := inf |η̃(t)| > 0 exists. To further investigate this bound on η̃, we
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exclude the initial condition η̃(t0) = 0, and consider the function J = η̃2/2. In light

of (B.91), the time derivative of J is given by

J̇ =
η̃2

2

(
2q̃TWq̃ +

k2v
η̃
q̃TRT

dM(µd)Γvϕh(ṽ)Γvh(ṽ)

− 1

η̃
q̃TRT

d ω̃ − kv
η̃
q̃TRT

dM(µd)Γvϕh(ṽ)µ̃
)
. (B.102)

Using Young’s inequality, in addition to the fact that q̃Tq̃ = 1 − η̃2 in addition to

ω̃Tω̃ ≤ 2V̄(t)/λmin(Ib) where V̄(t) = kp(
√

1 + ∥p̃∥2 − 1) + 1
2 ṽ

TΓ−1
v ṽ + γq +

1
2 ω̃

TIbω̃,

we find J̇ is bounded by

J̇ ≥ η̃2
(
1− η̃2

)(
λw − ρ/η̃2 − σ(t)/(1− η̃2)

)
, (B.103)

ρ =
1

4
+
k2vc

4
Γ

2c2t
+

√
2kv c̄tcΓ
ct

, σ(t) =
V̄ (t)

2λmin (Ib)
+
k2v
4
,

where λw = λmin (W ). Using (B.103) we wish to identify the region where J̇ > 0 and

therefore |η̃| is increasing. To find this region we consider setting the right-hand-side

of (B.103) to zero, at the time t, to obtain λw = ρ/η̃2 + σ(t)/(1 − η̃2). Multiplying

this result by η̃2 and 1− η̃2 we obtain

− λwη̃
4 + (λw + ρ− σ(t)) η̃2 − ρ = 0. (B.104)

Let α(t) = (λw + ρ− σ(t))2−4ρλw. If α < 0, (B.104) has complex roots and therefore

the lower bound for J̇ is negative. Since we can find α(t) = λw (λw − 2 (ρ+ σ(t))) +

(σ(t)− ρ)2, a simple, albeit conservative requirement to force α(t) to be positive is

to take λw > 2 (ρ+ σ(t)). As a result the solution to (B.104) has two real positive
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roots defined by

η̃2u(t) =
(
λw + ρ− σ(t) +

√
α(t)

)
/(2λw), (B.105)

η̃2ℓ (t) =
(
λw + ρ− σ(t)−

√
α(t)

)
/(2λw). (B.106)

We define the open set D := (η̃ℓ, η̃u) (where we exclude the negative solutions for η̃ℓ

and η̃u). Note that for any |η̃(t)| ∈ D the value of J̇ is positive, and therefore |η̃(t)|

is increasing. Note the set D is time varying due to the value of σ(t). However, if

σ(t) is a decreasing function and we choose

λw > 2 (ρ+ σ(t0)) , (B.107)

we can show that the lower limit η̃ℓ is decreasing, and the upper limit η̃u is increasing

with respect to t. To prove this fact we consider the following partial derivative

∂

∂σ(t)
η̃2u =

(
−1−

√
(α(t) + 4ρλw) /α(t)

)
/(2λw).

(B.108)

If σ(t) is decreasing, then α(t) is increasing and therefore (B.108) is well-defined and

negative. The partial derivative of the lower limit is given by

∂

∂σ(t)
η̃2ℓ =

(
−1 +

√
(α(t) + 4ρλw)/α(t)

)
/(2λw), (B.109)

which is always positive. Therefore, if σ(t) is decreasing the value of η̃2ℓ is decreasing,

the value of η̃2u is increasing and the set D approaches D → (0, 1). The gain λw =

λmin (W ) = λmin
(
−
∑n
i=1 γiS(ri)

2
)
can be arbitrarily enlarged using the gains γi

to ensure (B.107) is satisfied and therefore the domain D exists. Therefore, since
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limλw→∞ η̃2ℓ = 0, there exists a value W̄1 such that for all λmin (W ) > λmin
(
W̄1
)
,

0 < η̃ℓ(t0) < |η̃ (t0) |, where we exclude the negative solution for η̃ℓ(t0). Consequently,

if σ(t) is a decreasing function the minimum possible value for η̃∗ = inf |η̃(t)| is given

by η̃∗ = min {|η̃(t0)|, η̃u(t0)} , where we exclude the negative solution for η̃u(t0). The

final step of the proof is to show that V(t) and therefore σ(t) are decreasing functions.

If we recall the value of V̇ from (B.101), one can see that there exist values ϵ̄1 and ϵ̄3

such that for ϵ1 > ϵ̄1 and ϵ3 > ϵ̄3, the following inequality is satisfied

kv >

√
2V(t0)/λmin(Γ

−1
v ) + 1/(2ϵ1) + γqk

2
v/(2ϵ3), (B.110)

for any kv > 0. Furthermore, there exist values ϵ̄2 and ϵ̄4 such that for ϵ2 > ϵ̄2,

ϵ4 > ϵ̄4

λmin (Kω) > γq/(2ϵ2) + 2c2g c̄
2
t ∥Ib∥2/ϵ4, (B.111)

for any Kω = KT
ω > 0. Also, there exists a gain W̄2 such that for λmin (W ) >

λmin
(
W̄2
)

λmin (W ) >
1

(η̃∗)2
ϵ1c̄

2
t

γq
λmax

(
Γ−1
v

)2
+
ϵ2
4
+
k2vc

4
Γϵ3

2c2t

+
1

η̃∗

√
2kv c̄tcΓ
ct

+
1

(η̃∗)2
ϵ4
4γq

. (B.112)

There are two conditions for the gain W , where the minimum bound W1 ensures

that η̃ℓ ≤ |η̃ (t0) |, and the minimum bound W2 which ensures that (B.112) is sat-

isfied. There exists gains γ̄i, i = 1, 2, · · · , n, such that for all γi > γ̄i λmin (W ) >

max
{
λmin

(
W̄1
)
, λmin

(
W̄2
)}
, which satisfies both requirements. Therefore, under

this condition from (B.101) one can see that V̇(t0) ≤ 0, which implies that for suf-

ficiently small δ, V(t0 + δ) ≤ V(t0), σ (t0 + δ) ≤ σ (t0) and |η̃ (t0 + δ) | ≥ η̃∗. Since
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V(t0 + δ) ≤ V(t0), σ(t0 + δ) ≤ σ(t0) and η̃(t0 + δ) ≥ η̃∗, the inequalities (B.110)-

(B.112) remain satisfied, which implies V̇(t0 + δ) ≤ 0. Therefore, by induction the

value of V̇ is guaranteed to be non-positive for all t > t0 and

V̇ ≤ −δv ṽTh(ṽ)− 2δqη̃
2q̃Tq̃ − δωω̃

Tω̃, (B.113)

δv = kv −
1

2ϵ1

√
2λmin

(
Γ−1
v

)−1
V (t0) + 1−

γqk
2
v

2ϵ3
, (B.114)

δω = λmin (Kω)− γq/(2ϵ2)− 2c2g c̄
2
t ∥Ib∥2/ϵ4, (B.115)

δq = λmin (W )− 1

(η̃∗)2
ϵ1c̄

2
t

γq
λmax

(
Γ−1
v

)2
− ϵ2

4

−
k2vc

4
Γϵ3

2c2t
− 1

|η̃∗|

√
2kv c̄tcΓ
ct

− 1

(η̃∗)2
ϵ4
4γq

. (B.116)

Since V̈ is bounded due to Assumption 4.1, Barbalat’s Lemma implies that [ṽ, q̃, ω̃] →

0, and since ˙̃v → 0, p̃→ 0.

B.6 Proof for Theorem 4.5

(Position Control Using IMU and GPS Measurements)

We begin by first proving the upper and lower bounds on the thrust control

input ut. Since the function h(·) is bounded by unity, the norm of the virtual control

law µd is bounded by ∥µd∥ < kp + kv. Since the thrust control input is given by

ut = ∥µd − ge3∥, and kp and kv are chosen such that kp + kv < g, one easily arrives

at the lower and upper bounds for ut described in the theorem. A nice consequence

of the boundedness of ut, is that the function M(µd) defined by (4.26) is bounded by

∥M(µd)∥ ≤
√
2/ct. (B.117)
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To see more details regarding the derivation of this bound the reader is referred to

the proof of Theorem 4.2 given in Appendix B.4. We now focus our attention to the

dynamics of the position error p̃ = p − pr and the system velocity v. In light of the

choice for µd, the derivatives of the position error and velocity can be written as

˙̃p = v, v̇ = − kph(p̃)− kvh(v) + µ̃+ δt. (B.118)

We also define the velocity error function ṽ = v − v̂. As previously mentioned, the

velocity observer error ṽ is considered as a function of the apparent acceleration vector

r2. In fact, similar to the design of the observer discussed in Section 3.3.5.1, we define

the error function r̃2 as

r̃2 = k1ṽ − (I − R̃)r2. (B.119)

Another important error function which we will focus on is the attitude error function

R̃, or equivalently Q̃ = (η̃, q̃), which defines the relative orientation between the actual

system attitude and the desired attitude. To prove the theorem, we will construct a

Lyapunov function in terms of the error functions q̃, r̃2, v and p̃, in order to show

that all of these states tend to zero. Since the dynamics of q̃ (or equivalently η̃), and

r̃2 are somewhat complicated, we will begin by first simplifying the expressions for

their derivatives.

In order to analyze the dynamics of the attitude error, it is sufficient to study the

derivative of the quaternion-scalar η̃. This is also desired since the derivative of the

quaternion scalar can be less complicated than the derivative of the quaternion vector.

As a starting point, the derivative of η̃ can be found from (4.93) to be ˙̃η = −q̃Tω̃/2

where ω̃ = RT
d (ω−ωd) and ωd =M(µd)µ̇d. To find a result for the desired angular ve-

locity ωd we first use the results (B.118), in addition to the derivative of the bounded
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function h(·), denoted as ϕ(·) as defined in section (2.3.2), to differentiate the vir-

tual control law µd to obtain µ̇d = −kpϕ(p̃)v − kvϕ(v)
(
−kph(p̃)− kvh(v) + µ̃+ δt

)
.

Simplifying this result, we obtain the following expression for the desired angular

velocity

ωd =M(µd)
(
fµd − kvϕ(v)δt − kvϕ(v)µ̃

)
. (B.120)

Recall the control input ω uses the function ψ, given by (4.97). Using (B.119),

and the properties (2.23)-(2.20), ψ can be rewritten as

ψ = γ1RdS(r1)R̃r1 + γ2RdS(r̃2 + (I − R̃)r2)R̃r2

= Rd
(
γ1S(r1)R̃r1 + γ2S(r2)R̃r2 + γ2S(r̃2)R̃r2

)
. (B.121)

Finally, using the expression for the control input ω, the error function r̃2, in addition

to (4.25), (B.121) and the fact b2 + ute3 = Rδt, we find the derivative of η̃ to be

˙̃η = −1

2
q̃TRT

d

(
γ1RdS(r1)R̃r1 + γ2RdS(r2)R̃r2 + γ2RdS(r̃2)R̃r2

+ kvM(µd)ϕ(v)(I − R̃)δt + kvM(µd)ϕ(v)µ̃
)
. (B.122)

To further simplify this result, we first recognize that in light of the definition of

the rotation matrix from (2.8) and the property (2.20), one can find q̃TS(ri)R̃ri =

2q̃TS(ri)
(
q̃q̃T − η̃S(q̃)

)
ri = 2η̃q̃TS(ri)

2q̃. Therefore, using the expression for the

matrix W defined by (4.90), we obtain

˙̃η = η̃q̃TWq̃ − γ2
2
q̃TS(r̃2)R̃r2 −

kv
2
q̃TRT

dM(µd)ϕ(v)
(
(I − R̃)δt + µ̃

)
. (B.123)

Note that due to Assumption 4.6, the matrix W is positive-definite, and it’s eigenval-

ues can be arbitrarily increased using the gains γi. We now shift our focus to study
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the dynamics of the error function r̃2. In light of the expression for v̇ from (4.89),

the expression for ˙̂v from (4.98), the attitude error dynamics from (4.93)-(4.94), the

expressions (4.95), (4.25), and using the fact that −k1ṽ+r2−R̂Tb2 = −r̃2, we obtain

˙̃r2 = −k1r̃2 − (I − R̃)ṙ2 + kvR
T
d S(b2)M(µd)ϕ(v)((I − R̃)δt + µ̃). (B.124)

A commonality between the dynamic equations for ˙̃η and ˙̃r2, is that they both

depend on the error functions (I − R̃) and µ̃. These two error functions can both be

expressed in terms of the attitude error using the quaternion vector part q̃, which will

be a useful characteristic later in the Lyapunov analysis. To describe this relationship

we define two functions, f1(ut, η̃, q̃), f2(x, η̃, q̃) ∈ R3×3 such that

µ̃ = f1(ut, η̃, q̃)q̃, (I − R̃)x = f2(x, η̃, q̃)q̃, (B.125)

where x ∈ R3. Using the definition of µ̃ = µ − µd, in addition to the expres-

sions for µ and µd from (4.16) and (4.17), respectively, one can find f1(ut, η̃, q̃) =

2ut (η̃I − S(q̃))S(RTe3) and f2(x, η̃, q̃) = 2(S(q̃) − η̃I)S(x). Based upon these def-

initions and the fact that ∥η̃I − S(q̃)∥ = 1, we find the following upper bounds for

these two functions

∥f1(ut, η̃, q̃)∥ ≤ 2c̄t, ∥f2(x, η̃, q̃)∥ ≤ 2∥x∥, (B.126)

We now propose the following Lyapunov function candidate:

V = γkp

(√
1 + p̃Tp̃− 1

)
+
γ

2
vTv +

γkr
2
r̃T2 r̃2 + γq

(
1− η̃2

)
, (B.127)

where γ, γq, kp and kr are strictly positive constants. In light of (B.118), (B.123),
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(B.124), we have

V̇ = γkph(p̃)
Tv + γvT

(
−kph(p̃)− kvh(v) + µ̃+ δt

)
+ γkrr̃

T
2

(
− k1r̃2 −

(
I − R̃

)
ṙ2 + kvR

T
d S(b2)M(µd)ϕ(v)

(
µ̃+ (I − R̃)δt

))
− 2γqη̃

(
η̃q̃TWq̃ − γ2

2
q̃TS(r̃2)R̃r2 −

kv
2
q̃TRT

dM(µd)ϕ(v)
(
(I − R̃)δt + µ̃

))
= −γkvvTh(v) + γvTδt − γkrk1r̃

T
2 r̃2 − 2γqη̃

2q̃TWq̃

+ γkvkrr̃
T
2R

T
d S(b2)M(µd)ϕ(v)

(
f1(ut, η̃, q̃) + f2(δt, η̃, q̃)

)
q̃ + γvTf1(ut, η̃, q̃)q̃

− γkrr̃
T
2 f2(ṙ2, η̃, q̃)q̃ + γqkvη̃q̃

TRT
dM(µd)ϕ(v) (f1(ut, η̃, q̃) + f2(δt, η̃, q̃)) q̃

+ γ2γqη̃q̃
TS(r̃2)R̃r2. (B.128)

Now, we wish to show that for an appropriate choice of the control gains, V̇ is

guaranteed to be non-positive. However, this objective is a bit involved, and therefore

requires we study the bound of several functions used in the expression of V̇ . We begin

this analysis by defining the function σ(t) ∈ R where

σ(t) :=
√
2V(t). (B.129)

Based upon the definition of V from (B.127), the states v and r̃2 are bounded by σ as

follows ∥v(t)∥ ≤ σ(t)/
√
γ, ∥r̃2(t)∥ ≤ σ(t)/

√
γkr. Therefore, in light of Assumption

4.7(b), one can conclude that

∥δt∥ ≤ c1σ(t)
2/γ. (B.130)

Due to the bounds of the functions f1(ut, η̃, q̃) and f2(δt, η̃, q̃) from (B.126), and the
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definition of r2 from (4.89) we also find

∥f1(ut, η̃, q̃) + f2(δt, η̃, q̃)∥ ≤ 2
(
γc̄t + c1σ(t)

2
)
/γ (B.131)

∥b2∥ ≤
(
γc̄t + c1σ(t)

2
)
/γ. (B.132)

Given these bounds, we now apply Young’s inequality to a number of the undesired

terms in the expression for V̇ :

γvTf1(ut, η̃, q̃)q̃ ≤ γ

(
1

2

(
ϵ1√

1 + vTv

)
vTv +

1

2

(√
1 + vTv

ϵ1

)
4c̄2t q̃

Tq̃

)

≤ γϵ1
2
vTh(v) +

2
√
γc̄2t
ϵ1

√
γ + σ(t)2q̃Tq̃, (B.133)

γkvkrr̃
T
2R

T
d S(b2)M(µd)ϕ(v) (f1(ut, η̃, q̃) + f2(δt, η̃, q̃)) q̃

≤ γkvkrϵ2
2

r̃T2 r̃2 +
γkvkr
2ϵ2

(
2

c2t

)(
4
(
γc̄t + c1σ(t)

2
)4

γ4

)
q̃Tq̃

≤ γkvkrϵ2
2

r̃T2 r̃2 +
4kvkr

ϵ2γ3c
2
t

(
γc̄t + c1σ(t)

2
)4
q̃Tq̃,

(B.134)

where the norm of M(µd) is given by (B.117). To determine the bound of the term

involving the time-derivative of r2, we first derive the expression for ṙ2 to be

ṙ2 = −u̇tRTe3 + utR
TS(e3)ω + δ̇t

= − 1

ut
(µd − ge3)

T
(
− kpϕ(ev)v − kvϕ(v)f1(ut, η̃, q̃)q̃ + kvϕ(v)

(
kph(p̃) + kvh(v)

)
− kvϕ(v)δt

)
RTe3 + utR

TS(e3)

(
γ1S(Rdr1)b1 +M(µd)

(
− kpϕ(ev)v − kvϕ(v)R̃δt

+ kvϕ(v)
(
kph(p̃) + kvh(v)

) )
+ γ2RdS(r̃2)R̃r2 + γ2RdS(r2)R̃r2

)
+ δ̇t. (B.135)

Due to the bounds of the functions h(·), ϕ(·), the (upper and lower) bounds of the

thrust control input ut, the bound of δ̇t from Assumption 4.7(c), the bound of b2 from
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(B.132) (same as the bound of r2), and the bound of δt from (B.130), we find that

there exists five positive constants di > 0, such that the norm of ṙ2 is bounded by

ṙ2 ≤ d1+d2∥v∥+d3∥v∥2+d4∥v∥3+d5∥v∥4. However, for the sake of simplicity, from

this result we further conclude that there exists positive constants c3 and c4 such

that ṙ2 ≤ c3 + c4σ(t)
4. As a result of this analysis, we again use Young’s inequality

to establish the following bounds:

γkrr̃
T
2 f2(ṙ2, η̃, q̃)q̃ ≤ γkrϵ3

2
r̃T2 r̃2 +

2γkr
ϵ3

(
c3 + c4σ(t)

4
)2
q̃Tq̃, (B.136)

γ2γqη̃q̃
TS(r̃2)R̃r2 ≤

γ22γqϵ4
2

r̃T2 r̃2 +
γq

2γ2ϵ4

(
c̄tγ + c1σ(t)

2
)2
η̃2q̃Tq̃, (B.137)

γqkvη̃q̃
TRT

dM(µd)ϕ(v) (f1(ut, η̃, q̃) + f2(δt, η̃, q̃)) q̃

≤ γqkv

(√
2

ct

)(
2
(
γc̄t + c1σ(t)

2
)

γ

)
|η̃|q̃Tq̃

≤
2
√
2γqkv

(
γc̄t + c1σ(t)

2
)

γct
|η̃|q̃Tq̃,

(B.138)

Recall from Assumption 4.6 that the norm of the matrixW has a lower bound which is

denoted as cw. Therefore, in light of the lower bounds defined above, and Assumption

4.7(a) we find the expression V̇ is bounded by

V̇(t) ≤ −γvTh(v) (kv − ϵ1/2)− γkrr̃
T
2 r̃2

(
k1 −

ϵ2kv + ϵ3
2

−
ϵ4γ

2
2γq

2γkr

)
−γqη̃2q̃Tq̃

(
2cw − 1

η̃2

(
α1(t)

ϵ1
+
α2(t)

ϵ2
+
α3(t)

ϵ3

)
− α4(t)

ϵ4

−
2
√
γc̄2t

(
γ + σ(t)2

)1/2
η̃2

−
2
√
2kv

(
γc̄t + c1σ(t)

2
)

γct|η̃|

)
,

(B.139)
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α1(t) = 2
√
γc̄2t

√
γ + σ(t)2/γq, (B.140)

α2(t) = 4kvkr

(
γc̄t + c1σ(t)

2
)4
/(γ3c2t γq), (B.141)

α3(t) = 2γkr

(
c3 + c4σ(t)

4
)2
/γq, (B.142)

α4(t) =
(
c̄tγ + c1σ(t)

2
)2
/(2γ2). (B.143)

Now, let us define a lower bound for |η̃|, which based upon some appropriate choices

of gains, ensures V̇ ≤ 0 for all t ≥ t0.

Note that when η̃(t) = 0 we cannot guarantee stability using (B.139) since

in this case V̇ could potentially be positive. To show that η̃(t) is never zero, we

first introduce the positive constant ρ which is the desired lower bound for |η̃(t)|.

Therefore, ρ must be chosen to satisfy 0 < ρ < |η̃(t0)|. Subsequently, based upon the

definition of the Lyapunov function candidate (B.127), we choose γ as follows

γ = γ̄
(
kp(
√

1 + ∥p̃(t0)∥2 − 1) + ∥v(t0)∥2/2 + ∥r̃2(t0)∥2/2 + ξ
)−1

, (B.144)

where the parameter ξ is chosen to be strictly positive, and γ̄ is chosen to satisfy

0 < γ̄ < γq

(
η̃(t0)

2 − ρ2
)
, (B.145)

where γq is chosen to be strictly positive. Recall kp > 0 and kv > 0 are chosen

arbitrarily provided that kp + kv < g. The remaining gains and parameters are

chosen to ensure that all terms in (B.139) are guaranteed to be negative at the initial

time t0, which are chosen as follows: Choose ϵ1 such that 0 < ϵ1 < 2kv. Recall from

(4.90) that the minimum eigenvalue of W , denoted by cw > 0, can be increased using

the gains γ1 and γ2. Therefore, there exists constants γ̄1,γ̄2, and ϵ̄i, i = 2, 3, 4, such
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that for all γ1 > γ̄1, γ2 > γ̄2, and ϵi > ϵ̄i, the following inequality is satisfied

2cw >
1

ρ2

(
α1(t0)

ϵ1
+
α2(t0)

ϵ2
+
α3(t0)

ϵ3

)
+
α4(t0)

ϵ4

+
2
√
γc̄2t

(
γ + σ(t0)

2
)1/2

ρ2
+

2
√
2kv

(
γc̄t + c1σ(t0)

2
)

γctρ
.

(B.146)

Finally, choosing k1 > κ1(ϵ2, ϵ3, ϵ4, γ) := (ϵ2kv+ϵ3)/2+(ϵ4γ
2
2γq)/(2γkr) we conclude

that V̇(t0) ≤ 0 at the initial time t0. We now need to show that this is true for

all time. Since the functions α1(t) through α4(t) are non-increasing if V̇ ≤ 0, then

a sufficient condition for V̇(t) ≤ 0 is |η̃(t)| ≥ ρ. We will now show that indeed

ρ ≤ |η̃(t)| for all t > t0. Suppose that there exists a time t1 such that for all

t0 ≤ t < t1, |η̃(t)| ≥ ρ and |η̃(t1)| < ρ when t = t1. At the time t1 from (B.127), it is

clear that V(t1) ≥ γq
(
1− η̃(t1)

2
)
> γq

(
1− ρ2

)
. However, due to the choice of γ

and γ̄, given by (B.144) and (B.145), respectively, the value of the Lyapunov function

candidate at the initial time t0 must satisfy V(t0) < γ̄+γq
(
1− η̃(t0)

2
)
< γq

(
1− ρ2

)
and therefore V(t1) > V(t0). This is a contradiction since V̇(t) ≤ 0 for all t0 ≤ t < t1,

and the functions V(t), αi(t) and σ(t) are non-increasing in the interval t0 ≤ t < t1.

Therefore, we conclude that |η̃(t)| ≥ ρ and V̇(t) ≤ 0 for all t > t0, and the states v

and r̃2 are bounded. Therefore, ˙̃r2, v̇, ˙̃η, and V̈ are bounded. Invoking Barbalat’s

Lemma, one can conclude that limt→∞ (v(t), r̃2(t), q̃(t)) = 0. Furthermore, since

limt→∞ v̇(t) = 0, and limt→∞ δt(t) = 0, it follows from the expression of the velocity

dynamics v̇ = −kph(p̃) − kvh(v) − δt = 0, that limt→∞ p̃(t) = 0, which ends the

proof.
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