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Abstract

The development of reliable state estimation algorithms for autonomous navigation sys-
tems is of great interest in the control and robotics communities. This thesis studies the
state estimation problem for autonomous navigation systems. The first part of this the-
sis is devoted to the pose (orientation and position) estimation on the Special Euclidean
group SE(3). A generic globally exponentially stable hybrid estimation scheme for pose
and velocity-bias estimation on SE(3) × R6 is proposed. Moreover, an explicit hybrid
observer, using inertial and landmark position measurements, is provided.

The second part of this thesis is devoted to the problem of simultaneous estimation
of the attitude, position and linear velocity for inertial navigation systems (INSs). Three
different types of nonlinear observers are developed to handle the following cases: con-
tinuous landmark position measurements, intermittent landmark position measurements
and continuous stereo bearing measurements. First, a class of nonlinear geometric hy-
brid observers on the Lie group SE2(3), with global exponential stability guarantees,
using continuous inertial measurement unit (IMU) and landmark position measurements
is developed. Then, a class of nonlinear state observers, with strong stability guarantees,
using intermittent landmark measurements is proposed. Finally, a class of state observers,
with strong stability guarantees, directly incorporating body-frame stereo-bearing mea-
surements, is proposed.
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Summary for Lay Audience

The development of reliable state estimation algorithms for autonomous navigation sys-
tems is of great importance in the aerospace and robotics communities. This thesis
studies the state estimation problem for autonomous navigation systems, such as un-
manned aerial vehicles, autonomous underwater vehicles, unmanned surface vehicles and
spacecraft. The first part is devoted to the pose (orientation and position) estimation.
The second part of this thesis is devoted to the problem of simultaneous estimation of
the attitude (orientation), position and linear velocity for inertial navigation systems.
Different types of nonlinear observers are developed to handle the following cases: con-
tinuous landmark position measurements, intermittent landmark position measurements,
and continuous stereo bearing measurements.
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Chapter 1

Introduction

1.1 General introduction

Over the last few decades, there have been increasing demands for developing reliable
state estimation algorithms for autonomous navigation systems. Inertial navigation sys-
tems (INSs), which provide the orientation (attitude), position and linear velocity infor-
mation of the vehicles, are widely used in many applications, such as unmanned aerial
vehicles (UAVs), autonomous underwater vehicles (AUVs), unmanned surface vehicles
(USVs) and spacecrafts [Britting, 1971; Bray, 2003; Grewal et al., 2007]. Recent advances
in micro-electro-mechanical systems (MEMS) have made it possible to build small, inex-
pensive, and accurate Inertial Measurement Units (IMUs). Typically, INSs use an IMU,
including an accelerometer and a gyroscope, to continuously calculate the orientation,
position and linear velocity through integration. More precisely, the orientation can be
obtained by integrating the angular velocity provided by the gyroscope, and the position
and velocity can be obtained by integrating the linear acceleration provided by the ac-
celerometer. However, this type of INSs suffers from integration drift since small errors
in the measurements are integrated into progressively larger errors in attitude and linear
velocity, and then compounded into greater errors in position [Britting, 1971].

Global navigation satellite systems (GNSSs), in particular the Global Positioning Sys-
tem (GPS), are widely used in INSs with low-cost inertial sensors to provide frequent
position corrections and aiding (see for example [Grewal et al., 2007; Bryne et al., 2017],
and references therein). This is due to the fact that INS and GPS have very complemen-
tary error characteristics: short-term position errors from the INS are relatively small,
but they degrade without bound over time; GPS position errors are not good over the
short term (generally speaking about 2 meters error), but they do not degrade with time.
Therefore, stable position and velocity errors are guaranteed by properly combining the
information from INS and GPS. However, the GPS signals are unreliable in indoor en-
vironments and urban canyons. An alternative solution is the Ultra-Wideband (UWB)
range measurement system, which is a radio technology that uses a very low energy level
for short-range, high-bandwidth (greater than 500Hz) communications [Adams et al.,
2001; Zhou et al., 2010; Sachs, 2013; Zwirello et al., 2013; Gezici et al., 2005]. UWB
range systems can provide position measurements similar to GPS, and are suitable for

1
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short-range indoor applications. Another solution for indoor applications is the motion
capture (also referred to as mo-cap or mocap) system, for example Vicon and OptiTrack,
which consist of a set of cameras located in the environment recording the movement of
the objects, for instance [Yuan and Chen, 2013]. However, motion capture and UWB
systems are restricted to the domains where the motion space is expected to be small
and fixed.

In the recent decades, vision-aided inertial navigation systems (VINSs) have made
their appearance in the literature [Ohya et al., 1998; DeSouza and Kak, 2002; Mourikis
and Roumeliotis, 2007; Panahandeh and Jansson, 2014; Santoso et al., 2016]. Unlike the
GPS, UWB, and motion capture systems, vision sensors can be used in outdoor as well
as indoor applications. Moreover, vision systems can provide rich information content
about the environment, including moving targets and obstacles. Generally, an inertial-
vision system consists of a low-cost IMU as an inertial sensor and onboard cameras
as a vision system. In many practical applications, inertial-vision systems either use
a single camera, known as monocular vision [George and Sukkarieh, 2007; Chowdhary,
2013; Qin et al., 2018], or two cameras, known as stereo-vision [Matthies and Shafer,
1987; Kriegman et al., 1989]. In the monocular vision systems, the information about
metric distances (depth) is lost since all the 3-dimensional points are projected onto the
2-dimensional image plane [Hartley and Zisserman, 2003]. However, stereo vision systems
can construct the 3-dimensional position of a landmark from the matched features in the
two image-planes provided by the stereo images [Hartley and Zisserman, 2003; Corke,
2017].

This thesis focuses on the design of nonlinear geometric state observers of INSs.
In the following sections, we provide a general overview on the attitude estimation on
SO(3), pose estimation on SE(3) and full-state (pose and linear velocity) estimation for
autonomous navigation systems.

1.2 Attitude estimation on SO(3)

The attitude estimation problem has been of great interest to the research community
since the early works that appeared in [Wahba, 1965; Shuster and Oh, 1981; Bar-Itzhack
and Oshman, 1985; Markley, 1988]. It is well known that the attitude obtained from
integrating the angular velocity may diverge beyond overtime because of the noise and
bias in the low-cost sensor measurements. Nevertheless, there is no sensor that can di-
rectly provide the attitude of a rigid body system. In fact, only partial information
about the rigid bodys’ attitude can be obtained from, for instance, accelerometers, mag-
netometers, sun sensors and star trackers. Therefore, the attitude is usually determined
from a set of body-frame vector measurements of known inertial directions, by solving
an optimization problem, known as Wahba’s problem [Wahba, 1965]. A great deal of
research work has been devoted to solve Wahba’s problem, such as the quaternion es-
timator (QUEST) [Shuster and Oh, 1981] and its extensions [Shuster, 1993; Crassidis
et al., 2007]. However, this types of static determination algorithms are very sensitive to
measurement noise, since significant errors may be generated from imperfect vector mea-
surements. To overcome this problem, stochastic dynamic estimators based on Kalman
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filtering techniques have been proposed in the literature, e.g., multiplicative extended
Kalman filter (MEKF) [Lefferts et al., 1982; Markley, 2003], additive extended Kalman
filter [Bar-Itzhack and Oshman, 1985], intrinsic extended Kalman filter (IEKF) [Barrau
and Bonnabel, 2014a]. Despite their popularity, these Kalman-type filters suffer from
their large computational overhead and the lack of global stability guarantees.

Recently, nonlinear geometric observers on Lie groups have made their appearance
in the literature [Mahony et al., 2008; Bonnabel et al., 2009a; Lageman et al., 2010;
Khosravian et al., 2015b]. The invariant observers on SO(3) proposed in [Mahony et al.,
2008; Hua et al., 2014] are proven to guarantee almost global asymptotic stability, i.e.,
the estimated attitude converges to the actual one from almost all initial conditions
except from a set of Lebesgue measure zero. This is due to the fact that, for any smooth
potential function on SO(3), there exist at least four critical points where its gradient
vanishes [Morse, 1934; Koditschek, 1989]. This is often referred to in the literature as
the topological obstruction to global asymptotic stability. To overcome this topological
obstruction and achieve global asymptotic (exponential) stability, some authors proposed
attitude observers that are not confined to provide estimates that live in SO(3) for all
times [Batista et al., 2012a; Batista et al., 2012b]. On the other hand, motivated by the
recent work in [Mayhew and Teel, 2011a; Mayhew and Teel, 2011b; Mayhew and Teel,
2013], a class of globally asymptotically (exponentially) stable hybrid attitude observers
on SO(3), relying on the concept of synergistic potential functions, has been proposed in
[Wu et al., 2015; Berkane and Tayebi, 2017c; Berkane et al., 2017a]. There are also other
interesting works on attitude estimation, such as the use of time-varying reference vectors
[Grip et al., 2012; Trumpf et al., 2012], velocity-aided attitude estimation [Bonnabel
et al., 2009b; Hua et al., 2016; Berkane and Tayebi, 2017a], and attitude estimation with
intermittent vector measurements [Khosravian et al., 2015a; Berkane and Tayebi, 2019].

1.3 Pose estimation on SE(3)

In many applications, the estimation of the pose (attitude and position) is of great im-
portance. A common solution to the pose estimation problem, for outdoor applications,
is based on the use of an IMU (usually composed of a gyroscope, an accelerometer and
a magnetometer), and a GPS. More precisely, the attitude can be estimated using body-
frame observations of some known inertial vectors obtained from an IMU [Tayebi and
McGilvray, 2006; Bonnabel et al., 2008; Mahony et al., 2008; Hua et al., 2014], and the
position (and linear velocity) can be obtained from a GPS [Barczyk and Lynch, 2013;
Barrau and Bonnabel, 2014b; Grip et al., 2013]. However, these IMU-based nonlinear
attitude observers rely on the fact that the accelerometer provides a measurement of
the gravity vector in the body-fixed frame, which is true only in the case of negligible
linear accelerations. In applications involving accelerated rigid body systems, a typical
solution consists in using linear velocity measurements together with IMU measurements
with the so-called velocity-aided attitude observers [Bonnabel et al., 2009b; Roberts and
Tayebi, 2011; Hua et al., 2016; Hua et al., 2017; Berkane and Tayebi, 2017a]. Moreover,
recovering the position and linear velocity is a challenging task in GPS-denied environ-
ments (e.g., indoor applications). Alternatively, the pose can be determined from points



4

obtained from vision systems, known as Perspective-n-Point (PnP) problem [Quan and
Lan, 1999; Wu and Hu, 2006; Hesch and Roumeliotis, 2011]. To reduce the effect of mea-
surement noise, dynamical pose estimators based on Kalman filtering techniques , with
local stability guarantees, have been proposed [Wang and Wilson, 1992; Janabi-Sharifi
and Marey, 2010; Chen, 2011; Hamel and Samson, 2018].

Recently, motivated by the work of [Mahony et al., 2008] on SO(3), nonlinear com-
plementary observers on SE(3) have been proposed in [Baldwin et al., 2007; Hua et al.,
2011]. However, in practical applications, measurements of group velocity (translational
and rotational velocities) are often corrupted by unknown biases. Pose estimation using
landmark position measurements and biased group velocity were considered in [Vasconce-
los et al., 2010; Hua et al., 2015; Khosravian et al., 2015b]. A nice feature of [Hua et al.,
2015] is that the observer incorporates (naturally) both inertial vector measurements
(e.g., from IMU) and landmark position measurements (e.g., from a vision system). In
[Khosravian et al., 2015b], more general invariant observers on Lie groups with biased
input measurements and homogeneous outputs have been proposed. However, these ob-
servers are shown to guarantee almost global asymptotic stability due to the topological
obstruction on SE(3). Similar to the attitude estimation problem, this is the strongest re-
sult one can aim at when considering continuous time-invariant state observers on SE(3).
A solution with global asymptotic stability guarantees has been proposed in [Moeini and
Namvar, 2016] which considers a non-geometric pose estimation problem using biased
body-frame measurements of the system’s linear and angular velocities as well as body-
frame measurements of landmarks. The achieved global asymptotic stability results are
due to the fact that the estimates are not confined to live in SE(3) for all times. The
design of pose observers with global asymptotic and exponential stability guarantees is
an open problem that has been solved in this thesis using hybrid techniques.

1.4 Full-state estimation for INSs

In practice, it is difficult to obtain the linear velocity from low-cost sensors, in GPS-
denied environments. This implies that pose observers based on group velocity are not
implementable in practical applications where the measurements of linear velocity are not
available. Therefore, developing reliable estimation algorithms that provide the attitude,
position and linear velocity is of great importance (from theoretical and practical point of
views) for inertial navigation systems. It is important to point out that the dynamics of
the attitude, position and linear velocity are not (right or left) invariant, and hence, the
extension of the existing invariant observers designed on SE(3) to the estimation problem
considered in this work is not trivial. Most of the existing results in the literature, for
the state estimation problem for INSs, are filters of the Kalman-type (see for instance
[Mourikis and Roumeliotis, 2007; Mourikis et al., 2009; Panahandeh and Jansson, 2014]).
Recently, a stable IEKF, using a geometric error on matrix Lie groups, has been proposed
in [Barrau and Bonnabel, 2017]. As pointed out in [Barrau and Bonnabel, 2017], the
classical EKF may fail when the covariance matrices are not tuned properly. On the other
hand, a Riccati-based geometric pose, linear velocity and gravity direction observer has
been proposed in [Hua and Allibert, 2018]. However, both results are only shown to be
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locally stable. This motivates us to design nonlinear observers for inertial navigation
with global stability guarantees, which has been addressed in this thesis using hybrid
techniques.

On the other hand, many practical applications involve different type of sensors with
different bandwidths and communication delays, and as such, irregular sensors sampling
may take place. For example, the landmark measurements from vision systems are ob-
tained at much lower rates compared to IMU measurements due to hardware limitations
of the vision sensors and the heavy image processing computations. In this case, IMU
measurements can be easily considered as continuous compared to visual measurements.
Therefore, the stability is not guaranteed if one tries to implement continuous-time ob-
servers [Hua and Allibert, 2018; Wang and Tayebi, 2019a] in applications involving inter-
mittent measurements combining sensors with different bandwidth characteristics (such
as IMU and vision systems), and as such, the observers need to be carefully redesigned.
In this context, the existing results in the literature, consider either continuous measure-
ments or discrete measurement with a fixed sampling rate. There are very few references
that have dealt with the state estimation problem for INS using continuous (high-rate)
IMU and intermittent (low-rate) landmark position measurements [Barrau and Bonnabel,
2017]. Motivated by the work in [Ferrante et al., 2016; Li et al., 2017; Sferlazza et al.,
2019; Berkane and Tayebi, 2017b; Berkane and Tayebi, 2019] addressing the estimation
problem with intermittent measurements, hybrid nonlinear state estimation for INSs,
using intermittent landmark position measurements, have been addressed in this thesis.

In fact, vision systems do not directly provide the 3-dimensional landmark position
measurements, and as such, additional algorithms are needed for this purpose [Hartley
and Zisserman, 2003; Corke, 2017]. From the model of a pinhole camera, the measure-
ments obtained from images can be seen as a set of bearing vectors (unit vectors pointing
to the landmarks from the optical center of the camera expressed in the camera frame).
Therefore, it is of great interest to design observers for autonomous navigation systems
using bearing-only measurements [Pachter and Porter, 2004; Baldwin et al., 2009; Le Bras
et al., 2017; Hamel and Samson, 2018; Hamel and Samson, 2017]. Attitude and position
observers with local stability guarantees have been proposed in [Baldwin et al., 2009;
Hamel and Samson, 2018]. On the other hand, nonlinear observers with global exponen-
tial stability guarantees for position measurements, using biased velocity measurements,
have been considered in [Le Bras et al., 2017; Hamel and Samson, 2017]. The problem
of attitude, position and linear velocity estimation for INS using IMU and stereo bearing
measurements has been addressed in this thesis.

1.5 Thesis contributions

In this thesis, several contributions to geometric state estimation for autonomous nav-
igation systems are presented. Hybrid pose and velocity-bias observers on SE(3) using
inertial and landmark position measurements are proposed. Three types of estimation
schemes for INSs are proposed depending on the type of measurements, such as contin-
uous landmark position measurements, intermittent landmark position measurements,
and continuous stereo bearing measurements. The contributions of the work presented
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in this thesis can thus be summarized as follows:

• In Chapter 3, a new framework for global exponential pose and velocity-bias es-
timation on SE(3) × R6 is proposed. Our framework can be seen as a non-trivial
extension to the work of [Hua et al., 2015; Khosravian et al., 2015b] and [Berkane
et al., 2017a]. On one hand, due to the topological obstruction on SE(3), it is im-
possible to achieve global stability with smooth observers designed on SE(3). On
the other hand, since that SE(3) is not compact as the Lie group SO(3), hybrid
techniques, relying on synergistic potential functions, cannot be easily applied on
SE(3). In this context, a new class of hybrid observers, relying on a new reset-
ting mechanism, is proposed with global exponential stability guarantees. First,
we propose a generic hybrid estimation scheme (depending on a generic potential
function) evolving on SE(3)×R6 for pose and velocity-bias estimation. Thereafter,
the proposed estimation scheme is formulated explicitly in terms of inertial vectors
and landmark measurements. Interestingly, the proposed estimation scheme leads
to a decoupled rotational error dynamics from the translational dynamics, which is
a nice feature in practical applications with noisy measurements and disturbances.
The obtained results have been published in [Wang and Tayebi, 2017; Wang and
Tayebi, 2019b].

• In Chapter 4, the problem of simultaneous attitude, position and linear velocity
estimation using IMU and landmark measurements, is formulated using the matrix
Lie group SE2(3) introduced in [Barrau and Bonnabel, 2017]. Then, two hybrid
nonlinear observers, leading to global exponential stability, are proposed. The first
observer relies on fixed gains, while the second one uses variable gains depending
on the solution of a continuous Riccati equation (CRE). These observers are then
extended to handle biased angular velocity and linear acceleration measurements.
The proposed observers are endowed with global exponential stability guarantees.
The resetting mechanism considered in the proposed observers is motivated from
our work in [Wang and Tayebi, 2017; Wang and Tayebi, 2019b]. Contrary to the
dynamics on the Lie groups SO(3) and SE(3), the dynamics of the attitude, position
and linear velocity on SE2(3) are not invariant. As a consequence, the application of
the hybrid observers proposed in [Berkane et al., 2017b; Wang and Tayebi, 2019a] to
our problem is not trivial. Unlike the observers on SE(3) in [Vasconcelos et al., 2010;
Hua et al., 2011; Hua et al., 2015; Khosravian et al., 2015b; Wang and Tayebi, 2017;
Wang and Tayebi, 2019a], the observers proposed in this chapter do not rely on
the linear velocity measurements. Moreover, experimental results, using real IMU
measurements and landmark position measurements obtained from stereo cameras,
are presented to illustrate the performance of the proposed observers. This work
has been reported in [Wang and Tayebi, 2018b; Wang and Tayebi, 2019a]

• In Chapter 5, several solutions to the problem of simultaneous estimation of the
attitude, position and linear velocity, for autonomous navigation using intermit-
tent lankmark measurements, are presented. Two hybrid nonlinear observers for
INS, with and without the knowledge of the gravity vector, have been proposed.
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For each observer, we provide two different design approaches for the gain param-
eters; a fixed-gain approach relying on an infinite-dimensional optimization, and a
variable-gain approach relying on a continuous-discrete Riccati equation (CDRE).
The proposed observers are endowed with exponential stability guarantees with a
large domain of attraction. The exponential stability results obtained in this work
do not rely on linearizations compared to the recent work in [Barrau and Bonnabel,
2017; Hamel and Samson, 2018]. In fact, the proposed observers do not have any
restrictions on the initial conditions of the position and linear velocity. In contrast
to the present work, the hybrid observers proposed in [Wang and Tayebi, 2019a]
are not designed to handle intermittent landmark measurements. Moreover, the
first hybrid observer proposed in this work does not require the knowledge of the
gravity vector, which was not considered in [Barrau and Bonnabel, 2017; Wang
and Tayebi, 2019a]. Unlike the results of [Berkane and Tayebi, 2017b; Berkane
and Tayebi, 2019], the estimated attitude from our hybrid observers is continu-
ous, which is desirable in practice, especially when dealing with observer-controller
implementations. These results have been published in [Wang and Tayebi, 2019d]

• In Chapter 6, full state estimation problem for INSs using (continuous) stereo
bearing measurements has been addressed, which is motivated from the fact that
vision systems do not provide direct 3-dimensional position measurements. Firstly,
an AGAS result for a class of nonlinear systems on SO(3)×Rn is proposed. Based on
this result, an explicit nonlinear observer for INSs using non-biased IMU and stereo-
bearing measurements is developed. To reduce the computational complexity, a
simplified version has been proposed for the case of more than 3 non-coplanar
landmarks. Instead of estimating the positions of all the landmarks, the estimates
of only three axis vectors are considered assuming that there exist at least 4 non-
coplanar landmarks available for measurements. Furthermore, these results are
extended to handle the case of biased IMU measurements. The above results are
reported in [Wang and Tayebi, 2019c; Wang and Tayebi, 2019e]
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mitted.

• M. Wang and A. Tayebi, ‘Nonlinear State Estimation for Inertial Navigation Sys-
tems With Intermittent Measurements’, Automatica, 2019, (Submission No. 19-
0841).

• M. Wang and A. Tayebi, ‘Hybrid Nonlinear Observers for Inertial Navigation Us-
ing Landmark Measurements’, IEEE Transactions on Automatic Control, 2020,
accepted.
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• M. Wang and A. Tayebi, ‘Hybrid Pose and Velocity-bias Estimation on SE(3) Using
Inertial and Landmark Measurements’, IEEE Transactions on Automatic Control,
64(8), pp. 3399-3406, 2019.

Peer-Reviewed Conference Proceedings:

• M. Wang and A. Tayebi, ‘Nonlinear Observers for Stereo-Vision-Aided Inertial
Navigation’, In Proc. of 58th IEEE Conference on Decision and Control (CDC),
Nice, France, pp. 2516-2521, 2019.

• M. Wang and A. Tayebi, ‘A Globally Exponentially Stable Nonlinear Hybrid Ob-
server for 3D Inertial Navigation’, In Proc. of the 57th IEEE Conference on Deci-
sion and Control (CDC), Miami Beach, FL, USA, pp. 1367- 1372, 2018.

• M. Wang and A. Tayebi,‘Globally Asymptotically Stable Hybrid Observers Design
on SE(3)’, In Proc. of the 56th IEEE Conference on Decision and Control (CDC),
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1.6 Thesis outline

This thesis is organized as follows:
Chapter 2 presents the notations, background and preliminaries used throughout

the thesis. Section 2.1 provides the general notations used in this thesis. Section 2.2 and
Section 2.3 present the basic differential geometry tools and the state representations on
matrix Lie groups. The dynamic model of the autonomous navigation systems considered
in this work, and the measurement model of the inertial vision systems are given in
Section 2.4. Section 2.5 presents the hybrid systems framework used in this work. Finally,
Section 2.6 provides some useful identities and lemmas on the observability and Riccati
differential equation.

Chapter 3 is devoted to the pose and group velocity-bias estimation problem on
SE(3)×R6 using inertial and landmark position measurements. Section 3.3 explains the
topological obstruction for global asymptotic stability of gradient-based smooth observers
on SE(3). Section 3.4 presents a generic pose and velocity-bias estimation scheme with
global asymptotic (exponential) stability guarantees. In Section 3.5, these results are
extended to decouple the rotational error dynamics from the translational error dynamics
using modified landmarks.

Chapter 4 is dedicated to the hybrid nonlinear observers design for INSs using IMU
and landmark position measurements. Section 4.3 provides the design of the hybrid
observers in the bias-free case. Both fixed gains and variable gains are considered. These
results are extended to address the problem of biased angular velocity in Section 4.4.
Section 4.5 deals with the case where both the angular velocity and linear acceleration
measurements are biased.

Chapter 5 considers the problem of state estimation for INSs using continuous IMU
and intermittent landmark position measurements. Section 5.3 provides the design of
a hybrid observer with unknown gravity vector. Section 5.4 presents the design of the
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hybrid observer with known gravity vector. Both fixed gains and variable gains are
considered for the proposed hybrid observers.

Chapter 6 addresses the problem of state estimation for INSs using IMU and stereo
bearing measurements. Section 6.3 provides two observers for INSs using ideal IMU
measurements. Then, these observers are extended in Section 6.4 to handle biased IMU
measurements.

Chapter 7 summarizes the findings of this thesis and presents some possible future
directions.

Appendix A,B, C, D, E contain the detailed proofs of lemmas and theorems stated
throughout this thesis.



Chapter 2

Background and Preliminaries

2.1 General notations

Given A ∈ Rn×m, aij refers to its (i, j)-th entry. For any matrix A := [aij]i,j=1,··· ,n ∈ Rn×n,
the trace of matrix A is denoted by tr(A) =

∑n
i=1 aii, and the determinant of A is

denoted by det(A). Given any two matrices, A,B ∈ Rm×n, their Euclidean inner
product is defined as 〈〈A,B〉〉 := tr(A>B). The Euclidean norm of a vector x ∈ Rn

is defined as ‖x‖ :=
√
x>x, and the Frobenius norm of a matrix A ∈ Rn×m is given

by ‖A‖F :=
√
〈〈A,A〉〉. Define A> as the transpose of matrix A. Given any A ∈ Rn×n

and B ∈ Rm×m, the Kronecker product is denoted by A ⊗ B ∈ Rmn×mn. By blkdiag(·),
we denote the block diagonal matrix. For a matrix A ∈ Rn×n, we denote by λAi the
i-th eigenvalue of A, and by λAmin and λAmax be the minimum and maximum eigenvalues
of A, respectively. We also denote by E(A) the set of all eigenvectors of A, and by
E(A) ⊆ E(A) the eigenbasis set of A. Given a vector a ∈ Rn, ai refers to its i-th
component. Let ~e1, · · · , ~en be the standard basis vectors of the linear space Rn, that is,
~ei has all entries equal to zero except for the i-th entry which is equal to 1. Therefore,
a vector a = [a1, · · · , an]> ∈ Rn can be written as a =

∑n
i=1 ai~ei. For any two vectors

x, y ∈ R3, their vector cross-product on R3 can be written as

a× b =
∑
i,j,k

εijkaibj~ek ∈ R3 (2.1)

where εijk is the Levi-Cevita symbol defined by

εijk =


+1 if (m,n, l) is an even permutation of (1, 2, 3)

−1 if (m,n, l) is an odd permutation of (1, 2, 3)

0 otherwise

Some of useful properties of the matrix trace tr(·) are summarized as follows:

tr(M) = tr(M>), (2.2)

tr(M +N) = tr(M) + tr(N), (2.3)

tr(NM) = tr(MN), (2.4)

10
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tr((M +M>)(N −N>)) = 0, (2.5)

tr(xy>) = x>y, (2.6)

for all M,N ∈ R3×3, x, y ∈ R3. Let A ∈ Rn×n, U, V ∈ Rn×m and R ∈ Rm×m. If A,R and
R−1 + V >A−1U are invertible, then

(A+ URV >)−1 = A−1 − A−1U(R−1 + V >A−1U)−1V >A−1 (2.7)

For any A ∈ Rn×n, b ∈ Rn and d ∈ R, one has the following matrix decomposition:[
A b
b> d

]
=

[
In bd−1

01×n 1

] [
A− bb>d−1 0n×1

01×n d

] [
In 0n×1

b>d−1 1

]
. (2.8)

For a symmetric matrix P ∈ Rn×n, P > 0 (P < 0) denotes that P is positive (negative)
definite. The time-derivative of a time-varying variable x(t) ∈ Rn is denoted by ẋ(t) =
d
dt
x(t) := limh→0

1
h
(x(t + h) − x(t)). For the sake of simplicity, the argument of the

time-dependent signals will be omitted throughout this thesis (i.e., x(t)→ x).

2.2 Differential geometry

In this section, some useful concepts of a general differential manifold are presented and
a brief discussion on matrix Lie groups and Lie algebras is provided.

2.2.1 Differential manifold and Riemannian geometry

LetM be a smooth manifold embedded in Rn. Consider a smooth map γ : R→M as a
curve inM. Defining a derivative of γ in the classical sense as γ̇(t) = limh→0

1
h
(γ(t+h)−

γ(t)) fails for a general manifold, since the computation of the difference γ(t+ h)− γ(t)
requires a vector space structure [Absil et al., 2009]. Hence, a new definition of the
derivative of a map on a general manifold is necessary and important. Given an open
interval I ⊂ R containing 0 in its interior, define a smooth curve γ : I → M with
γ(0) = x. The tangent vector at x ∈M is defined as

γ̇(0) =
d

dt

∣∣∣∣
t=0

γ(t)

Definition 2.1 ([Holm et al., 2009]) The set of all tangent vectors at a given point
x, corresponding to all possible paths in M through x, is called the tangent space to
M at point x, denoted by TxM.

Definition 2.2 ([Holm et al., 2009]) The disjoint union of all tangent space gives the
tangent bundle of M, denoted by TM =

⋃
x∈M TxM.

Given two smooth manifolds M and N , a map f : M → N is differentiable if it is
differentiable at all points in its domain. The inverse image of a subset NS ⊂ N under
the map f is the subset of M denoted by f−1(NS) = {x ∈ M | f(x) ∈ NS}. The map
f is a diffeomorphism if f is differentiable and has a differentiable inverse.
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Definition 2.3 ([Holm et al., 2009]) Let f :M→N be a differentiable map between
two smooth manifolds M and N . The tangent map of f at point x ∈ M denoted by
Dfx : TxM→ Tf(x)N is defined as

Dfx(v) :=
d

dt

∣∣∣∣
t=0

f(γ(t))

where, γ(t) is a smooth curve in M with γ(0) = x and v = γ̇(0) ∈ TxM. All the maps
of Dfx for all x ∈M, together define the tangent map of f .

Consider a smooth manifold M and a point x ∈ M. The Riemannian metric on
manifold M at point x is denoted as 〈 , 〉x : TxM× TxM→ R.

Definition 2.4 ([Do Carmo, 1992] ) Given a differentiable map f : M → R, the
Riemannian gradient of map f at point x, denoted by ∇xf(x) ∈ TxM, is the unique
tangent vector satisfies

Dfx(v) = 〈∇xf(x), v〉x, ∀v ∈ TxM. (2.9)

Throughout the thesis, the argument of x in ∇xf(x) is omitted (i.e., ∇xf) for the sake of
simplicity. The mapping ∇f :M→ TM is called the gradient vector field [Bloch, 2003].
Considering a mapping f :M×N → R, the notation ∇xf(x, y) denotes the gradient of
f with respect to x, and the notation ∇yf(x, y) denotes the gradient of f with respect
to y.

Definition 2.5 ([Palais and Terng, 2006]) Let M be a Riemannian manifold. If f :
M → R is a differentiable map, a point x ∈ M is a critical point of f on M if its
gradient at x satisfies ∇xf(x) = 0. The set of all critical points of f on M, denoted by
CMf := {x ∈M | ∇xf(x) = 0} ⊂ M, is called the critical set of f on M.

From the Definition 2.4 and Definition 2.5, at each critical point of f (i.e., x ∈ CfM),
it is easy to verify that Dfx(v) = 0 for all v ∈ TxM.

Definition 2.6 Let M be a smooth manifold. A continuously differentiable function
f : M→ R≥0 is called a potential function on M with respect to the set A ⊂ M if
the following statements hold:

i) f(x) > 0 for all x ∈M/A.

ii) f(x) = 0 for all x ∈ A.

A metric (or distance) on a manifold M shows how two points in M are close to each
other. More precisely, a metric on M is a function dM : M×M → R≥0 that satisfies
the following properties for all x1, x2, x3 ∈M:

1) Non-negativity: dM(x1, x2) ≥ 0.

2) Identity of indiscernibles: dM(x1, x2) = 0 if and only if x1 = x2.

3) Symmetry: dM(x1, x2) = dM(x2, x1).

4) Triangle inequality: dM(x1, x3) ≤ dM(x1, x2) + dM(x2, x3)



13

2.2.2 Matrix Lie groups and Lie algebras

Lie groups, special types of manifold, are the mathematical concept appropriate for de-
scribing continuously varying groups of transformations. A Lie group is a smooth mani-
fold, denoted G, that is a group with the property that the operations of multiplication,
(g, h) 7→ gh and inversion, g 7→ g−1, are smooth [Holm et al., 2009]. The Lie group con-
sidered in this thesis will often be a matrix Lie group. For example, a group describing
the attitude (orientation) of a rigid body is called the matrix Lie group SO(3), while a
group describing the pose (orientation and position) of a rigid body is called the matrix
Lie group SE(3).

Definition 2.7 ([Bloch, 2003]) A matrix Lie group is a subgroup of the general
linear group, denoted GL(n,R), which is the set of invertible n× n real matrices.

Alternatively, a matrix Lie group is a matrix group that is also a submanifold of Rn×n

[Holm et al., 2009]. From Defintion 2.1, the tangent space to G at X ∈ G, denoted TXG,
is defined as the set of all tangent vectors at X, corresponding to all possible paths in G
through X.
The matrix commutator of any two matrices A,B ∈ Rn×n is defined as [A,B] := AB −
BA. For any A,B,C ∈ Rn×n, the matrix commutator operation has the properties
[A,B] = −[B,A] and [[A,B], C] + [[B,C], A] + [[C,A], B] = 0.

Definition 2.8 ([Bloch, 2003]) The Lie algebra of a matrix Lie group G, is the tan-
gent space at the identity I ∈ G, denoted g, with the corresponding Lie bracket.

The Lie bracket on a matrix Lie algebra is the matrix commutator [ , ], which means that
the Lie algebra of a matrix Lie group is the space TIG, together with the commutator
operation [Holm et al., 2009].

2.3 State representations on matrix Lie groups

In this subsection, the kinematic equations of the robotic systems considered in this
thesis, including the translational and rotational dynamics, will be derived. In robotics,
multiple frames are commonly used in order to represent vectors and points in three-
dimensional space. In this thesis, we define I as an inertial reference frame attached
to the origin on R3 and associated to the Cartesian coordinate system. Let B be the
body-fixed frame attached to the center of gravity of a rigid body, with respect to the
inertial reference frame. An example of coordinate system is shown in the Figure 2.1.

2.3.1 Attitude on Lie group SO(3)

The attitude (or orientation) of a rigid body can be represented in different ways: Euler
angles, Unit quaternion, and rotation matrix (see reference [Shuster, 1993] for more
details). As pointed out in [Shuster, 1993], only the rotation matrix representation is
unique and global. Therefore, throughout this thesis, we consider the rotation matrix as
the attitude representation. The rotation matrix, also known as the Direction Consine
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I
~xI

~zI

~yI

B~yB

~xB
~zB

Figure 2.1: Coordinate systems: inertial frame I and body-fixed frame B.

Matrix (DCM), is denoted by R ∈ R3×3. From Figure 2.1, the attitude of frame B with
respect to frame I is defined as

R =

~xB · ~xI ~yB · ~xI ẑB · ~xI
~xB · ~yI ~yB · ~yI ~zB · ~yI
~xB · ~zI ~yB · ~zI ~zB · ~zI

 =

cos〈~xB, ~xI〉 cos〈~yB, ~xI〉 cos〈~zB, ~xI〉
cos〈~xB, ~yI〉 cos〈~yB, ~yI〉 cos〈~zB, ~yI〉
cos〈~xB, ~zI〉 cos〈~yB, ~zI〉 cos〈~zB, ~zI〉

 (2.10)

where we made use of the facts x ·y = ‖x‖‖y‖ cos(](x, y)) with ](·, ·) denoting the angle
of two vectors, and the norms of the axis vectors are equal to one. It turns out that
the rotation matrix R defined in (2.10) belongs to the Special Orthogonal group of
dimension three, defined by

SO(3) := {R ∈ R3×3 : R>R = RR> = I3,det(R) = 1} (2.11)

where I3 is the 3-dimensional identity matrix. Note that SO(3) is a matrix Lie group
under the operation of matrix multiplication R1R2 ∈ SO(3) for any R1, R2 ∈ SO(3). The
Lie algebra of SO(3) is denoted by

so(3) := {Ω ∈ R3×3|Ω> = −Ω}. (2.12)

Let × be the vector cross-product on R3 and define the skew-symmetric map (·)× : R3 →
so(3) such that

x× =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 , ∀x = [x1, x2, x3]> ∈ R3 (2.13)
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For each x, y ∈ R3, A ∈ R3×3, R ∈ SO(3), one has the following identities:

x×x = 0, (2.14)

(x×)3 = −‖x‖2x×, (2.15)

x× y = x×y, (2.16)

x×y = −y×x, (2.17)

x×y× = yx> − (x>y)I3, (2.18)

(x×y)× = x×y× − y×x×, (2.19)

〈〈x×, y×〉〉 = 2x>y, (2.20)

((Ax)× (Ay))× = A(x× y)×A>, (2.21)

Ax× + x×A> = ((tr(A)I − A>)x)×, (2.22)

tr(Ax×) = 0, ∀A = A>, (2.23)

(Rx)× (Ry) = R(x× y), (2.24)

(Rx)× = Rx×R>. (2.25)

Define the inverse isomorphism of (·)× as vec : so(3)→ R3 such that

vec(ω×) = ω and (vec(Ω))× = Ω, ∀ω ∈ R3,Ω ∈ so(3).

Define Pso(3) : R3×3 → so(3) as the anti-symmetric projection of a matrix A ∈ R3×3 such
that Pso(3)(A) = 1

2
(A− A>). For a matrix A = [aij] ∈ R3×3, we define

ψso(3)(A) := vec(Pso(3)(A)) =
1

2

a32 − a23

a13 − a31

a21 − a12

 . (2.26)

Then, for any A ∈ R3×3, x, y ∈ R3, R ∈ SO(3), one has the following identities

〈〈A, x×〉〉 = 〈〈Pso(3)(A), x×〉〉 (2.27)

〈〈A, x×〉〉 = 2x>ψso(3)(A), (2.28)

ψso(3)(AR) = R>ψso(3)(RA), (2.29)

(x× y)× = Pso(3)(yx
>), (2.30)

x× y = 2ψso(3)(yx
>). (2.31)

Let the map Ra : R × S2 represent the well-known angle-axis parametrization of the
attitude, which is given by

Ra(θ, u) := I3 + sin θu× + (1− cos θ)(u×)2 (2.32)

with θ the rotation angle and u the rotation axis. Note that this angle-axis parametriza-
tion is not unique, for example Ra(π, u) = Ra(−π, u) with some u ∈ S2. Let M = M>

be a positive semidefinite matrix, one can show that:

tr((I3 −Ra(θ, u))M) = tr(− sin θMu× − (1− cos θ)M(u×)2)
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= (1− cos θ)tr(−M(uu> − u>uI3))

= (1− cos θ)u>(tr(M)−M)u (2.33)

where we made use of the facts tr(Mu×) = 0 from (2.23), u×u× = uu> − u>uI3 from
(2.18). Let dSO(3) : SO(3)× SO(3)→ R≥0 be the Euclidean (Chordal) distance on SO(3),
which is denoted by the Frobenious norm on the embedding Euclidean space R3×3 as
follows:

dSO(3)(R1, R2) := ‖R1 −R2‖F , ∀R1, R2 ∈ SO(3). (2.34)

One can verify that dSO(3)(R1, R2) = dSO(3)(I3, R
>
1 R2) = dSO(3)(I3, R2R

>
1 ). From the

definition of Frobenious norm, for each R ∈ SO(3) one can also show that dSO(3)(I, R) =

‖I3 − R‖F =
√

2tr(I3 −R) ≤
√

8, where the fact −1 ≤ tr(R) ≤ 3,∀R ∈ SO(3) has been
used. For the sake of simplicity, we consider the following normalized attitude norm
|R|I ∈ [0, 1] on SO(3) with respect to the identity I3:

|R|I =
dSO(3)(I3, R)√

8
=
‖I3 −R‖F√

8
=

1

2

√
tr(I3 −R). (2.35)

The tangent space of the group SO(3), is identified by TRSO(3) := {RΩ|R ∈ SO(3),Ω ∈
so(3)}. Let 〈·, ·〉R : TRSO(3) × TRSO(3) → R be a Riemannian metric on SO(3), such
that

〈RΩ1, RΩ2〉R := 〈〈Ω1,Ω2〉〉, R ∈ SO(3),Ω1,Ω2 ∈ so(3).

Given a differentiable smooth function f : SO(3) → R, the gradient of f , denoted by
∇Rf ∈ TRSO(3), relative to the Riemannian metric 〈·, ·〉R is uniquely defined by

df ·RΩ = 〈∇Rf,RΩ〉R = 〈〈R>∇Rf,Ω〉〉,

for all R ∈ SO(3),Ω ∈ so(3). A point R ∈ SO(3) is called critical point of f if the
gradient of f at point R ∈ SO(3) is zero (i.e., ∇Rf = 0). The set of all critical points of
f on SO(3) is denoted by

CSO(3)f := {R ∈ SO(3)|∇Rf = 0} ⊂ SO(3). (2.36)

Throughout this thesis, we make use of the following useful lemmas on SO(3):

Lemma 2.1 ([Berkane et al., 2017b; Berkane, 2017]) Let M = M> be a positive
semi-definite matrix such that M̄ := 1

2
(tr(M)I −M) is positive definite. Then, for any

x, y ∈ R3, the following properties hold for all R ∈ SO(3):

4λM̄min|R|2I ≤ tr((I3 −R)M) ≤ 4λM̄max|R|2I , (2.37)

‖ψso(3)(MR)‖2 = α(M,R)tr((I3 −R)M), (2.38)

ψso(3)(R)>ψso(3)(MR) = ψso(3)(R)>M̄ψso(3)(R), (2.39)

x>(λM̄minI3 − E(MR))x ≤ 2λM̄max|R|2I‖x‖2, (2.40)

2x>(E(M)− E(MR̃))y ≤ tr((I3 −R)M)x>y + ‖(I3 −R)M‖F‖x‖‖y‖, (2.41)
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‖E(MR)‖F ≤ ‖M̄‖F , (2.42)

where M := tr(M̄2)I3 − 2M̄2, E(MR) := 1
2
(tr(MR)I3 − R>M), and α(M,R) := 1 −

|R|2I cos(](u, M̄u)) with u ∈ S2 denoting the axis of the rotation R and ](·, ·) denoting
the angle between two vectors. Moreover, Consider the trajectory of Ṙ = Rω× with
R(0) ∈ SO(3) and ω(t) ∈ R3. Then the following identities hold:

d

dt
tr((I −R)M) = 2ω>ψso(3)(MR), , (2.43)

d

dt
ψso(3)(MR) = E(MR)ω. (2.44)

Lemma 2.2 ([Berkane, 2017]) Let M =
∑N

i=1 kirir
>
i with N ∈ N>0, ki > 0 and ri ∈

R3, i = 1, · · · , n. Then, the following identities hold for any R, R̄ ∈ SO(3)

tr((I3 −RR̄>)M) =
1

2

N∑
i=1

ki‖R>ri − R̄>ri‖2, (2.45)

ψso(3)(MRR̄>) =
1

2
R̄

N∑
i=1

ki(R
>ri × R̄>ri) =

1

2

N∑
i=1

ki(R̄R
>ri × ri). (2.46)

From (2.38) and (2.35), one can show that

‖ψso(3)(R)‖2 = (1− |R|2I)tr(I3 −R) = 4(1− |R|2I)|R|2I ≤ 1 (2.47)

where we made use of the facts |R|2I ∈ [0, 1] and f(x) = 4(1− x)x ≤ 1,∀x ∈ [0, 1].

Lemma 2.3 Let M ∈ R3×3 be symmetric and positive semi-definite with three distinct
eigenvalues. Then, the solutions of MR = R>M with R ∈ SO(3) satisfy

R ∈ {I3} ∪ {R = Ra(π, v), v ∈ E(M)}, (2.48)

where E(M) is the set of eigenvectors of M .

The proof of Lemma 2.3 is obtained by following the similar steps as in the proof of
[Mahony et al., 2008, Theorem 5.1] and [Mayhew and Teel, 2011b, Lemma 2].

2.3.2 Pose on Lie group SE(3)

The pose of a rigid body is represented by the pair (R, p) with R ∈ SO(3) being the
orientation of the body-fixed frame attached to the center of the rigid body with respect
to the inertial frame, and p ∈ R3 being the position of the rigid body expressed in the
inertial frame. The three-dimensional Special Euclidean group, denoted by SE(3), is
defined as

SE(3) :=
{
g = TSE(3)(R, p) ∈ R4×4

∣∣R ∈ SO(3), p ∈ R3
}
,
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with the map TSE(3) : SO(3)× R3 → SE(3) given by

TSE(3)(R, p) :=

[
R p

01×3 1

]
. (2.49)

The inverse of g can be expressed in matrix form as

g−1 = TSE(3)(R
>,−R>p) =

[
R> −R>p
01×3 1

]
(2.50)

It is easy to verify that gg−1 = g−1g = I4. The Lie algebra of SE(3), denoted by se(3), is
given by

se(3) :=

{
U ∈ R4×4|U =

[
Ω v

01×3 0

]
,Ω ∈ so(3), v ∈ R3

}
. (2.51)

with so(3) defined in (2.12). Similar to the map (·)× defined on R3, we introduce a wedge
map (·)∧ : R6 → se(3), which is defined as

ξ∧ :=

[
ω× v

01×3 0

]
, ξ :=

[
ω
v

]
. (2.52)

The tangent space of the group SE(3), is identified by TgSE(3) := {gU | g ∈ SE(3), U ∈
se(3)}. Let 〈·, ·〉g : TgSE(3)× TgSE(3)→ R be a Riemannian metric on SE(3), such that

〈gU, gU2〉g := 〈〈U1, U2〉〉, ∀g ∈ SE(3), U1, U2 ∈ se(3).

Given a differentiable smooth function f : SE(3) → R, the gradient of f , denoted by
∇gf ∈ TgSE(3), relative to the Riemannian metric 〈·, ·〉g is uniquely defined by

df · gU = 〈∇gf, gU〉g = 〈〈g−1∇gf, U〉〉, (2.53)

for all g ∈ SE(3), U ∈ se(3). A point g ∈ SE(3) is called critical point of f if the gradient
of f at g is zero (i.e., ∇gf = 0). The set of all critical points of f on SE(3) is denoted by

CSE(3)f := {g ∈ SE(3)|∇gf = 0} ⊂ SE(3). (2.54)

For any g ∈ SE(3), we define |g|I as the distance with respect to I4, which is given by

|g|I := ‖I4 − g‖F =
√
‖I3 −R‖2

F + ‖p‖2 =
√

8|R|2I + ‖p‖2 (2.55)

Let Pse(3) : R4×4 → se(3) denote the projection of A on the Lie algebra se(3), such that
for all A1 ∈ R3×3, a2, a

>
3 ∈ R3 and a4 ∈ R

Pse(3)

([
A1 a2

a3 a4

])
:=

[
Pso(3)(A1) a2

01×3 0

]
. (2.56)

For all U ∈ se(3), A ∈ R4×4 one has 〈〈A,U〉〉 = 〈〈U,Pse(3)(A)〉〉 = 〈〈Pse(3)(A), U〉〉. Let
vex : se(3)→ R6 denote the inverse isomorphism of the map (·)∧, such that vex(ξ∧) = ξ
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and (vex(U))∧ = U , for all ξ ∈ R6 and U ∈ se(3). For a matrix A =

[
A1 a2

a3 a4

]
with

A1 ∈ R3×3, a2, a
>
3 ∈ R3 and a4 ∈ R, we also define the following map:

ψse(3)(A) := Θvex(Pse(3)(A))

=

[
ψso(3)(A1)

1
2
b

]
=

1

2


a32 − a23

a13 − a31

a21 − a12

b

 , (2.57)

with A1 = [aij] and Θ := blkdiag(I3,
1
2
I3). Then, it is verified that for all A ∈ R4×4, y ∈ R6

〈〈A, y∧〉〉 = 2y>ψse(3)(A) (2.58)

Given a rigid body with configuration g ∈ SE(3), the adjoint map Adg(·) : SE(3)×se(3)→
se(3) is given by

Adg(U) := gUg−1, ∀g ∈ SE(3), U ∈ se(3). (2.59)

The matrix representation of the adjoint map on se(3) is defined as

Adg :=

[
R 03×3

p×R R

]
∈ R6×6, ∀g = TSE(3)(R, p) (2.60)

such that

gx∧g−1 = (Adgx)∧, ∀ ∈ SE(3), x ∈ R6. (2.61)

One verifies that Adg1Adg2 = Adg1g2 , for all g1, g2 ∈ SE(3). Define Ad∗g(·) as the Hermitian
adjoint of Adg(·) with respect to the matrix inner product 〈〈·, ·〉〉 on se(3) associated with
the right-invariant Riemannian metric, such that for all U1, U2 ∈ se(3), g ∈ SE(3)

〈〈U2,Adg(U1)〉〉 = 〈〈Ad∗g(U2), U1〉〉, (2.62)

For each g = TSE(3)(R, p), the matrix representation of the Hermitian adjoint map Ad∗g(·)
is given by

Ad∗g :=

[
R> −R>p×
03×3 R>

]
. (2.63)

For the sake of simplicity, we denote (g−1)> as g−>. Then for any U ∈ se(3) and
g ∈ SE(3), one has

ψse(3)(g
>Ug−>) = Ad∗gψse(3)(U) (2.64)

Given any two vectors r, b ∈ R4, we define the following wedge product (exterior product)
∧ as

b ∧ r :=

[
bv × rv

bsrv − rsbv

]
∈ R6, (2.65)

where r = (r>v , rs)
>, b = (b>v , bs)

> with rv, bv ∈ R3 and rs, bs ∈ R.
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Lemma 2.4 Consider the wedge product defined in (2.65). For all r, b ∈ R4, g ∈ SE(3),
one can verify that

r ∧ r = 0, (2.66)

b ∧ r = −r ∧ b, (2.67)

ψse(3)

(
(I − g)rr>

)
=

1

2
(gr) ∧ r, (2.68)

(gb) ∧ (gr) = Ad∗g−1(b ∧ r). (2.69)

Proof See Appendix A.1.

Lemma 2.5 Let M4
0 denote the sub-manifold of R4×4, defined as

M4
0 :=

{
M

∣∣∣∣M =

[
M1 m2

01×3 0

]
,M1 ∈ R3×3,m2 ∈ R3

}
.

Then, for all g ∈ SE(3),M, M̄ ∈M4
0 and A ∈ R4×4, the following properties hold

MA ∈M0 (2.70)

gM ∈M0 (2.71)

Pse(3)(gM) = Pse(3)(g
−>M), (2.72)

tr(g>gMM̄>) = tr(MM̄>), (2.73)

ψse(3)(g
>gM) = ψse(3)(M), (2.74)

Ad∗gψse(3)(M) = ψse(3)(g
>Mg−>). (2.75)

Proof See Appendix A.2.

Note that from the definition of se(3) in (2.51), one has se(3) ⊂M4
0. Moreover, one can

show that (2.64) is a special case of (2.75).

2.3.3 Pose and linear velocity on Lie group SE2(3)

We consider the extended Special Euclidean group of order 3 introduced in [Barrau and
Bonnabel, 2017] as SE2(3) := SO(3)× R3 × R3 ⊂ R5×5 , which is defined as

SE2(3) := {X = TSE2(3)(R, v, p)|R ∈ SO(3), p, v ∈ R3} (2.76)

The map TSE2(3) : SO(3)× R3 × R3 → SE2(3) is defined by

TSE2(3)(R, v, p) =

 R v p
01×3 1 0
01×3 0 1

 . (2.77)

For everyX = TSE2(3)(R, v, p), one has the inverse ofX asX−1 = TSE2(3)(R
>,−R>v,−R>p).

Denote TXSE2(3) ∈ R5×5 as the tangent space of SE2(3) at point X. The Lie algebra of
SE2(3), denoted by se2(3), is given by

se2(3) :=

{
U =

[
Ω α v

02×3 02×3 02×3

]
∈ R5×5

∣∣∣∣Ω ∈ so(3), v, α ∈ R3

}
,
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with so(3) defined in (2.12). Let Pse2(3) : R5×5 → se2(3) denote the projection of A on
the Lie algebra se2(3), such that, for all A1 ∈ R3×3, a2, · · · , a5 ∈ R3 and a6, · · · , a9 ∈ R,
one has

Pse2(3)

A1 a2 a3

a>4 a6 a7

a>5 a8 a9

 =

Pso(3)(A1) a2 a3

01×3 0 0
01×3 0 0

 . (2.78)

For all U ∈ se2(3), A ∈ R5×5 one has 〈〈A,U〉〉 = 〈〈U,Pse2(3)(A)〉〉 = 〈〈Pse2(3)(A), U〉〉.
Given a rigid body with configuration X ∈ SE2(3), the adjoint map Ad : SE2(3)×se2(3)→
se2(3) is given by

AdXU := XUX−1, X ∈ SE2(3), U ∈ se2(3). (2.79)

For all X1, X2 ∈ SE2(3), U ∈ se2(3), one can verify that AdX1AdX2U = AdX1X2U .

2.4 Inertial navigation systems

2.4.1 Dynamic model for INSs

Let R ∈ SO(3) be the rotation that describes the orientation of the body-fixed frame
B with respect to the inertial frame I. Also, let ω ∈ R3 be the angular velocity of the
body-fixed frame with respect to the inertial frame I, expressed in the body-fixed frame
B. The dynamics of the attitude R are governed by

Ṙ = Rω× (2.80)

where (·)× denotes the skew-symmetric map defined in (2.13). Let p ∈ R3 denote the
position of the center of gravity of the rigid body expressed in the inertial frame I, and
let v̄ ∈ R3 denote the liner velocity of the center of gravity of the rigid body expressed
in the body-fixed frame B. The dynamics of p are given by

ṗ = Rv̄. (2.81)

Let g = TSE(3)(R, p) ∈ SE(3) be the pose of the rigid body with the map TSE(3) defined in
(2.49). Then, in view of (2.80) and (2.81), the dynamics of the pose g are given by

ġ = gξ∧. (2.82)

where ξ = [ω>, v̄>]> ∈ R6 denotes the group velocity on SE(3) and the map (·)∧ is defined
in (2.52). Let v ∈ R3 be the linear velocity expressed in the inertial frame I. Then, the
relation between v and v̄ is given by v = Rv̄. Therefore, the dynamics of the inertial
navigation system are given by

Ṙ = Rω× (2.83)

ṗ = v (2.84)

v̇ = g +Ra (2.85)
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where g denotes the gravity vector expressed in the inertial frame, and a ∈ R3 denotes
the body-frame “apparent acceleration” capturing all non-gravitational forces applied to
the rigid body expressed in the body-fixed frame. Let X = TSE2(3)(R, v, p) with the map
TSE2(3) defined in (2.77). We consider the configuration of the rigid body represented by
an element of the matrix Lie group X ∈ SE2(3). Let us introduce the nonlinear map
f : SE2(3)×R3×R3 → TXSE2(3), such that the kinematics (2.83)-(2.85) can be rewritten
in the following compact form [Barrau and Bonnabel, 2017]:

Ẋ = f(X,ω, a) :=

Rω× g +Ra v
01×3 0 0
01×3 0 0

 . (2.86)

Let X1, X2 ∈ SE2(3) be two distinct trajectories. The dynamics of the right-invariant
error η := X1X

−1
2 are given by

η̇ = f(η, ω, a)− ηf(I, ω, a), (2.87)

which implies that the right-invariant error η has a state-trajectory independent propa-
gation [Barrau and Bonnabel, 2017].

2.4.2 Inertial-vision systems

Throughout this thesis, some experimental results are presented using inertial-vision sys-
tems. Hence, the inertial-vision systems considered in this work will be discussed in this
subsection. In GPS-denied environments, such as indoor applications, recovering the po-
sition and linear velocity is a challenging task. Recently, inertial-vision systems combing
a low-cost IMU and on-board cameras have made their appearance in the literature.

Figure 2.2: Examples of inertial-vision system: Visual-Inertial Sensor [Nikolic et al.,
2014] (left) and Intel RealSense Depth Camera D435i (right).

In robotic systems, IMU is instrumental to measure the motion changes with respect
to an inertial frame. An IMU usually consists of a three-axis gyroscope, a three-axis
accelerometer and a three-axis magnetometer. The measurement models of the IMU are
described as follows:

• The gyroscope measures the angular velocity of a rigid body relative to the inertial
frame expressed in the body-fixed frame B:

ωy = ω + bω + ng (2.88)



23

where ω is the actual angular velocity expressed in the body-fixed frame, bω and ng
denote the constant (or slowly time-varying) gyro bias and the additive measure-
ment noise, respectively.

• The accelerometer measures the instantaneous linear acceleration of a rigid body
expressed in the body-fixed frame B:

ay = R>(v̇ − g) + ba + na (2.89)

where R is the rotation matrix, v̇ is the derivative of the linear velocity expressed in
the inertial frame, and ba and na denote the bias term and the additive measurement
noise, respectively. When the linear velocity is constant or slowly time-varying (i.e.,
v̇ u 0), the measurements of the accelerometer can be simplified as follows:

ay = R>g + ba + na (2.90)

• The magnetometer provides measurements of the ambient magnetic field, which is
defined by

my = DmR
>mI + bm + nm (2.91)

where Dm is the distortion matrix, mI is the Earth’s magnetic field vector (ex-
pressed in the inertial frame), bm is the body-fixed frame expression of the local
magnetic disturbance, and nm is the measurement noise. The distortion matrix Dm

and magnetic disturbance bm are very sensitive to the local magnetic field. With
the well-calibrated distortion matrix Dm and local magnetic disturbance bm, the
magnetometer measurements can be corrected as follows:

my = R>mI +D−1
m nm (2.92)

The calibration of the gyroscope , accelerometer and magnetometer are instrumental in
practical applications, The reader can find more information in [Batista et al., 2010;
Foster and Elkaim, 2008; Barczyk, 2012; Olivares et al., 2009] and references therein.

In the rest of this subsection, a geometric model of the stereo vision system is discussed
and the three-dimensional position reconstruction from stereo images are provided. We
define an image Im by a map of a two-dimensional surface of pixels brightness [0, 255].
Define z = [u, v, 1]> ∈ R3 as the coordinates of a pixel. The origin z0 = [0, 0, 1]> is
conveniently associated to the top-left pixel of the image. Consider a frame C attached
to the camera’s optical center, and the three-dimensional camera-frame coordinate of a
point pi ( coordinate in the inertial frame) defined by pCi = [pCi,x, p

C
i,y, p

C
i,z]
>. Then the

geometric measurement model of a pinhole camera is given by

zi =

uivi
1

 =
1

pCi,z

1/ρx 0 uc
0 1/ρy vc
0 0 1

f 0 0
0 f 0
0 0 1

 pCi (2.93)

where ρx, ρy are the width and height of each pixel respectively, f is the focal length
expressed in pixels, and (uc, vc) are the coordinates of the camera’s principal point, w.r.t.
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Figure 2.3: Geometric model of a pinhole camera

the center of the image in pixels. We define the following intrinsic matrix parameter of
the camera:

K :=

 1
ρx

0 uc
0 1

ρy
vc

0 0 1

f 0 0
0 f 0
0 0 1

 =


f
ρx

0 uc
0 f

ρy
vc

0 0 1

 (2.94)

We consider the model of a stereo camera given in Figure 2.4. Let pi be the coordinate
of the i-th landmark expressed in the inertial frame I. Then, the coordinate of the i-th
landmark expressed in the body-fixed frame B is given by pBi := R>(pi − p). Let CL and
CR be the frames attached to the left camera and the right camera, respectively. The
position of the i-th landmark expressed in the left (or right) camera frames is defined
as pCLi := R>cL(pBi − pL) (or pCRi := R>cR(pBi − pR)) with (RcL, pL) (or (RcR, pR)) being
the homogeneous transformation from the body-fixed frame to the left (or right) camera
frame, respectively. Define the pixels measurement of the i-th landmark in the left and
right images as (uLi , v

L
i ) and (uRi , v

R
i ), respectively. The measurement of the stereo camera

is given as follows:

zLi :=

uLi
vLi
1

 = λLKL pCLi , zRi :=

uRi
vRi
1

 = λRKR pCRi , (2.95)

with some scalars λL, λR > 0 and KL,KR ∈ R3×3 denoting the intrinsic matrices of the
left and right cameras, respectively. Let us introduce the following bearing vector:

xLi :=
pCLi
‖pCLi ‖

=
R>cL(pBi − pL
‖pBi − pL‖

, xRi :=
pCRi
‖pCRi ‖

=
R>cR(pBi − pR)

‖pBi − pR‖
(2.96)

where i = 1, 2, · · · , N . From (2.95), the bearing vectors xsi ∈ S2 for all s ∈ {L,R} and
i = 1, 2, · · · , N can be rewritten in terms of pixel measurements

xLi =
1

‖K−1
L zLi ‖

K−1
L zLi , xRi =

1

‖K−1
R zRi ‖

K−1
R zRi . (2.97)
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Figure 2.4: Geometric model of stereo camera

Figure 2.5 gives an example of stereo images and the results of feature detection and
matching.

Matched points left

Matched points right

Figure 2.5: Example of stereo images with features detection and matching.

The stereo camera provides the three-dimensional position measurements of the land-
marks. For the sake of simplicity, let the left camera be the dominant camera and assume
that RcL = RcR with a proper design. Let bLR = R>cL(pL−pR) be the vector from the left
camera to the right camera expressed in the left camera frame, and thus pCRi = pCLi +bLR.
Note that (RcL, pL) and bLR are available from a set of stereo vision calibrations.

Lemma 2.6 The three-dimensional coordinates pBi of the landmark pi expressed in body-
fixed frame B, can be written in terms of the stereo bearing measurements as

pBi = RcL

(
xLi ‖bLR × xRi ‖+ xRi ‖bLR × xLi ‖

2‖xLi × xRi ‖
− 1

2
bLR

)
+ pL (2.98)

Proof See Appendix A.3.

The procedure for three-dimensional landmark position measurements are summarized
as follows:
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• Calibrate the parameters of stereo camera: KL,KR, RcL, pL, bLR;

• Detect and match the landmarks in left and right images, and then read the pixel
measurements (uLi , v

L
i ) and (uRi , v

R
i );

• Calculate the stereo bearings xLi , x
R
i from (2.97) using pixel measurements in left

and right images;

• Calculate the three-dimensional landmark position measurements pBi from (2.98).

2.5 Hybrid systems framework

2.5.1 Hybrid systems concepts

In this thesis, we consider the framework of hybrid dynamical systems developed in
[Goebel et al., 2009; Goebel et al., 2012]. Let M be a given manifold embedded in
Rn and TM be the tangent space of M. A hybrid system is a dynamical system that
contains both continuous flows and discrete jumps of the state. A general model of a
hybrid system take the following form:

H :

{
ẋ ∈ F (x), x ∈ F
x+ ∈ G(x), x ∈ J (2.99)

where

• F ⊂M is the flow set ;

• J ⊂M is the jump set ;

• The flow map F :M⇒ TM describes the continuous flow on F ;

• The jump map G :M⇒M describes the discrete flow on J .

Note that ⇒ denotes a set-valued mapping, and x+ denotes the value x after an instan-
taneous jump, namely, x+ := x(t, j + 1) with x(t, j) denoting the value of x before the
jump.

The solutions to a hybrid system are obtained on a hybrid time domain parametrized
by the amount of time spent in the flow set t ∈ R≥0 and by the number of jumps of the
state j ∈ N. Define a hybrid time domain as a subset E ⊂ R≥0 × N in the form

E =
J−1⋃
j=0

([tj, tj+1]× {j}),

for some finite sequence 0 = t0 ≤ t1 ≤ · · · ≤ tJ , with the “last” interval possibly in the
form ([tJ−1, tJ) × {J}) or ([tJ−1,+∞) × {J}). On each hybrid time domain there is a
natural ordering of points : (t, j) � (t′, j′) if t ≤ t′ and j ≤ j′. A hybrid arc is a function
x : domx →M, where domx is a hybrid time domain and, for each fixed j, t 7→ x(t, j)
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is a locally absolutely continuous function1 on the interval Ij = {t : (t, j) ∈ domx}. A
hybrid arc x is a solution to the hybrid system H (see examples in Figure 2.6) if

• x(0, 0) ∈ F ∪ J with F denoting the closure of F .

• For all j ∈ N such that Ij has a nonempty interior{
x(t, j) ∈ F for all t ∈ [min Ij, sup Ij]

ẋ(t, j) ∈ F (x(t, j)) for almost all t ∈ Ij
(2.100)

• For all (t, j) ∈ domx such that (t, j + 1) ∈ domx,{
x(t, j) ∈ J
x(t, j + 1) ∈ G(x(t, j))

(2.101)
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Figure 2.6: Examples of solutions to hybrid systems

A solution x to H is maximal if it cannot be extended by flowing nor jumping, and
it is complete if its domain domx is unbounded, and precompact if it is complete and
bounded. We denote SH as the set of all maximal solutions x to H, and x ∈ SH means
that x is a maximal solution to H. Three basic conditions/assumptions are introduced
to guarantee the existence of solutions, the robustness of stability to small perturbations
and other useful properties. The hybrid system H satisfies the hybrid basic conditions
if:

• F and J are closed sets in M (embedded in Rn).

• F :M⇒ TM is outer semicontinuous2 and locally bounded3 relative to F , and F
is nonempty and convex4 for every x ∈ F .

1A function is locally absolutely continuous if its derivative is continuous for almost all time, and the
function can be recovered by integrating the derivative.

2A set-valued mapping F : X ⇒ Y is outer semicontinuous (inner semicontinuous) at x0 if
lim supx→x0

⊆ F (x0) (lim infx→x0
⊇ F (x0)).

3A function f : X → Y is said to be locally bounded if for every x0 ∈ X, there exists an open interval
I containing x0 such that f is uniformly bounded on I.

4F (x) is a convex set if each point on a line connecting two points in F (x) is also in F (x).
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• G :M⇒M is outer semicontinuous and locally bounded relative to J , and G is
nonempty for every x ∈ J .

2.5.2 Hybrid systems stability

Given a closed set A ⊂ M and a point x ∈ M, define |x|A as the distance of x ∈ M
to A, that is |x|A := inf x̄∈A dM(x, x̄) with dM(·, ·) : M×M → R≥0 being a distance
between two points on M.

Definition 2.9 (Uniform global stability concepts [Goebel et al., 2009]) Consider
a hybrid system H in M. A compact set A ⊂M is said to be

• uniformly globally stable for H if there exists a class-K∞5 α such that any solution
x to H satisfies |x(t, j)|A ≤ α(|x(0, 0)|A) for all (t, j) ∈ domx.

• uniformly globally pre-attractive for H if for each ε > 0 and δ > 0 there exists
T > 0 such that for any solution x to H with |x(0, 0)|A ≤ δ, (t, j) ∈ domx and
t+ j ≥ T imply |x(t, j)A| ≤ ε.

• uniformly globally pre-asymptotically stable for H if it is both uniformly globally
stable and uniformly globally pre-attractive.

Note that the term “pre” indicates that maximal solutions are not required to be com-
plete. Assuming that each maximal solution to H is complete, a compact set A ⊂M is
said to be: globally attractive for H if limt+j→∞ |x(t, j)|A = 0; asymptotically stable if
it is both stable and attractive [Sanfelice et al., 2007]. Asymptotic stability of a closed
set, rather than of an equilibrium point, is considered here since the solutions of a hybrid
system often do not settle down to an equilibrium point. Hence, asymptotic stability of
an equilibrium point is a special case of asymptotic stability of a closed set.

Consider a continuous function V : M→ R, continuously differentiable on a neigh-
borhood of F . We introduce the following functions:

µJ (x) =

{
maxx+∈G(x){V (x+)− V (x)} if x ∈ J
−∞ otherwise,

(2.102)

µF(x) =

{
maxv∈F (x)〈∇V (x), v〉 if x ∈ F
−∞ otherwise,

(2.103)

The following theorem provides the invariance principle with µF(x) and µJ (x) functions.

Theorem 2.1 (Hybrid invariance principle [Goebel et al., 2009]) Consider a func-
tion V :M→ R, continuously differentiable on a neighborhood of F . Suppose that for a
given set U ⊂M,

µF(z) ≤ 0, µJ (z) ≤ 0,∀z ∈ U (2.104)

5A class of function from R≥0 to R≥0 that are continuous, zero at zero, strictly increasing and
unbounded.
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Let a precompact x∗ ∈ SH be such that rgex∗ ⊂ U , with rgex := x(domx) being the range
of x. Then, for some r ∈ V (U), x∗ approaches the nonempty set which is the largest
weakly invariant subset of

V −1(r) ∩ U ∩
[
µ−1
F (0) ∪

(
µ−1
J (0) ∩G(µ−1

J (0))
)]

(2.105)

The following definition of exponential stability is considered, since most of the sta-
bility results of the observers designed in this thesis are exponential.

Definition 2.10 (Exponential stability [Teel et al., 2013]) A closed set A ⊂M is
said to be (locally) exponentially stable for the hybrid system H if there exist strictly pos-
itive scalars κ, λ and µ such that, each solution x satisfying |x(0, 0)|A < µ also satisfies,
for all (t, j) ∈ domx,

|x(t, j)|A ≤ κ exp(−λ(t+ j))|x(0, 0)|A. (2.106)

It is said to be globally exponentially stable if one allows µ→ +∞.

Note that the above definition of exponential stability is uniform exponential stability
when the scalars κ and λ are independent from the initial conditions. Given µ > 0, define
A + µB = {x ∈ M : |x|A < µ}. A sufficient condition for exponential stability is given
in the following theorem.

Theorem 2.2 ([Teel et al., 2013]) For the system (2.99), the closed set A is locally
exponentially stable if there exist positive real numbers α, ᾱ, λF , λJ , µ, p and a function
V : domV → R, where F ∪ J ∪G(J ) ⊂ domV ⊆M, that is continuously differentiable
on an open set containing F and satisfies

α|x|pA ≤ V (x) ≤ ᾱ|x|pA, ∀x ∈ (F ∪ J ∪G(J )) ∩ (A+ µB), (2.107)

〈∇V (x), f〉 ≤ −λFV (x), F ∩ (A+ µB), f ∈ F (x), (2.108)

V (g) ≤ exp(−λJ)V (x), J ∩ (A+ µB), g ∈ G(x), (2.109)

If these bounds hold with µ = +∞ then the set A is globally exponentially stable.

2.6 Observability and Riccati differential equation

This section reviews some useful observability tools for linear time-varying systems. Con-
sider a generic linear time-varying (LTV) system

ẋ = A(t)x+B(t)u

y = C(t)x (2.110)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, and A(t) ∈ Rn×n, B(t) ∈ Rp×m and C(t) ∈ Rm×n being
matrix-valued functions of time t.

In linear systems theory, the system is said to be observable if for any unknown
initial state x(0), there exists a finite t1 > 0 such that the knowledge of the input u and
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the output y over [0, t1] suffices to determine uniquely the initial state x(0); Otherwise,
the system is said to be unobservable [Chen, 1999]. For linear time-invariant systems,
observability is guaranteed if the Kalman rank condition is satisfied. However, for LTV
systems, there exist different types of of observability properties, for instance, differential,
instantaneous, or uniform observability. We are more interested in uniform observability
to ensure exponential stability of the estimators derived in this thesis. Suppose that the
matrix-valued functions A(t), B(t) and C(t) are continuous and bounded for all t ≥ 0. Let
Φ(t, τ) be the state transition matrix of ẋ = A(t)x such that d

dt
Φ(t, τ) = A(t)Φ(t, τ),

Φ(t, t) = In and Φ−1(t, τ) = Φ(τ, t). The following definition formulates the well-known
uniform observability in terms of an associated Gramian matrix:

Definition 2.11 ([Bucy, 1967]) The pair (A(t), C(t)) in (2.110) is uniformly observ-
able if there exist constants δ, µ > 0 such that

WO(t, t+ δ) :=
1

δ

∫ t+δ

t

Φ(τ, t)>C(τ)>C(τ)Φ(τ, t)dτ ≥ µIn, ∀t ≥ 0 (2.111)

where WO(t, t+ δ) is called the Observability Gramian of system (2.110).

Note that the Observability Gramian WO(t, t + δ) is naturally upper bounded by some
constant since the matrices A(t) and C(t) are bounded for all t ≥ 0 by assumption.
Some special cases for calculating the state transition matrix Φ(t, τ) are given as follows
[Aplevich, 2000]:

• If A(t) is a constant matrix, then Φ(t, τ) = exp (A(t− τ)).

• If A(t)A(τ) = A(τ)A(t) for every t, τ , then the state transition matrix can be
expressed as Φ(t, τ) = exp (

∫ t
τ
A(s)ds).

• If A(t) =

[
0 F (t)
0 0

]
, then the state transition matrix can be expressed as

Φ(t, τ) =

[
I
∫ t
τ
F (s)ds

0 I

]
.

The following lemma provides a special case of state transition matrix, which is used
throughout this thesis:

Lemma 2.7 Let A(t) = S(t) + Ā with Ā being a constant matrix. If there exist an
invertible matrix-valued function T (t) such that Ṫ (t) = S(t)T (t) and T (t)Ā = ĀT (t),
then the state transition matrix Φ(t, τ) associated to A(t) can be expressed as

Φ(t, τ) = T (t)Φ̄(t, τ)T−1(τ) (2.112)

where Φ̄(t, τ) = exp (Ā(t− τ)) is the state transition matrix associated to Ā.

Proof See Appendix A.4.
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Note that finding the matrix-valued function T (t) such that Ṫ (t) = S(t)T (t) is the key
of Lemma (2.7). Two special cases are discussed as follows: If S(t1)S(t2) = S(t2)S(t1)
holds for every t1, t2 ≥ 0, the matrix T (t) can be chosen as T (t) = exp (

∫ t
0
S(τ)dτ); If

S(t) = blkdiag((w(t))×, (w(t))×, · · · , (w(t))×) with w ∈ R3 and (·)× defined in (2.13), one
can choose T (t) = blkdiag(R̄(t), R̄(t), · · · , R̄(t)) with the rotation matrix R̄ generated by
˙̄R = (w(t))×R̄(t) and R̄(0) ∈ SO(3).

In some situations, it is difficult to check condition (2.111) since it requires explicit
knowledge of the transition matrix. Suppose that there exists a constant q ∈ N such that
A(t) and C(t) in (2.110) are q and q + 1 times continuously differentiable, respectively.
The following lemmas provide sufficient conditions for uniform observability in terms of
the matrices A(t) and C(t), and their time-derivatives:

Lemma 2.8 ([Bristeau et al., 2010]) The observability Gramian of system (2.110)
satisfies the condition (2.111) if there exists a (strictly) positive constant µ > 0 such
that for all t ≥ 0

O>(t)O(t) ≥ µIn (2.113)

where the matrix-valued function O is defined as

O(t) =


N0(t)
N1(t)

...
Nq(t)

 (2.114)

with N0(t) = C(t) and Nk+1(t) = Nk(t)A(t) + Ṅk(t) for all k = 1, 2, · · · , q.

Lemma 2.9 ([Scandaroli, 2013]) The observability Gramian of system (2.110) satis-
fies the condition (2.111) if the matrix-valued function Ō(t) composed of row vectors of
O(t) defined in (2.114) is well-defined and bounded for all t ≥ 0, and there exist some
(strictly) positive constants δ, µ such that

1

δ

∫ t+δ

t

det
(
Ō>(τ)Ō(τ)

)
dτ ≥ µIn, ∀t ≥ 0 (2.115)

Note that the condition in Lemma 2.8 is stronger than that in the Lemma 2.9, and can be
seen as a special case of Lemma 2.9. Moreover, condition (2.113) is satisfied by checking
that matrix O(t) has full rank for all t ≥ 0.

We consider the following continuous Riccati equation (CRE):

Ṗ = A(t)P + PA>(t)− PC>(t)Q(t)C(t)P + V (t), (2.116)

where P (0) ∈ Rn×n is a symmetric positive definite matrix and V (t) ∈ Rn×n and Q(t) ∈
Rm×m are uniformly positive definite matrices. To establish global existence, uniqueness
and boundedness of the solution to the CRE (2.116), sufficient conditions are presented
in the following lemma:
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Lemma 2.10 ([Bucy, 1967; Bucy, 1972]) If there exist constants δ, µq, µv > 0 such
that ∀t ≥ 0

WV (t, t+ δ) :=
1

δ

∫ t+δ

t

Φ(t+ δ, τ)V (τ)Φ>(t+ δ, τ)dτ ≥ µvIn, (2.117)

WQ(t, t+ δ) :=
1

δ

∫ t+δ

t

Φ>(τ, t)C(τ)>Q(τ)C(τ)Φ(τ, t)dτ ≥ µqIn, (2.118)

there exist positive constants 0 < pm ≤ pM < ∞ such that the solution of the CRE
(2.116) satisfies pmIn ≤ P (t) ≤ pMIn for all t > δ.

Matrix WQ(t, t + δ) is called the Riccati observability Gramian associated to the
triplet (A,C,Q). Note that if Q(t) ≥ εIm > 0, Riccati observability Gramian condition
(2.118) is consequently satisfied from the condition (2.111) since WQ(t, t+δ) ≥ εWo(t, t+
δ) ≥ εµoIn for all t ≥ 0. Note that in the traditional Kalman filter, Q−1(t) and V (t) are
interpreted as the covariance matrices for the output y and the process.

Assume that there exists a strictly increasing sequence {tj}j∈N with t0 = 0 and Tm ≤
tj+1 − tj ≤ TM with j ∈ N and constants 0 < Tm ≤ TM . In this thesis, we also make use
of the following continuous-discrete Riccati equation (CDRE)

Ṗ = A(t)P + PA>(t) + V (t), t ∈ [tj, tj+1], j ∈ N, (2.119)

P+ = P − PC>(t)(C(t)PC>(t) +Q−1(t))−1C(t)P, t ∈ {tj}, j ∈ N>0, (2.120)

where P (0) ∈ Rn×n is a symmetric positive definite matrix and V (t) ∈ Rn×n and Q(t) ∈
Rm×m are uniformly positive definite matrices. Note that if P (t, j) denotes the solution
of P before a jump, then the solution of P after the jump is denoted as P+ = P (t, j+ 1).

Lemma 2.11 Consider the CDRE (2.119)-(2.120) with P (0) being symmetric positive
definite. If Q(t) is positive definite, and V (t) is positive semidefinite, then the solution
P to the CDRE is positive definite and well defined on R≥0.

Proof See Appendix A.5.

The following lemma, modified from [Deyst and Price, 1968; Barrau and Bonnabel,
2017], provides sufficient conditions guaranteeing the boundedness and well-conditioning
of the solution P to the CDRE (2.119)-(2.120).

Lemma 2.12 ([Deyst and Price, 1968; Barrau and Bonnabel, 2017]) If there ex-
ist constants Γ, µv, µV , µq, µQ > 0 such that ∀j ≥ 0

µvI ≤
∫ tj+Γ

tj

Φ(tj+Γ, τ)V (τ)Φ>(tj+Γ, τ)dτ ≤ µV I

µqI ≤
j+Γ∑
i=j

Φ>(ti, tj)C(ti)
>Q(ti)C(ti)Φ(ti, tj) ≤ µQI

there exist constants 0 < pm ≤ pM < ∞ such that the solution of the CDRE (2.119)-
(2.120) satisfies pmI ≤ P ≤ pMI for all t > tΓ.



Chapter 3

Hybrid Pose Estimation Using
Inertial and Landmark Position
Measurements

3.1 Introduction

In this chapter, the problem of pose and velocity-bias estimation on SE(3) × R6, using
inertial and landmark position measurements, is considered. Recently, nonlinear invariant
observers on the Lie group SE(3) have made their appearance in the literature [Baldwin
et al., 2007; Hua et al., 2011; Vasconcelos et al., 2010; Khosravian et al., 2015b; Hua et al.,
2015]. These smooth invariant observers are shown to be almost globally asymptotically
stable. To overcome the above mentioned topological obstruction to global asymptotic
stability of SE(3)1, we propose a generic hybrid estimation scheme (depending on a generic
potential function on SE(3)) evolving on SE(3)×R6 for pose and velocity-bias estimation.
Unlike the exiting results in the literature, the proposed hybrid observer is shown to be
globally exponentially stable. To the best of our knowledge, there is no work in the
literature achieving such results on the matrix Lie group SE(3). The proposed hybrid
estimation scheme, uses a new observer-state jump mechanism, inspired from [Berkane
and Tayebi, 2017a], which changes directly the observer state through appropriate jumps
in the direction of a decreasing potential function on SE(3). The jump transitions occur
when the pose estimation error is close to an undesired critical point of the potential
function on SE(3). It is important to point out that the proposed observer-state jump
mechanism is different from the approaches used in [Mayhew and Teel, 2011a; Wu et al.,
2015; Berkane et al., 2017a] which consist in incorporating the jumps in the observer’s
correcting term derived from a family of synergistic potential functions.

Next, an explicit hybrid observer for pose and velocity-bias estimation relying on in-
ertial and landmark position measurements is proposed, which is shown to have global
exponential stability guarantees. However, the error dynamics of the rotation and po-

1This topological obstruction to global asymptotic stability is mainly due to the Lie group SO(3)
which is embedded in SE(3). More details about the topological obstructions on SO(3) can be found in
[Morse, 1934; Ljusternik and Schnirelmann, 1934; Koditschek, 1989].

33
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sition, from the proposed explicit hybrid observer, are coupled when the inertial and
landmark position measurements are used directly. This means that a large position
estimation error may drive the estimated rotation error far away from the identity on
SO(3). To solve this problem, the explicit hybrid observer is re-designed using modified
landmarks, leading to a decoupled rotational error dynamics from the translation error
dynamics in the bias-free case. Finally, to fully solve the coupling issue in the presence
of biased linear and angular velocities, we propose a practically implementable version
of the proposed explicit hybrid observer. These results appeared in our work [Wang and
Tayebi, 2017; Wang and Tayebi, 2018c; Wang and Tayebi, 2019b].

3.2 Problem formulation

Let p ∈ R3 denote the rigid body position expressed in the inertial frame I, and R ∈
SO(3) the rigid body attitude describing the rotation of frame B with respect to frame
I. The dynamics of the position p and the attitude R of a rigid body are given by

Ṙ = Rω× (3.1)

ṗ = Rv̄, (3.2)

where ω ∈ R3 denotes the angular velocity of the body-fixed frame B with respect to the
inertial frame I, expressed in frame B, and v̄ ∈ R3 is the translational linear velocity,
expressed in frame B. Recall that the pose of the rigid body can be represented by
g = TSE(3)(R, p) ∈ SE(3), with the map TSE(3) defined in (2.49). Then, the dynamics of
the pose g are governed by

ġ = gξ∧, (3.3)

where ξ := (ω>, v̄>)> ∈ R6. Note that system (3.3) is left invariant in the sense that
it preserves the Lie group invariance properties with respect to constant translation
and constant rotation of the body-fixed frame B. Let the group velocity be piecewise-
continuous, and consider the following biased group velocity measurement:

ξy := ξ + bξ, (3.4)

where bξ := (b>ω , b
>
v )> ∈ R6 denotes the unknown constant group velocity bias, with

bω, bv ∈ R3 being the unknown (constant) angular velocity bias and linear velocity
bias, respectively. Moreover, a family of n constant homogeneous vectors ri ∈ R4, i =
1, 2, · · · , N , known in the inertial frame I, are assumed to be measured in frame B as

bi = h(g, ri) := g−1ri, i = 1, 2, · · · , N. (3.5)

Note that the right group action h : SE(3)×R4 → R4 satisfies: for all g1, g2 ∈ SE(3) and
r ∈ R4, one has h(g2, h(g1, r)) = h(g1g2, r). Assume that, among the N reference vectors,
there are N1 ∈ N>0 feature points (or landmarks) and N2 ∈ N inertial vectors with the
form

ri =

[
pIi
1

]
, i = 1, 2, · · · , N1 rj+N1 =

[
vIj
0

]
, j = 1, 2, · · · , N2 (3.6)



35

Then, the measurements of the landmarks and inertial vectors defined in (3.5) can be
explicitly expressed in terms of inertial and landmark measurements as

bi =

[
pBi
1

]
,∀i = 1, 2, · · · , N1, bj+N1 =

[
vBj
0

]
,∀j = 1, 2, · · · , N2. (3.7)

with pBi := R>(pIi − p) being the i-th landmark measurement and vBj := R>vIj being
the j-th inertial vector measurement. Let us introduce a set of scalar weights {αi} with
αi > 0 for all i = 1, 2, · · · , N1 and

∑N1

i=1 αi = 1. For the sake of simplicity, we introduce
the following weighted geometric center of landmarks:

pIc :=

N1∑
i=1

αip
I
i . (3.8)

Assumption 3.1 Among the n measurements, at least one landmark point is measured,
and at least two vectors from the set

V I := {v̄I1 , · · · , v̄IN1
, vI1 , · · · , vIN−N1

}, v̄Ii := pIi − pIc , ∀i = 1, 2, · · · , N1

are non-collinear.

Remark 3.1 From Assumption 3.1 one verifies that N1 ≥ 1 and N ≥ 3. This assump-
tion is standard in estimation problems in SE(3), e.g., [Vasconcelos et al., 2010; Hua
et al., 2011; Hua et al., 2015], which is satisfied in the following particular cases:

• Three different landmark points are measured such that the corresponding v̄Ii , i =
1, 2, 3, are non-collinear.

• One landmark point and two non-collinear inertial vectors are measured.

• Two different landmark points and one inertial vector are measured such that the
corresponding vI1 and v̄Ii , i = 1, 2 are non-collinear.

Some useful properties are presented in the following lemmas whose proofs are given
in Appendix B.

Lemma 3.1 Consider a family of n elements of homogeneous space ri ∈ R4, i = 1, 2, · · · , N
defined in (3.6). Given ki ≥ 0 for all i = 1, 2, · · · , N , define the following matrix

A :=
N∑
i=1

kirir
>
i =

[
A b
b> d

]
∈ R4×4, (3.9)

where A :=
∑N1

i=1 kip
I
i (pIi )>+

∑N2

j=1 kj+n1v
I
j (vIj )>, b :=

∑N1

i=1 kip
I
i and d :=

∑N1

i=1 ki. Then,
under Assumption 3.1 the following statements hold:

1) d > 0 .

2) Matrix M := A− bb>d−1 is positive semi-definite.
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3) Matrix M̄ := 1
2
(tr(M)I3 −M) is positive definite.

Lemma 3.2 Let A =
∑N

i=1 kirir
>
i with ki > 0 and ri ∈ R4, i = 1, 2, · · · , N . Then, for

all g, ḡ ∈ SE(3), the following identities hold:

tr((I4 − g)A(I4 − g)>) =
N∑
i=1

ki‖ri − g−1ri‖2, (3.10)

ψse(3)(Pse(3)((I4 − g−1)A)) =
1

2

N∑
i=1

ki(g
−1ri) ∧ ri, (3.11)

Ad∗ḡ

N∑
i=1

ki(ḡg
−1ri) ∧ ri =

N∑
i=1

ki(g
−1ri) ∧ (ḡ−1ri). (3.12)

Lemma 3.3 Let M = M> be a positive semi-definite matrix under Assumption 3.1 and
U be a nonempty finite set of unit vectors. Consider the map ∆M : S2 × U→ R defined
as

∆M(u, v) := u>(tr(Mv)I3 −Mv)u, (3.13)

where Mv := M(I3 − 2vv>) and v ∈ E(M). Define the constant scalar

∆∗M := min
v∈E(M)

max
u∈U

∆M(u, v). (3.14)

Then, the following results hold:

1) Let U be a superset of E(M) (i.e., U ⊇ E(M)), then the following inequality holds:

∆∗M ≥


2
3
λM1 if λM1 = λM2 = λM3 > 0

min{2λM1 , λM3 } if λM1 = λM2 6= λM3 > 0

tr(M)− λMmax if λMi 6= λMj ≥ 0, i 6= j

. (3.15)

2) Let M be a matrix such that tr(M) − 2λMmax > 0, and let U be a set that contains
any three orthogonal unit vectors in R3, then the following inequality holds:

∆∗M ≥ 2
3
(tr(M)− 2λMmax). (3.16)

Lemma 3.3 provides two approaches for the design of the nonempty finite set U such that
∆∗M = minv∈E(M) maxu∈U ∆M(u, v) > 0, and the lower bound of ∆∗M exists. Note that
approach 1) can cover most of the cases of matrix M , however it requires the information
about the eigenvectors of M . Approach 2) does not need any information about the
eigenvectors of M , but it requires a stronger condition tr(M) − 2λMmax > 0. In practice,
one can choose either approach for the design of the set U as long as the conditions are
satisfied.

Assumption 3.2 The pose g and group velocity ξ of the rigid body are uniformly bounded.

Our objective is to design a globally exponentially stable hybrid pose and velocity-
bias estimation scheme that provides estimates ĝ and b̂ξ of the pose g and the group
velocity-bias bξ, respectively, using the available measurements satisfying Assumption
3.1 and Assumption 3.2.
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3.3 Gradient-based smooth observer design

In this section, a gradient-based smooth observer, inspired from [Baldwin et al., 2007;
Hua et al., 2011; Vasconcelos et al., 2010; Khosravian et al., 2015b; Hua et al., 2015], is
considered relying on a generic potential function on SE(3). Consider a positive-valued
continuously differentiable potential function U : SE(3) → R≥0. From the properties of
potential function on manifolds, one has U(g) ≥ 0 for all g ∈ SE(3) and U(g) = 0 if and
only if g = I4. We define ∇gU as the gradient of U at point g ∈ SE(3).

Let ĝ be the estimate of the pose g, and g̃ = gĝ−1 be the geometric pose estimation
error on SE(3). The geometric error g̃ ensures that g̃ ∈ SE(3) for all ĝ ∈ SE(3), and
g̃ = I4 if and only if ĝ = g. Let ĝ := TSE(3)(R̂, p̂) with R̂ being the estimate of the

attitude R, and p̂ being the estimate of the linear position p. Then, g̃ = TSE(3)(R̃, p̃)

implies that R̃ = RR̂−1 = RR̂> and p̃ = p − RR̂>p̂. The first term R̃ denotes the
geometric attitude estimation error on SO(3) and the second term p̃ denotes the geometric
position estimation error. Unlike the classical linear error p − p̂, the geometric error
p̃ = R(R>p − R̂>p̂) considers the body-fixed frame estimation error expressed in the
inertial frame. Let b̂ξ denote the estimate of the group velocity bias. Define b̃ξ := b̂ξ − bξ
as the bias estimation error. A gradient-based continuous observer, motivated from [Hua
et al., 2015], is generalized as follows

˙̂g = ĝ(ξy − b̂ξ + kββ)∧ (3.17)

˙̂
bξ = −Γσb (3.18)

β := Adĝ−1ψse(3)(g̃
−1∇g̃U), (3.19)

σb := Ad∗ĝψse(3)(g̃
−1∇g̃U), (3.20)

where ĝ(0) ∈ SE(3), b̂ξ(0) ∈ R6, Γ ∈ R6×6 and kβ > 0. The map ψse(3) is given in (2.57),
Ad and Ad∗ are the adjoint and co-adjoint maps on se(3). The dynamics of ĝ is essentially
a copy of the pose dynamics (3.3), with a bias compensation term b̂ξ, and an innovation

term β. The design of the dynamics of the bias estimate b̂ξ and the innovation term β,
relies on the gradient of the potential function U .

In view of (3.3), (3.4), (3.17)-(3.20), one has the following closed-loop system:

˙̃g = g̃(Adĝ b̃ξ − kβψse(3)(g̃
−1∇g̃U))∧ (3.21)

˙̃bξ = −ΓAd∗ĝψse(3)(g̃
−1∇g̃U) (3.22)

The equilibrium set for (3.21)-(3.22) is given by

ΨU :=
{

(g̃, b̃ξ) ∈ SE(3)× R6
∣∣∣ψse(3)(g̃

−1∇g̃U) = 06×1, b̃ξ = 06×1

}
. (3.23)

Since g̃−1∇g̃U ∈ se(3), one concludes that ∇g̃U = 0 if and only if ψse(3)(g̃
−1∇g̃U) = 0.

Let CSE(3)U be the set of all critical points of U on SE(3). Then, the equilibrium set ΨU
defined in (3.23) can be rewritten as

ΨU =
{

(g̃, b̃ξ) ∈ SE(3)× R6
∣∣∣g̃ ∈ CSE(3)U , b̃ξ = 06×1

}
. (3.24)
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Due to the continuity of the Lie group SE(3) and the fact that the potential function
U has a unique global minimum at I4 (i.e., U(I4) = 0), one has I4 ∈ CSE(3)U , (i.e.,
∇I4U = 0). Hence, one can conclude that (I4, 0) ∈ ΨU . The following result shows that
the equilibrium point (I4, 0) of system (3.21)-(3.22) is locally asymptotically stable.

Proposition 3.1 Consider the closed-loop system (3.21)-(3.22) with the gains Γ, kβ > 0.
Then, the equilibrium point (I4, 0) is locally asymptotically stable.

Proof See Appendix B.4.

Remark 3.2 Proposition 3.1 provides a local asymptotic stability result using a general
potential function U on SE(3). As shown in [Koditschek, 1989], no smooth vector field
on Lie groups, which are not homeomorphic to Rn, can have a global attractor. From the
Lusternik-Schnirelmann theorem [Ljusternik and Schnirelmann, 1934] and Morse theory
[Morse, 1934], there exist at least four critical points for any smooth function on SO(3).
This implies that any smooth potential function on SE(3), has at least four critical points.

Remark 3.3 The best result one can achieve for smooth (time-invariant) observers on
SE(3), is almost globally asymptotically stable. If the potential function U on SE(3) and
the set of critical points of U have been specified, almost global asymptotic stability can
be shown using similar steps as in the proof of [Hua et al., 2015, Theorem 1].

3.4 Gradient-based hybrid observer design

In this section, we redesign the estimation scheme for pose and velocity-bias on SE(3)×R6

to guarantee global asymptotic (exponential) stability using the hybrid dynamic frame-
work discussed in Section 2.5.

3.4.1 Generic hybrid pose and velocity-bias estimation filter

Given a nonempty finite set Q ⊂ SE(3), we propose the following generic hybrid pose and
velocity-bias estimation scheme relying on a generic potential function on SE(3)× R6:

˙̂g = ĝ(ξy − b̂ξ + kββ)∧

˙̂
bξ = −Γσb︸ ︷︷ ︸

(ĝ,b̂ξ) ∈ Fo

ĝ+ = g−1
q ĝ, gq ∈ γ(ĝ)

b̂+
ξ = b̂ξ︸ ︷︷ ︸

(ĝ,b̂ξ) ∈ Jo

, (3.25)

β := Adĝ−1ψse(3)(g̃
−1∇g̃U), (3.26)

σb := Ad∗ĝψse(3)(g̃
−1∇g̃U), (3.27)

where ĝ(0) ∈ SE(3), b̂ξ(0) ∈ R6, Γ := diag(kωI3, kvI3) ∈ R6×6 and kω, kv, kβ > 0. The
set-valued map γ : SE(3) ⇒ Q is defined as γ(ĝ) := {gq ∈ Q : gq = arg mingq∈Q U(g̃gq)}.
The flow set Fo and jump set Jo are defined by

Fo := {(ĝ, b̂ξ) ∈ SE(3)× R6 : U(g̃)−min
gq∈Q
U(g̃gq) ≤ δ}, (3.28)
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Jo := {(ĝ, b̂ξ) ∈ SE(3)× R6 : U(g̃)−min
gq∈Q
U(g̃gq) ≥ δ}, (3.29)

for some δ > 0. The potential function U , and the parameters δ and the set Q ⊂ SE(3)
will be designed later. Note that the vector ξy involved in (3.25) is a known bounded
function of time. Note also that U(g̃) and U(g̃gq) involved in (3.28) and (3.29), and
ψse(3)(g̃

−1∇g̃U) involved in (3.26) and (3.27) can be rewritten in terms of ĝ and the
available measurements as it is going to be shown later.

Figure 3.1: Schematic of the proposed hybrid pose and velocity bias observer.

Let us introduce the extended space and state as S := SE(3) × R6 × SE(3) × R6 ×
R≥0 and x := (g̃, b̃ξ, ĝ, b̂ξ, t) ∈ S. In view of (3.3), (3.4), (3.25)-(3.27), one has the follow-
ing hybrid closed-loop system:

H :

{
ẋ ∈ F (x) x ∈ Fc := {x ∈ S : (ĝ, b̂ξ) ∈ Fo}
x+ ∈ G(x) x ∈ Jc := {x ∈ S : (ĝ, b̂ξ) ∈ Jo}

(3.30)

with

F (x) =


g̃(Adĝ b̃ξ − kβψse(3)(g̃

−1∇g̃U))∧

−ΓAd∗ĝψse(3)(g̃
−1∇g̃U)

ĝ(ξy − b̂ξ + kβAdĝ−1ψse(3)(g̃
−1∇g̃U))∧

−ΓAd∗ĝψse(3)(g̃
−1∇g̃U)

1

 , G(x) =


g̃gq
b̃ξ
g−1
q ĝ

b̂ξ
t

 .

Note that the closed-loop system (3.30) satisfies the hybrid basic conditions of [Goebel
et al., 2009] and is autonomous. Let XU be the set of undesired critical points such that
XU = CSE(3)U/{I4}. Define the closed set Ā := {x ∈ S : g̃ = I4, b̃ξ = 06×1} and let |x|Ā
denote the distance to the set Ā such that |x|2Ā := infy=(I4,0,ḡ,b̄a,t̄)∈Ā(‖I4 − g̃‖2

F + ‖b̃ξ‖2 +

‖ḡ − ĝ‖2
F + ‖b̄a − b̂ξ‖2 + ‖t̄− t‖2) = |g̃|2I + ‖b̃ξ‖2.

Now, one can state one of our main results modified from [Wang and Tayebi, 2017]
that provides a hybrid pose and velocity-bias estimation relying on a general potential
function on SE(3).
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Theorem 3.1 Consider system (3.30) with a continuously differentiable potential func-
tion U on SE(3), and choose the nonempty finite Q and the gap δ > 0 such that

U(g̃)−min
gq∈Q
U(g̃gq) > δ, ∀g̃ ∈ XU (3.31)

Then, the number of discrete jumps is finite and the equilibrium set Ā is globally asymp-
totically stable.

Proof See Appendix B.5.

Remark 3.4 The observers proposed in [Baldwin et al., 2007; Baldwin et al., 2009; Hua
et al., 2011; Vasconcelos et al., 2010; Hua et al., 2015] are shown to guarantee almost
global asymptotic stability due to the topological obstruction when considering continuous
time-invariant state observers on SE(3). The proposed hybrid observer in Theorem 1, uses
a new switching mechanism, inspired from [Berkane and Tayebi, 2017a], which changes
directly the observer state through appropriate jumps in the direction of a decreasing
potential function on SE(3). The jump transitions occur when the estimation error is
close to the critical points. This resetting mechanism is different from the approach used
in [Wu et al., 2015; Berkane et al., 2016] which consists in incorporating the jumps in
the observer’s correcting term.

The following theorem provides sufficient conditions on a general potential function
on SE(3) for global exponential stability of the hybrid system (3.30).

Theorem 3.2 Consider system (3.30) with a continuously differentiable potential func-
tion U on SE(3), and choose the nonempty finite Q and the gap δ > 0 such that:

α1|g̃|2I ≤ U(g̃) ≤ α2|g̃|2I , x ∈ S, (3.32)

α3|g̃|2I ≤ ‖ψse(3)(g̃
−1∇g̃U)‖2 ≤ α4|g̃|2I , x ∈ Fc, (3.33)

‖Ad∗g̃−1ψse(3)(g̃
−1∇g̃U)‖2 ≤ α5|g̃|2I , x ∈ Fc, (3.34)

where α1, · · · , α5 are strictly positive scalars. Let Assumption 3.1 and Assumption 3.2
hold. Then, the number of jumps is finite and for any initial condition x(0, 0) ∈ S, the
solution x(t, j) is complete and there exist k > 0 and λ > 0 (depending on the initial
conditions) such that

|x(t, j)|Ā ≤ k exp(−λ(t+ j))|x(0, 0)|Ā, (3.35)

for all (t, j) ∈ domx.

Proof See Appendix B.6.

Remark 3.5 Theorem 3.2 provides global exponential stability results for the generic
estimation scheme (3.25)-(3.29) relying on a generic potential function U . The flow and
jump sets Fo and Jo, given in (3.28)-(3.29), depend on some parameters δ and Q that
have to be designed together with the potential function U such that conditions (3.32)-
(3.34) are fulfilled. It is worth pointing out that condition (3.33) implies that the undesired
critical points belong to the jump set Jo. In the next section, we will design U , δ and Q
such that (3.32)-(3.34) are fulfilled.
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3.4.2 Explicit hybrid observers design using the available mea-
surements

In this subsection, we provide an explicit expression for the proposed hybrid observers
in terms of inertial and landmark position measurements (see an example of landmark
measurements in Figure 3.2). Before proceeding with the design, some useful properties

pI1

pI2

pI3

pB1
pB2

pB3

{I}
e1

e3
e2

{B}e2

e1
e3

Figure 3.2: The landmarks coordinates in the inertial frame and body frame are repre-
sented with gray and blue lines, respectively.

are presented in the following lemmas whose proofs are given in Appendix B.

Lemma 3.4 Let Assumption 3.1 hold and consider the following smooth potential func-
tion on SE(3):

U(g) =
1

2
tr((I4 − g)A(I4 − g)>), (3.36)

where the matrix A is defined in (3.9). For any g = TSE(3)(R, p) ∈ SE(3), one has

∇gU(g) := gPse(3)((I4 − g−1)A), (3.37)

ΨU(g) := {I4}
⋃{

g = TSE(3)(R, p) : R = Ra(π, v),

p = (I3 −Ra(π, v))bd−1, v ∈ E(M)
}
. (3.38)

Lemma 3.5 Consider the potential function (3.36) under Assumption 3.1. Define the
following set:
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Q :=
{
TSE(3)(R, p) ∈ SE(3)|R = Ra(θ

∗, u), p = (I3 −Ra(θ
∗, u))bd−1, u ∈ U

}
. (3.39)

where a constant θ∗ ∈ (0, π] and a finite nonempty set U = {uq|uq ∈ S2, q = 1, · · · ,m}.
There exist strictly positive scalars α1, α2, α3 and α4, such that the following inequalities
hold:

α1|g|2I ≤ U(g) ≤ α2|g|2I , g ∈ SE(3) (3.40)

α3|g|2I ≤ ‖ψse(3)(g
−1∇gU)‖2 ≤ α4|g|2I , g ∈ Υ (3.41)

‖Ad∗g−1ψse(3)(g
−1∇gU)‖2 ≤ α4|g|2I , g ∈ Υ. (3.42)

where Υ := {g ∈ SE(3) : U(g) − mingq∈Q U(ggq) ≤ δ} with δ < (1 − cos θ∗)∆∗M , U and
∆∗M designed as per Lemma 3.3.

In view of (3.5), (3.10) and (3.36), let us introduce the following potential function
which can be written in terms of the homogeneous output measurements:

U1(g̃) :=
1

2
tr((I4 − g̃)A(I4 − g̃)>) =

1

2

N∑
i=1

ki‖ri − ĝbi‖2, (3.43)

where the matrix A is given in (3.9). Making use of (3.11), (3.12) in Lemma 3.2 and
(3.37) in Lemma 3.4, one has the following identities:

ψse(3)(g̃
−1∇g̃U1) =

1

2

N∑
i=1

ki(ĝbi) ∧ ri, (3.44)

Ad∗ĝψse(3)(g̃
−1∇g̃U1) =

1

2

N∑
i=1

kibi ∧ (ĝ−1ri). (3.45)

Proposition 3.2 Consider the following hybrid state observer:

˙̂g = ĝ(ξy − b̂ξ + kββ)∧

˙̂
bξ = −Γσb︸ ︷︷ ︸

(ĝ,b̂ξ) ∈ Fo

ĝ+ = g−1
q ĝ, gq ∈ γ(ĝ)

b̂+
ξ = b̂ξ︸ ︷︷ ︸

(ĝ,b̂ξ) ∈ Jo

, (3.46)

β =
1

2
Adĝ−1

N∑
i=1

ki(ĝbi) ∧ (ri), (3.47)

σb =
1

2

N∑
i=1

kibi ∧ (ĝ−1ri). (3.48)

Choose the set Q as per Lemma 3.5. Let Assumption 3.1 and Assumption 3.2 hold. Then,
the results of Theorem 3.2 hold.

Proof See Appendix B.9.
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Remark 3.6 In view of (3.3), (3.25), (3.47) and (3.48), the rotational and translational
error dynamics in the flow Fc are given by

˙̃R = R̃(−kβ(ψso(3)(MR̃) +
1

2
b×R̃>p̃e) + (R̂b̃ω))×, (3.49)

˙̃p = −1

2
kβdp̃e + R̃(p̂×R̂b̃ω + R̂b̃v), (3.50)

˙̃bω = −kω(R̂>((ψso(3)(MR̃) +
1

2
b×R̃>p̃e))−

1

2
dR̂>p̂×p̃e) (3.51)

˙̃bv = −1

2
kvdR̂

>p̃e (3.52)

where p̃e := p̃ − (I3 − R̃)bd−1 and b̃ξ = [b̃>ω , b̃
>
v ]>. The error dynamics (3.49)-(3.50)

have the same form as Eq. (23) in [Hua et al., 2011], in the velocity-bias-free case.
Note that the dynamics of R̃ and p̃ are coupled as long as b = dpIc 6= 0. Therefore,
it is expected that noisy or erroneous position measurements would affect the attitude
estimation. This motivated us to re-design the estimation scheme in a way that leads to
a decoupled rotational error dynamics from the translational error dynamics.

3.5 Decoupling the rotational error dynamics from

the translational error dynamics

Define an auxiliary configuration gc := TSE(3)(I3, p
I
c ) with pIc = αip

I
i and αi := ki/

∑N1

i=1 ki.
Consider the modified inertial elements of the homogeneous space r̄i, defined as r̄i :=
h(gc, ri) = g−1

c ri, i = 1, 2, · · · , N. Define the modified inertial landmarks as p̄Ii := pIi − pc.
It is clear that

∑N1

i=1 αip̄
I
i = 0, which implies that the centroid of the weighted modified

landmarks coincides with the origin (see, for instance, Figure 3.3). This property is
instrumental in achieving a decoupled rotational error dynamics from the translational
error dynamics. Note that in [Vasconcelos et al., 2010] this property has been achieved
through the choice of the parameters αi assuming that the landmark points are linearly
dependent. Our approach does not put such restrictions on the landmarks and the
parameters αi.

Define the modified pose and pose estimate as g := g−1
c g = TSE(3)(R, p− pc) and ĝ :=

g−1
c ĝ = TSE(3)(R̂, p̂ − pc). Define the new pose estimation error g̃ := gĝ−1 = g−1

c gĝ−1gc.
It is clear that g̃ = I4 if g̃ = I4. On the other hand, the new pose estimation error can

be rewritten as g̃ = TSE(3)(R̃, p̃) with R̃ = RR̂> = R̃ and p̃ = (p − pc) − RR̂>(p̂ − pc) =

p̃− (I3 − R̃)pc. This shows that the new pose estimation error shares the same attitude
estimation error R̃ as g̃, while it involves a new transformed position estimation error p̃.
From the definition of pc, one can show that pc = bd−1 with vector b and scalar d defined
in (3.9). One can also verify that bi = h(g−1

c g, r̄i) = g−1r̄i for all i = 1, 2, · · · , N . Let us
introduce the following potential function:

U2(g̃) :=
1

2
tr
(
(I4 − g̃)Ā(I4 − g̃)>

)
=

1

2

N∑
i=1

ki‖r̄i − ĝbi‖2, (3.53)
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Figure 3.3: The landmarks coordinates in the inertial frame and body frame are rep-
resented with gray and blue solid lines, respectively. The landmarks coordinates in the
auxiliary frame are represented with dotted lines.

where Ā :=
∑

i=1 kir̄ir̄
>
i = diag(M,d). In view of (2.73), (3.43) and (3.53), one can show

that, for any g̃ ∈ SE(3), U2(g̃) = U2(g−1
c g̃gc) = U1(g̃). In the sequel, we will make use of

U2(g̃) and U1(g̃) equivalently. Making use of (3.11) in Lemma 3.2 and (3.37) in Lemma
3.4, one can also show that

ψse(3)(g̃
−1∇g̃U2) =

1

2

N∑
i=1

ki(g
−1
c ĝbi) ∧ (g−1

c ri), (3.54)

Define the extended state x′ := (g̃, b̃, ĝ, b̂ξ, t) ∈ S and the closed set Ā′ := {x′ ∈
S : g̃ = I4, b̃ξ = 06×1}. Let |x′|Ā′ denote the distance to the set Ā′ such that |x′|2Ā′ :=

infy=(I4,0,ḡ,b̄a,t̄)∈Ā′(‖I4 − g̃‖2
F + ‖b̃ξ‖2 + ‖ḡ − ĝ‖2

F + ‖b̄a − b̂ξ‖2 + ‖t̄− t‖2) = |g̃|2I + ‖b̃ξ‖2.

Proposition 3.3 Consider the following hybrid state observer:

˙̂g = ĝ(ξy − b̂a + kββ)∧

˙̂
bξ = −Γσb︸ ︷︷ ︸

(ĝ,b̂a) ∈ Fo

ĝ+ = g−1
q ĝ, gq ∈ γ(ĝ)

b̂+
ξ = b̂a︸ ︷︷ ︸

(ĝ,b̂a) ∈ Jo

, (3.55)

β =
1

2
Adĝ−1gc

N∑
i=1

ki(g
−1
c ĝbi) ∧ (g−1

c ri) (3.56)

σb =
1

2

N∑
i=1

kibi ∧ (ĝ−1ri). (3.57)
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Choose the set Q designed as per Lemma 3.5. Let Assumption 3.1 and Assumption 3.2
hold. Then, the number of jumps is finite and for any initial condition x′(0, 0) ∈ S, the
solution x′(t, j) is complete and there exist k̄ > 0 and λ̄ > 0 (depending on the initial
conditions) such that

|x′(t, j)|Ā′ ≤ k̄ exp(−λ̄(t+ j))|x′(0, 0)|Ā′ , (3.58)

for all (t, j) ∈ domx′.

Proof The proof is similar to the proof of Proposition 3.2, which is omitted here.

Remark 3.7 Interestingly, in view of (3.11)-(3.12), one obtains the following expression
of β:

β =
1

2
Adĝ−1gc

N∑
i=1

ki(g
−1
c ĝbi) ∧ (g−1

c ri)

=
1

2
Adĝ−1AdgcAd

∗
gc

N∑
i=1

ki(ĝbi) ∧ (ri) (3.59)

It is worth pointing that the sole difference between this new observer and the observer
in Proposition 1 lies in the definition of β (see (3.47) and (3.59)). In view of (3.3),
(3.55)-(3.57), the error dynamics can be written as

˙̃R = R̃(−kβψso(3)(MR̃) + (R̂b̃ω))×, (3.60)

˙̃p = −1

2
kβdp̃+ R̃(p̂×R̂b̃ω + R̂b̃v), (3.61)

˙̃bω = −kω
(
R̂
>
ψso(3)(MR̃)− 1

2
dR̂
>
p̂×R̃

>
p̃

)
(3.62)

˙̃bv = −1

2
kvdR̂

>
R̃
>
p̃. (3.63)

It is clear that, in the velocity bias-free case, in contrast to (3.49), the dynamics of R̃ do
not depend on p̃ as shown in (3.60), and p̃ enjoys exponential stability when b̃ξ = 06×1 as
it can be seen from (3.61). However, when the velocity bias is considered, the rotational
error dynamics is affected by the estimated position p̂ involved in the dynamics of b̃ω in
(3.62). In order to achieve the decoupling property, in the case where the velocity bias is
not neglected, the following modified estimation scheme is proposed.

Let us consider the following modified estimation scheme:

˙̂g = ĝ(ξy − b̂ξ + kββ)∧

˙̂
bξ = −Γσb︸ ︷︷ ︸

(ĝ,b̂ξ) ∈ Fo

ĝ+ = g−1
q ĝ, gq ∈ γ(ĝ)

b̂+
ξ = b̂ξ︸ ︷︷ ︸

(ĝ,b̂ξ ∈ Jo

, (3.64)

β =
1

2
Adĝ−1gc

N∑
i=1

ki(g
−1
c ĝbi) ∧ (g−1

c ri), (3.65)
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σb =
1

2
Λ>

N∑
i=1

ki(g
−1
c ĝbi) ∧ (g−1

c ri). (3.66)

where Λ := blkdiag(R̂, R̂). In view of (3.3), (3.64)-(3.66) one can write the closed-loop
system as an autonomous hybrid system.

H′ :
{
ẋ′ ∈ F (x′) x′ ∈ F ′c := {x′ ∈ S : (ĝ, b̂ξ) ∈ Fo}
x′+ ∈ G(x′) x′ ∈ J ′c := {x′ ∈ S : (ĝ, b̂ξ) ∈ Jo}

(3.67)

with

F (x′) =


g̃(Adĝ b̃ξ − kβψse(3)(g̃

−1∇g̃U2))∧

−ΓΛ>ψse(3)(g̃
−1∇g̃U2)

ĝ(ξy − b̂ξ + kβAdĝ−1ψse(3)(g̃
−1∇g̃U2))∧

−ΓΛ>ψse(3)(g̃
−1∇g̃U2)

1

 , G(x′) =


g̃ḡq

b̃ξ
g−1
q ĝ

b̂ξ
t

 .

Now, one can state the following theorem:

Theorem 3.3 Consider the closed-loop system (3.67) with potential function U2 in (3.53).
Choose the set Q as per Lemma 3.5. Let Assumption 3.1 and Assumption 3.2 hold. Then,
the number of jumps is finite and for any initial condition x′(0, 0) ∈ S, the solution x′(t, j)
is complete and there exist k′ > 0 and λ′ > 0 (depending on the initial conditions) such
that

|x′(t, j)|Ā′ ≤ k′ exp(−λ′(t+ j))|x′(0, 0)|Ā′ , (3.68)

for all (t, j) ∈ domx′.

Proof See Appendix B.10.

Remark 3.8 From (3.12), (3.65) and (3.66), one can show that

β =
1

2
Adĝ−1AdgcAd

∗
gc

N∑
i=1

ki(ĝbi) ∧ (ri) (3.69)

σb =
1

2
Λ>Ad∗gc

N∑
i=1

ki(ĝbi) ∧ (ri). (3.70)

In view of (3.46)-(3.48) and (3.64), (3.69)-(3.70), one can notice that the difference
between the observer in Theorem 3.3 and the observer in Proposition 3.2 is related to
the terms β and σb. It is worth pointing out that the observer in Theorem 3.3, without
“hybridation” (i.e., in the flow set), is not gradient-based as observers proposed in Section
3.3 and [Lageman et al., 2010; Hua et al., 2011; Hua et al., 2015; Khosravian et al.,
2015b].
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Remark 3.9 In view of (3.12), (3.37) and (3.67), one has the following error dynamics
in the flows:

˙̃R = R̃(−kβψso(3)(MR̃) + R̂b̃ω)×, (3.71)

˙̃p = −1

2
kβdp̃+ R̃(p̂×R̂b̃ω + R̂b̃v), (3.72)

˙̃bω = −kωR̂
>
ψso(3)(MR̃), (3.73)

˙̃bv = −1

2
kvdR̂

>
R̃
>
p̃. (3.74)

Note that the rotational error dynamics (3.71) together with (3.73) do not depend on the
translational estimation, which guarantees the aimed at decoupling property.

3.6 Simulation results

In this section, numerical simulation results are presented to illustrate the performance
of the hybrid gradient-based pose observer proposed in Proposition 3.2 and the hybrid
decoupled pose observer proposed in Theorem 3.3, referred to, respectively, as HGPO and
HDPO. For comparison purposes, we refer to the smooth gradient-based pose observer
(i.e., the HGPO in Proposition 3.2 without the jumps) as SGPO.

As commonly used in practical applications, to avoid the bias estimation drift, in
the presence of measurement noise, we introduce the following projection mechanism
[Ioannou and Sun, 1995]:

Pε
δ(b̂,Γσ) :=

{
Γσ, if b̂ ∈ Πδ or ∇b̂P>Γσ ≤ 0(
I − %ε(b̂)Γ ∇b̂P∇b̂P

>

∇b̂P>Γ∇b̂P

)
Γσ, otherwise

, (3.75)

where b̂, σ ∈ Rn,Γ ∈ Rn×n, P(b̂) := ‖b̂‖ − δ, Πδ := {b̂|P(b̂) ≤ 0}, and %ε(b̂) :=
min{1,P(b̂)/ε} for some positive parameters δ and ε. Given ‖b̂(0)‖ < ∆, one can verify
that the projection map Pε

δ is locally Lipschitz in its arguments and satisfies the following
properties:

1) ‖b̂(t)‖ ≤ δ + ε, for all t ≥ 0 ;

2) b̃>Γ−1Pε
δ(b̂,Γσ) ≤ b̃>σ and ‖Pε

δ(b̂,Γσ)‖ ≤ ‖Γσ‖.

We consider the case where three inertial vectors vI1 = [0 0 1]>, vI2 = [
√

3
2

1
2

0]>, vI3 =

[−1
2

√
3

2
0]> and one landmark pI = [

√
2

2

√
2

2
2]> are available. The initial pose for all

the observers is taken as the identity i.e., ĝ(0) = I4. The system’s initial conditions are
taken as follows: R(0) = Ra(π, v) with v = [1 0 0]> and p(0) = [0 1 4]>. The system is
driven by the following linear and angular velocities:

v(t) = 2[cos(t) sin(t) 0]> ω(t) = [− sin(t) cos(t) 0]>.
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For the hybrid design, we choose θ∗ = 2π/3, δ = 1 and U = E(M). The gain parameters
involved in all the observers are taken as follows: ki = 1, i = 1, · · · , 4, kβ = 1, kω =
1, kv = 1.

Two simulations have been presented using non-noisy output measurements and con-
stant velocity-bias ba = [−0.02 0.02 0.1 0.2 −0.1 0.01]>, and noisy output measurements
output measurements and time-varying velocity-bias ba(t) = cos(0.02t)[−0.02 0.02 0.1 0.2−
0.1 0.01]>, respectively. The simulation results with non-noisy output measurements and
constant velocity-bias are given in Figure 3.4 - Figure 3.5, and the simulation results with
an additive white Gaussian noise of variance 0.1 in the output measurements and time-
varying velocity-bias are given in Figure 3.6 - Figure 3.7. From Figure 3.4- Figure 3.7,
one can clearly see the improved performance of the decoupled hybrid observer, which is
faster as compared to the non-decoupled hybrid observer and non-hybrid observer.
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Figure 3.4: Three-dimensional trajectories in the case of noise-free output measurements
and constant velocity-bias.

3.7 Conclusion

In this chapter, we addressed the problem of pose and velocity-bias estimation for a rigid
body using inertial and landmark position measurements. First, a gradient-based smooth
pose and velocity-bias estimation scheme on SE(3) × R6, relying on a general potential
function on Lie group SE(3), was presented. Proposition 3.1 shows that, for any potential
function on SE(3), the gradient-based smooth observer is locally asymptotically stable.
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Figure 3.5: Estimation errors in the case of noise-free output measurements and constant
velocity-bias.
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Figure 3.6: Three-dimensional trajectories in the case of an additive white Gaussian noise
of variance 0.1 in the output measurements and time-varying velocity-bias.

To overcome the topological obstruction to global asymptotic stability on SE(3), the
gradient-based smooth observer has been extended using the hybrid systems framework.
The proposed hybrid gradient-based observer relies on an observer-state jump mechanism
designed to avoid the undesired critical points while ensuring a decrease of the potential
function in the flow and jump sets. The proposed hybrid observer has been shown to be
globally asymptotically stable in Theorem 3.1, relying on a generalized potential func-
tion on SE(3). Moreover, this result was further extended to achieve global exponential
stability in Theorem 3.2. Then, the proposed hybrid observer is formulated in terms
of homogeneous output measurements of known inertial vectors and landmark points.
Proposition 3.2 shows that this explicit hybrid observer guarantees global exponential
stability.

The attitude and position error dynamics of the explicit gradient-based hybrid ob-
server are coupled, when applying the landmark position measurements directly. This
may deteriorate the performance of the attitude estimation when the position estima-
tion error is large. To overcome this coupling issue, a coordinate transformation on the
landmarks is introduced. A new hybrid observer using the modified landmarks has been
proposed in Theorem 3.3 with global exponential stability guarantees. Finally, a mod-
ified observer, leading to a decoupled rotational error dynamics from the translational
error dynamics, is proposed. This modified hybrid observer is also shown to be globally
exponentially stable in Theorem 3.3. Simulation results with noise-free and noisy output
measurements, illustrating the performance of the proposed hybrid observers, have been
provided.
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Figure 3.7: Estimation errors in the case of an additive white Gaussian noise of variance
0.1 in the output measurements and time-varying velocity-bias.



Chapter 4

Hybrid Nonlinear Observers for
Inertial Navigation Using Landmark
Measurements

4.1 Introduction

This chapter considers the problem of state estimation for inertial navigation systems
relying on landmark position measurements. In the previous chapter, we addressed the
problem of attitude and position estimation using group velocity measurements. How-
ever, obtaining the linear velocity in the body-fixed frame is challenging in low-cost
applications, and obtaining the linear velocity in the inertial frame is difficult in GPS-
denied environments. Hence, it is of great importance, from theoretical and practical
point of views, to develop an estimation algorithm that provides, simultaneously, the
estimates of attitude, position and linear velocity for inertial navigation systems. Due to
the fact that the dynamics of the attitude, position and linear velocity are not (right or
left) invariant, the extension of the existing invariant observers designed on SE(3) [Hua
et al., 2011; Vasconcelos et al., 2010; Hua et al., 2015; Khosravian et al., 2015b; Wang
and Tayebi, 2017; Wang and Tayebi, 2019a] to the estimation problem considered in this
chapter is not trivial. Most of the existing results in the literature, for the state estimation
problem for inertial navigation systems, are based-on the Kalman filter [Mourikis and
Roumeliotis, 2007; Mourikis et al., 2009; Panahandeh and Jansson, 2014], the invariant
extended Kalman Filter (IEKF) on matrix Lie groups [Barrau and Bonnabel, 2017], and
the Riccati-based geometric observer [Hua and Allibert, 2018]. However, these results
are only shown to be locally stable relying on linearizations.

In this chapter, we formulate the estimation problem for inertial navigation systems
using the matrix Lie group SE2(3) introduced in [Barrau and Bonnabel, 2017]. First,
we propose two nonlinear geometric hybrid observers, using ideal IMU and landmark
measurements, for the estimation of the attitude, position and linear velocity. The first
observer relies on fixed gains, while the second one uses variable gains. Both hybrid
observers, relying on the resetting mechanism extended from the previous chapter, leads
to global exponential stability. These results are also extended to deal with the gyro-bias
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and accelerometer-bias situations, which were not considered in the geometric observers
of [Barrau and Bonnabel, 2017; Hua and Allibert, 2018]. To the best of our knowledge,
there are no results in the literature achieving such strong stability properties for the
estimation problem at hand. Moreover, experimental results using IMU and stereo cam-
era measurements are presented to illustrate the performance of the proposed observers.
These results appeared in our work [Wang and Tayebi, 2018b; Wang and Tayebi, 2019a].

4.2 Problem formulation

Consider a rigid body system, navigating in a three-dimensional space, modeled as (2.83)-
(2.85), i.e.,

Ṙ = Rω×, (4.1)

ṗ = v, (4.2)

v̇ = g +Ra, (4.3)

where g ∈ R3 denotes the gravity vector, ω ∈ R3 denotes the angular velocity expressed
in the body-frame, and a ∈ R3 is the body-frame “apparent acceleration” capturing
all non-gravitational forces applied to the rigid body expressed in the body-frame. Let
X = TSE2(3)(R, v, p) ∈ SE2(3) with the map TSE2(3) defined in (2.77). Then, the kinematics
(4.1)-(4.3) can be rewritten in the following compact form:

Ẋ = f(X,ω, a), (4.4)

with the nonlinear map f : SE2(3)× R3 × R3 → TXSE2(3) defined in (2.86).
We assume that ω and a are continuous and available for measurement. Consider a

family of N ∈ N>0 landmarks available for measurement, and let pi ∈ R3 be the position
of the i-th landmark expressed in the inertial frame I. The landmark measurements
expressed in the body-frame B are denoted as

yi := R>(pi − p), i = 1, 2, · · · , N. (4.5)

The three-dimensional landmark position measurements can be obtained, for instance,
using bearing measurements generated from a stereo vision system as (2.98). Let ri :=
[p>i 0 1]> ∈ R5 for all i = 1, 2, · · · , N be the new inertial reference vectors with respect
to the inertial frame {I}, and bi := [y>i 0 1]> ∈ R5 be their measurements expressed in
the body-frame {B}. From (4.5), one has

bi = h(X, ri) := X−1ri, i = 1, 2, · · · , N. (4.6)

Note that, the Lie group action h : SE2(3)×R5 → R5 is a right group action in the sense
that for all X1, X2 ∈ SE2(3) and r ∈ R5, one has h(X2, h(X1, r)) = h(X1X2, r). For later
use, we define r := [r1 r2 · · · rN ] ∈ R5×N and b := [b1 b2 · · · bN ] ∈ R5×N .

Assumption 4.1 Assume that there exist at least three non-collinear landmarks among
the N ≥ 3 measurable landmarks.
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Assumption 4.1 is common in pose estimation on SE(3) using landmark measurements
[Hua et al., 2011; Vasconcelos et al., 2010; Hua et al., 2015; Khosravian et al., 2015b;
Wang and Tayebi, 2017; Wang and Tayebi, 2019a]. Define the matrix M :=

∑N
i=1 ki(pi−

pc)(pi − pc)
> with ki > 0, i = 1, 2, · · · , N , kc :=

∑N
i=1 ki and pc := 1

kc

∑N
i=1 kipi. The

matrix M can be rewritten as M = A1 − kcpcp>c with A1 :=
∑N

i=1 kipip
>
i . Assumption

4.1 guarantees that it is always possible to have the matrix M positive semi-definite with
no more than one zero eigenvalue, through an appropriate choice of the gains ki.

4.3 Hybrid observers design using bias-free measure-

ment

4.3.1 Continuous observer and undesired equilibra

Let X̂ := TSE2(3)(R̂, v̂, p̂) ∈ SE2(3) be the estimate of the state X, where R̂ denotes
the estimate of the attitude R, v̂ denotes the estimate of the linear velocity v and p̂
denotes the estimate of the position p. Define the right-invariant estimation error as
X̃ := XX̂−1 = TSE2(3)(R̃, ṽ, p̃) with R̃ := RR̂>, ṽ := v − R̃v̂ and p̃ := p − R̃p̂. Note
that the right-invariant estimation error on SE2(3) leads to the right-invariant estimation
error on SO(3) and the geometric estimation errors of the position and linear velocity.

Consider the following time-invariant continuous observer:

˙̂
X = f(X̂, ω, a)−∆X̂, (4.7)

∆ := −AdXc
(
Pse2(3)(X

−1
c (r − X̂b)Knr

>X−>c K)
)

(4.8)

where X̂(0) ∈ SE2(3) and Xc := TSE2(3)(I3, 0, pc) ∈ SE2(3) with pc defined before. The
gain parameters are given by

Kn = diag(k1, · · · , kn),K =

kRI3 03×1 03×1

01×3 0 0
01×3 kv kp

 (4.9)

with kR, kp, kv, ki > 0, i = 1, 2, · · · , N .

Remark 4.1 Note that the proposed continuous observer is designed on the matrix Lie
group SE2(3) directly, which is different from most of the existing Kalman-type filters.
The observer has two parts: the term f(X̂, ω, a) relying on the measurements of ω and
a, and an innovation term ∆ designed in terms of the estimated state X̂ and landmark
measurements.

Remark 4.2 A homogeneous transformation matrix Xc ∈ SE2(3) is introduced in the
innovation term ∆, which intends to transform the inertial vectors to a specific frame.
Considering the transformation r̄i = X−1

c ri, i = 1, 2, · · · , N , the innovation term ∆
defined in (4.8) can be simplified as ∆ = −AdXc(Pse2(3)((r̄ −X−1

c X̂b)Knr̄
>K)) with r̄ =

[r̄1, · · · , r̄N ]. Choosing Xc = TSE2(3)(I3, 0, pc) with pc := 1
kc

∑N
i=1 kipi and kc =

∑N
i=1 ki,

leads to a nice decoupling property in the closed-loop dynamics, which will be discussed
later. Similar techniques can be found in Chapter 3.
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Let ỹi := pi− p̂−R̂yi = (I3−R̃>)pi+R̃
>p̃ for all i = 1, 2, · · · , N . From the definitions

of r, b and Kn, one obtains

X−1
c (r − X̂b)Knr

>X−>c = X−1
c

N∑
i=1

ki(ri − X̂bi)r>i X−>c

=

∑N
i=1 kiỹi(pi − pc)> 03×1

∑N
i=1 kiỹi

01×3 0 0
01×3 0 0

 ,
where we made use of the fact (r − X̂b)Knr

> =
∑N

i=1 ki(ri − X̂bi)r>i . Then, from the
definitions of matrix K, the Adjoint map AdX(·) and the projection map Pse2(3)(·), the
expression of ∆ defined in (4.8) becomes

∆ = −

kRPso(3)(∆R) kv∆p kp∆p − kRPso(3)(∆R)pc
01×3 0 0
01×3 0 0

 (4.10)

where ∆R :=
∑N

i=1 kiỹi(pi−pc)> and ∆p :=
∑N

i=1 kiỹi. Recall that ỹi = (I3−R̃>)pi+R̃
>p̃,

then one can show that

∆R =
n∑
i=1

kiỹi(pi − pc)> = (I3 − R̃)>M (4.11)

∆p =
n∑
i=1

kiỹi = kcR̃
>(p̃− (I3 − R̃)pc) (4.12)

where we made use of the facts ỹi = (I3−R̃>)pi+R̃
>p̃, kc =

∑n
i=1 ki,

∑n
i=1 kipi = kcpc and

M =
∑n

i=1 kipip
>
i −kcpcp>c . It is important to mention that ∆R = (I3−R̃>)

∑N
i=1 kipip

>
i +

kcR̃
>p̃p>c when choosing Xc = I5. This implies that the position estimation error p̃ will

affect the attitude estimation error R̃ when the weighted center of landmarks pc is not
located at the origin (i.e., pc 6= 0).

Similar to Section 3.5, we introduce a new position estimation error p̃e := p̃−(I−R̃)pc.
In view of (2.86), (4.7) and (4.10), one has the following closed-loop system:

˙̃R = R̃(−kRPso(3)(MR̃))
˙̃pe = −kpkcp̃e + ṽ
˙̃v = −kvkcp̃e + (I3 − R̃)g

(4.13)

where we made use of the facts Pso(3)(∆R) = Pso(3)((I3 − R̃>)M) = Pso(3)(MR̃) and ˙̃pe =
˙̃p− kRR̃Pso(3)(∆R)pc. It is clear that TSE2(3)(R̃, ṽ, p̃) = I5 if and only if TSE2(3)(R̃, ṽ, p̃e) =
I5. Note that the geometric errors ṽ and p̃e considered here are different from the linear
errors (i.e., v− v̂ and p− p̂) considered in the classical EKF-based navigation filters. The
modified geometric errors lead to an interesting decoupling property for the closed-loop
system, where the dynamics of R̃ are not dependent on p̃e and ṽ as shown in the first
equation of (4.13).
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Proposition 4.1 Consider the closed-loop dynamics (4.13). Let Ψ be the set of undesired
equilibrium points (i.e., all the equilibrium points except I5) of the closed-loop dynamics,
which is given by

Ψ :=

{
TSE2(3)(R̃, ṽ, p̃e) ∈ SE2(3)|R̃ = Ra(π, u), u ∈ E(M),

p̃e =
1

kckv
(I − R̃)g, ṽ = kckpp̃e

}
. (4.14)

Proof The proof of Proposition 4.1 is straightforward. From Lemma 2.3, the set of
equilibrium points of the first equation in (4.13) is given by ΨM := {I3} ∪ {R̃ ∈ SO(3) :
R̃ = Ra(π, u), u ∈ E(M)} . Note that ΨM/{I3} denotes the set of undesired equilibrium
points of the rotational error dynamics. Substituting R̃ ∈ ΨM into the identities ˙̃v = 0
and ˙̃pe = 0, one can easily verify that p̃e = 1

kckv
(I − R̃)g and ṽ = kckpp̃e.

Remark 4.3 From the dynamics of R̃ in (4.13), it is easy to verify that the equilibrium
point I3 is almost globally asymptotically stable [Mahony et al., 2008]. It is important
to mention that, due to the topology of the Lie group SO(3) as mentioned in Section
3.3, it is impossible to achieve robust and global stability results with smooth (or even
discontinuous) state observers. Hence, the best stability result one can achieve with the
continuous observer (4.7)-(4.8) is AGAS. This motivates the design of hybrid observers
leading to robust and global stability results as shown in the next section.

4.3.2 Fixed-gain hybrid observer design

Define the following real-valued cost function Υ : SE2(3)× R5×n × R5×n → R≥0

Υ(X̂, r, b) :=
1

2

N∑
i=1

ki‖(ri − rc)− X̂(bi − bc)‖2 (4.15)

where rc :=
∑N

i=1
ki
kc
ri = [p>c 0 1]> and bc :=

∑N
i=1

ki
kc
bi = [y>c 0 1]> with yc :=∑N

i=1
ki
kc
yi = R>(pc− p). From the definitions of pc, kc and M , one can rewrite Υ(X̂, r, b)

as Υ(X̂, r, b) = 1
2

∑N
i=1 ki‖(pi − pc) − R̂(yi − yc)‖2 = tr((I3 − R̃)M). Given a non-

empty and finite transformation set Q ⊂ SE2(3), let us define the real-valued function
µQ : SE2(3)× R5×n × R5×n → R as

µQ(X̂, r, b) := Υ(X̂, r, b)− min
Xq∈Q

Υ(X−1
q X̂, r, b). (4.16)

The flow set Fo and jump set Jo are defined as follows:

Fo := {X̂ ∈ SE2(3) | µQ(X̂, r, b) ≤ δ}, (4.17)

Jo := {X̂ ∈ SE2(3) | µQ(X̂, r, b) ≥ δ}, (4.18)

with some δ > 0. The sets Fo and Jo are closed, and Fo ∪ Jo = SE2(3). The transfor-
mation set Q ⊂ SE2(3) is given by

Q := {X = TSE2(3)(R, v, p)|R = Ra(θ, u), u ∈ U, p = (I3 −R)pc, v = 0}, (4.19)
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with a constant θ ∈ (0, π] and a set of finite unit vectors U ⊂ S2, which can be chosen as
per one of the following two approaches:

1) A superset of the eigenbasis set of M , i.e., U ⊇ E(M), if λM1 ≥ λM2 ≥ λM3 > 0 or
λM1 > λM2 > λM3 = 0.

2) A set that contains any three orthogonal unit vectors in R3, if tr(M)− 2λMmax > 0.

Note that approach 1) considers the case where the matrix M is positive definite or
positive semi-definite with distinct eigenvalues, however it requires the information about
the eigenvectors of M . Note also that approach 2) does not need any information about
the eigenvectors of M , but it requires a strong condition tr(M)− 2λMmax > 0.

We propose the following hybrid observer:

Ho
1 :

{
˙̂
X = f(X̂, ω, a)−∆X̂ X̂ ∈ Fo
X̂+ = X−1

q X̂, Xq ∈ γ(X̂) X̂ ∈ Jo
(4.20)

∆ := −AdXc(Pse2(3)(X
−1
c (r − X̂b)Knr

>X−>c K)), (4.21)

where X̂(0) ∈ SE2(3) and the map γ : SE2(3)⇒ SE2(3) is defined by

γ(X̂) :=

{
Xq ∈ Q|Xq = arg min

Xq∈Q
Υ(X−1

q X̂, r, b)

}
. (4.22)

We define the extended space and state as Sc1 := SE2(3) × SO(3) × R3 × R3 × R≥0

and xc1 := (X̂, R̃, p̃e, ṽ, t), respectively. In view of (4.13) and (4.19)-(4.22), one obtains
the following hybrid closed-loop system:

Hc
1 :

{
ẋc1 = F1(xc1) xc1 ∈ F c1
xc1

+ = G1(xc1) xc1 ∈ J c
1

(4.23)

with F c1 := {xc1 ∈ Sc1 : X̂ ∈ Fo}, J c
1 := {xc1 ∈ Sc1 : X̂ ∈ Jo}, and

F1(xc1) =


f(X̂, ω, a)−∆X̂

R̃(−kRPso(3)(MR̃))
−kckpp̃e + ṽ

−kckvp̃e + (I − R̃)g
1

 , G1(xc1) =


X−1
q X̂

R̃Rq

p̃e
ṽ
t

 .

where we made use of the facts: R̃+ = R(R>q R̂) = R̃Rq, p̃
+ = p − R̃RqR

>
q (p̂ − (I3 −

Rq)pc) = p̃+R̃(I3−Rq)pc, p̃
+
e = p̃+−(I3−R̃Rq)pc = p̃−(I3−R̃)pc = p̃e and ṽ+ = ṽ. Note

that the sets F c1 ,J c
1 are closed, and F c1 ∪J c

1 = Sc1. Note also that the closed-loop system
(4.23) satisfies the hybrid basic conditions given in Section 2.5.1 and is autonomous by
taking ω and a as functions of t.

The main idea behind our hybrid observer is the introduction of a resetting mechanism
to avoid the undesired equilibrium points of the closed-loop system (4.23) in the flow set
F c1 , i.e., all the undesired equilibrium points of the closed-loop system belong to the jump
set J c

1 . The innovation term ∆ and the transformation set Q are designed to guarantee
a decrease of a Lyapunov function in both flow set F c1 and jump set J c

1 .
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Proposition 4.2 Consider the hybrid dynamics Hc
1 defined in (4.23). Consider the

transformation set Q defined in (4.19) with U chosen as per Lemma 3.3. Then, there
exists a constant ∆∗M > 0 as per Lemma 3.3 such that for all δ < (1− cos θ)∆∗M , one has
SE2(3)×Ψ× R≥0 ⊆ J c

1 .

See Appendix C.1 for the proof. Proposition 4.2 provides a choice for the gap δ,
ensuring that the set of undesired equilibrium points of the flow dynamics of (4.23) is a
subset of the jump set J c

1 .
Let us define the set A1 := {(X̂, R̃, p̃e, ṽ, t) ∈ Sc1 : R̃ = I3, p̃e = 03×1, ṽ = 03×1}. Now,

one can state one of our main results.

Theorem 4.1 Consider the hybrid closed-loop system (4.23). Suppose that Assumption
4.1 holds. Let ki > 0, i = 1, 2, · · · , N , and choose the set U as per Lemma 3.3 and
δ < (1 − cos θ)∆∗M with ∆∗M defined in (3.14). Then, the number of discrete jumps is
finite and the set A1 is uniformly GES.

Proof See Appendix C.2

Remark 4.4 In view of (4.10), (4.19), (4.20) and (4.22), the proposed hybrid observer
can be explicitly expressed, in terms of the available measurements, as follows:

˙̂
R = R̂ω× + kRPso(3)(∆R)R̂
˙̂p = v̂ + kRPso(3)(∆R)(p̂− pc) + kp∆p

˙̂v = g + R̂a+ kRPso(3)(∆R)v̂ + kv∆p

 X̂ ∈ Fo

R̂+ = R>q R̂
p̂+ = R>q (p̂− (I3 −Rq)pc)
v̂+ = R>q v̂

 X̂ ∈ Jo

where Rq ∈ Ra(θ,U) with Rq = minRq∈Ra(θ,U)

∑N
i=1 ki‖(pi − pc) − R>q R̂(yi − yc)‖2, ∆R

and ∆p are defined as per (4.10).

4.3.3 Variable-gain hybrid observer design

In this subsection, we provide a different version of the hybrid observer Ho
1 using variable

gains relying on the solution of a CRE. Let us define the following gain map PK : R5×5 →
se2(3) inspired by [Khosravian et al., 2015b], such that for all A1 ∈ R3×3, a2, · · · , a5 ∈ R3

and a6, · · · , a9 ∈ R, one has

PK

A1 a2 a3

a>4 a6 a7

a>5 a8 a9

 =

kRPso(3)(A1) Kva2 Kpa3

01×3 0 0
01×3 0 0

 . (4.24)

where K := (kR, Kp, Kv) with kR > 0 and Kp, Kv ∈ R3×3 to be designed. Then, we
propose the following hybrid observer.

Ho
2 :

{
˙̂
X = f(X̂, ω, a)−∆X̂ X̂ ∈ Fo
X̂+ = X−1

q X̂, Xq ∈ γ(X̂) X̂ ∈ Jo
(4.25)
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∆ := −AdXc(PK(X−1
c (r − X̂b)Knr

>X−>c )), (4.26)

where X̂(0) ∈ SE2(3). The map γ is defined in (4.22) and the flow and jump sets Fo,Jo
are defined in (4.17) and (4.18), respectively. The gain map PK is given by (4.24). Note
that the main difference between the hybrid observers Ho

1 and Ho
2 is the innovation term

∆. Instead of using constant scalar gains kv, kp as in the observer Ho
1, the new observer

Ho
2 uses variable matrix gains Kv, Kp to be designed later in this subsection.

In view of (2.86), and (4.24)-(4.26), one has the following closed-loop system in the
flows: 

˙̃R = R̃(−kRPso(3)(MR̃))
˙̃pe = −kcR̃KpR̃

>p̃e + ṽ
˙̃v = −kcR̃KvR̃

>p̃e + (I3 − R̃)g

(4.27)

Define the new variable x := [(R>p̃e)
>, (R>ṽ)>] ∈ R6. Note that ‖x‖2 = ‖p̃e‖2 + ‖ṽ‖2,

which implies that p̃e = ṽ = 03×1 if and only if x = 06×1. LetK := kc[R̂
>K>p R̂ R̂>K>v R̂]> ∈

R6×3 and ν = [01×3 g>(R− R̂)]> ∈ R6. From (4.27) one obtains the dynamics of x as

ẋ = A(t)x−KCx + ν, (4.28)

with

A(t) :=

[
−ω(t)× I3

03×3 −ω(t)×

]
, C :=

[
I3 03×3

]
. (4.29)

Note that the dynamics of x are linear time-varying and ν can be viewed as a perturbation
term. The variable-gain matrix K can be updated as K = PC>Q(t), with P being the
solution of the CRE (2.116) with P (0) ∈ R6×6 being a symmetric positive definite matrix,
and Q(t) ∈ R6×6, V (t) ∈ R6×6 being strictly positive definite matrices.

Lemma 4.1 The pair (A(t), C) defined in (4.29) is uniformly observable.

See Appendix C.3 for the proof. Given V (t) and Q(t) strictly positive definite, from
Lemma 2.10, there exist two constants pm, pM > 0 such that pmI6 ≤ P (t) ≤ pMI6.

Remark 4.5 Let K1, K2 ∈ R3×3 such that [K>1 , K
>
2 ]> = K = PC>Q(t). Then, the gain

matrices Kp and Kv can be computed as

Kp =
1

kc
R̂K1R̂

>, Kv =
1

kc
R̂K2R̂

>. (4.30)

For the sake of simplicity, one can choose the weights ki > 0, i = 1, 2, · · · , N such that
kc =

∑N
i=1 ki = 1.

Define the extended space Sc2 := SE2(3)× SO(3)× R6 × R≥0 and the extended state

xc2 := (X̂, R̃, x, t). In view of (4.19), (4.22), (4.25)–(4.28) and (2.116), one obtains the
following hybrid closed-loop system:

Hc
2 :

{
ẋc2 = F2(xc2) xc2 ∈ F c2
xc2

+ = G2(xc2) xc2 ∈ J c
2

(4.31)
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where the flow and jump sets are defined as F c2 := {(X̂, R̃, x, t) ∈ Sc2 : X̂ ∈ Fo, } and
J c

2 := {(X̂, R̃, x, t) ∈ Sc2 : X̂ ∈ Jo}, and the flow and jump maps are given by

F2(xc2) =


f(X̂, ω, a)−∆X̂

R̃(−kRPso(3)(MR̃))
Ax−KCx + ν

1

 , G2(xc2) =


X−1
q X̂

R̃Rq

x
t

 .

Note that the sets F c2 ,J c
2 are closed, and F c2 ∪ J c

2 = Sc2. Note also that the closed-
loop system (4.31) satisfies the hybrid basic conditions given in Section 2.5.1 and is
autonomous by taking ω, a, A and K as functions of t.

Let us define the set A2 := {(X̂, R̃, x, t) ∈ Sc2 : R̃ = I3, ‖x‖ = 0, }. Now, one can state
the following result:

Theorem 4.2 Consider the inertial navigation system (4.4)-(4.5) with the hybrid ob-
server (4.25)-(4.26). Suppose that Assumption 4.1 holds. Let ki > 0, i = 1, 2, · · · , N ,
choose the set U as per Lemma 3.3, and choose δ < (1 − cos θ)∆∗M with ∆∗M defined in
(3.14). Let kR > 0, and Q(t) and V (t) be strictly positive definite. Then, the number of
discrete jumps is finite and the set A2 is uniformly GES.

Proof See Appendix C.4.

4.4 Hybrid observers design using biased angular ve-

locity

4.4.1 Fixed-gain hybrid observer design

In the previous section, nonlinear hybrid observers have been designed using non-biased
angular velocity measurements. In this section, we consider the case where the angular
velocity measurements contain an unknown constant or slowly varying bias. Let bω be
the constant unknown angular velocity bias, such that ωy = ω + bω. Define b̂ω as the

estimate of bω and b̃ω := b̂ω − bω as the estimation error.
We propose the following hybrid nonlinear observer for inertial navigation with biased

angular velocity:

Ho
3 :


˙̂
X = f(X̂, ωy − b̂ω, a)−∆X̂
˙̂
bω = −kωR̂>ψso(3)(∆R)

}
(X̂, b̂ω) ∈ Fo × R3

X̂+ = X−1
q X̂, Xq ∈ γ(X̂)

b̂+
ω = b̂ω

}
(X̂, b̂ω) ∈ Jo × R3

(4.32)

∆ := −AdXc(P(X−1
c (r − X̂b)Knr

>X−>c K)), (4.33)

where X̂(0) ∈ SE2(3), b̂ω(0) ∈ R3, kω > 0, Kn and K are given by (4.9) and ∆R is given
in (4.10). The map γ is defined in (4.22) and the flow and jump sets Fo,Jo are defined
in (4.17) and (4.18), respectively.
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Consider the extended space and state as Sc3 := Sc1 × R3 × R3 and xc3 := (xc1, b̂ω, b̃ω).
Let us define the set A3 := {(xc1, b̂ω, b̃ω) ∈ Sc3 : xc1 ∈ A1, b̃ω = 03×1}. Let |xc3|A3 ≥ 0 denote
the distance to the set A3 such that |xc3|2A3

:= infy=(X̄,I3,0,0,t̄,b̄ω ,0)∈A3
(‖X̄ − X̂‖2

F + |R̃|2I +

‖p̃e‖2 + ‖ṽ‖2 + ‖t̄− t‖2 + ‖b̄ω − b̂ω‖2 + ‖b̃ω‖2) = |R̃|2I + ‖p̃e‖2 + ‖ṽ‖2 + ‖b̃ω‖2.
Before stating our next result, the following assumption is made:

Assumption 4.2 The state X and angular velocity ω are uniformly bounded.

In practical applications, due the limited motion of the vehicles, the attitude, pose, linear
velocity and angular velocity are naturally bounded. Hence, Assumption 4.2 is practical
and reasonable.

Theorem 4.3 Consider the inertial navigation system (4.4)-(4.5) with the hybrid ob-
server (4.32)-(4.33). Suppose that Assumption 4.1 and Assumption 4.2 hold. Let ki >
0, i = 1, 2, · · · , N , and choose the set U as per Lemma 3.3 and δ < (1 − cos θ)∆∗M with
∆∗M defined in (3.14). Let kR, kp, kv, kω > 0. Then, for any initial condition xc3(0, 0) ∈ Sc3
the number of discrete jumps is finite, and the solution of xc3(t, j) is complete and there
exist κ, λF > 0 (depending on the initial conditions) such that

|xc3(t, j)|2A3
≤ κ exp (−λF (t+ j)) |xc3(0, 0)|2A3

, (4.34)

for all (t, j) ∈ domxc3.

Proof See Appendix C.5.

Remark 4.6 Note that the parameters λF and κ depend on the initial conditions, which
is different from Theorem 4.1. This non-uniform type of exponential stability is a con-
sequence of the angular velocity bias (see, for instance, the hybrid observers on SO(3) in
[Berkane et al., 2017b] and the hybrid observers on SE(3) in Chapter 3).

4.4.2 Variable-gain hybrid observer design

We propose the following Riccati-based hybrid nonlinear observer for inertial navigation
with biased angular velocity:

Ho
4 :


˙̂
X = f(X̂, ωy − b̂ω, a)−∆X̂
˙̂
bω = −kωR̂>ψso(3)(∆R)

}
(X̂, b̂ω) ∈ Fo × R3

X̂+ = X−1
q X̂, Xq ∈ γ(X̂)

b̂+
ω = b̂ω

}
(X̂, b̂ω) ∈ Jo × R3

(4.35)

∆ := −AdXc(PK(X−1
c (r − X̂b)Knr

>X−>c )), (4.36)

where X̂(0) ∈ SE2(3), b̂ω(0) ∈ R3, kω > 0, Kn is given by (4.9) and ∆R is given in (4.10).
The gain map PK is given by (4.24). The map γ is defined in (4.22) and the flow and
jump sets Fo,Jo are defined in (4.17) and (4.18), respectively.
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In view of (4.4), (4.10), and (4.35)-(4.36), one has the following closed-loop system in
the flows: 

˙̃R = R̃((R̂b̃ω)× − kRPso(3)(MR̃))
˙̃bω = −kωR̂>ψso(3)(MR̃)
˙̃pe = −kcR̃KpR̃

>p̃e + ṽ − (Rb̃ω)×(p− pc − p̃e)
˙̃v = −kcR̃KvR̃

>p̃e + (I3 − R̃)g − (Rb̃ω)×(v − ṽ)

(4.37)

In view of (4.37), from the definition of x and matrix K, one has the dynamics of x as

ẋ = A(t)x−KCx + ν, (4.38)

where the matrix C is defined in (4.29), ν = [((R>(p − pc))
×b̃ω)>, ((R>v)×b̃ω + (I3 −

R̃)g)>]>, and

A(t) :=

[
−(ωy − b̂ω)× I3

03×3 −(ωy − b̂ω)×

]
. (4.39)

The gain matrix K can be updated by K = PC>Q(t), with P being the solution of
the CRE (2.116) with P (0) ∈ R6×6 being a symmetric positive definite matrix, and
Q(t) ∈ R3×3, V (t) ∈ R6×6 being strictly positive definite matrices. Note that the matrices
Kp and Kv can be easily obtained from (4.30).

Lemma 4.2 The pair (A(t), C) with A(t) defined in (4.39) and C defined in (4.29) is
uniformly observable.

The proof of Lemma 4.2 can be conducted using similar steps as in the proof of Lemma
4.1, by introducing the matrices

T (t) = blkdiag(R̄(t), R̄(t), R̄(t)),

S(t) = blkdiag((−ωy(t) + b̂ω(t))×, (−ωy(t) + b̂ω(t))×, (−ωy(t) + b̂ω(t))×),

and the constant matrix Ā = A(t) − S(t) with the rotation matrix R̄(t) generated by
˙̄R(t) = (−ωy(t) + b̂ω(t))×R̄(t) and R̄(0) ∈ SO(3). Therefore, given V (t) and Q(t) strictly

positive definite, from Lemma 2.10 it follows that the solution of P (t) is well-defined on
R≥0 and there exist two constants pm, pM > 0 such that pmI6 ≤ P (t) ≤ pMI6.

Define the extended space and state as Sc4 := Sc2 × R3 × R3 and xc4 := (xc2, b̂ω, b̃ω).
Define the set A4 := {(xc2, b̂ω, b̃ω) ∈ Sc4 : xc2 ∈ A2, b̃ω = 03×1}. Let |xc4|A4 ≥ 0 denote the
distance to the set A4 such that |xc4|2A4

:= infy=(X̄,I3,0,t̄,b̄ω ,0)∈A4
(‖X̄ − X̂‖2

F + |R̃|2I + ‖x‖2 +

‖t̄ − t‖2 + ‖b̄ω − b̂ω‖2 + ‖b̃ω‖2) = |R̃|2I + ‖x‖2 + ‖b̃ω‖2. Now, one can state the following
result:

Theorem 4.4 Consider the hybrid observer (4.35)-(4.36) for the system (4.4)-(4.5).
Suppose that Assumption 4.1 and Assumption 4.2 hold. Let ki > 0, i = 1, 2, · · · , N ,
and choose the set U as per Lemma 3.3 and δ < (1 − cos θ)∆∗M with ∆∗M defined in
(3.14). Let kR > 0, kω > 0, Q(t) and V (t) be strictly positive definite. Then, for any
initial condition xc4(0, 0) ∈ Sc4 the number of discrete jumps is finite, and the solution of
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xc4(t, j) is complete and there exist κ, λF > 0 (depending on the initial conditions) such
that

|xc4(t, j)|2A4
≤ κ exp (−λF (t+ j)) |xc4(0, 0)|2A4

, (4.40)

for all (t, j) ∈ domxc4.

Proof See Appendix C.6.

4.5 Hybrid observer design using biased angular ve-

locity and linear acceleration

In this section, we consider the case where both the angular velocity and linear accel-
eration measurements are biased. Let ba be the unknown acceleration bias such that
ay = a+ ba. Define b̂a as the estimate of ba and b̃a := b̂a − ba as the estimation error.

We propose the following Riccati-based hybrid nonlinear observer for inertial naviga-
tion:

Ho
5 :



˙̂
X = f(X̂, ωy − b̂ω, ay − b̂a)−∆X̂
˙̂
bω = −kωR̂>ψso(3)(∆R)
˙̂
ba = −R̂>Ka∆p

 (X̂, b̂ω, b̂a) ∈ Fo × R3 × R3

X̂+ = X−1
q X̂, Xq ∈ γ(X̂)

b̂+
ω = b̂ω

b̂+
a = b̂a

 (X̂, b̂ω, b̂a) ∈ Jo × R3 × R3

(4.41)

∆ := −AdXc(PK(X−1
c (r − X̂b)Knr

>X−>c )), (4.42)

where X̂(0) ∈ SE2(3), b̂ω(0), b̂a(0) ∈ R3, kω > 0, Kn is given by (4.9) and the innovation
terms ∆R,∆p are given in (4.10). The gain map PK is given by (4.24). The map γ
is defined in (4.22) and the flow and jump sets Fo,Jo are defined in (4.17) and (4.18),
respectively. In view of (4.4), (4.10), and (4.41)-(4.42), one has the following closed-loop
system in the flows:

˙̃R = R̃((R̂b̃ω)× − kRPso(3)(MR̃))
˙̃bω = −kωR̂>ψso(3)(MR̃)
˙̃pe = −kcR̃KpR̃

>p̃e + ṽ − (Rb̃ω)×(p− pc − p̃e)
˙̃v = −kcR̃KvR̃

>p̃e +Rb̃a + (I3 − R̃)g − (Rb̃ω)×(v − ṽ)
˙̃ba = −kcR̂>KaR̃

>p̃e

(4.43)

Define the new variable x := [(R>p̃e)
>, (R>ṽ)>, b̃>a ]> ∈ R9. Note that ‖x‖2 = ‖p̃e‖2 +

‖ṽ‖2 + ‖b̃a‖2 and ‖x‖ = 0 if and only if ‖p̃e‖ = ‖ṽ‖ = ‖b̃a‖ = 0. In view of (4.43), one
has the following dynamics of x:

ẋ = A(t)x−KCx + ν, (4.44)
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with L := kc[R̂
>K>p R̂, R̂

>KvR̂, R̂
>KaR̂]> ∈ R9×3, ν := [((R>(p−pc))×b̃ω)>, ((R>v)×b̃ω+

(I3 − R̃)g)>, 01×3]> ∈ R9, and

A(t) :=

−(ωy − b̂ω)× I3 03×3

03×3 −(ωy − b̂ω)× I3

03×3 03×3 03×3

 ,
C :=

[
I3 03×3 03×3

]
. (4.45)

The gain matrix K can be updated by K = PC>Q(t), with P being the solution of
the CRE (2.116) with P (0) ∈ R9×9 being a symmetric positive definite matrix, and
Q(t) ∈ R3×3, V (t) ∈ R9×9 being strictly positive definite matrices. Let K1, K2, K3 ∈ R3×3

such that [K>1 , K
>
2 , K

>
3 ]> = K = PC>Q(t). Then, the gain matrices Kp, Kv and Ka can

be computed as

Kp =
1

kc
R̂K1R̂

>, Kv =
1

kc
R̂K2R̂

>, Ka =
1

kc
R̂K3R̂

>.

The following assumption is needed in the observability proof of the next lemma.

Assumption 4.3 The time-derivative of ω is uniformly bounded.

Lemma 4.3 The pair (A(t), C) defined in (4.45) is uniformly observable under Assump-
tion 4.2 and Assumption 4.3.

See Appendix C.7 for the proof. Therefore, given V (t) and Q(t) strictly positive definite,
from Lemma 2.10 one can show that the solution of P (t) is well-defined on R≥0 and there
exist two constants pm, pM > 0 such that pmI9 ≤ P (t) ≤ pMI9.

Define the extended space and state as Sc5 := SE2(3)×SO(3)×R9×R≥0×R3×R3×R3×
R3 and xc5 := (X̂, R̃, x, t, b̂ω, b̃ω, b̂a, b̃a). Define the set A5 := {(X̂, R̃, x, t, b̂ω, b̃ω, b̂a, b̃a) ∈
Sc5 : R̃ = I3, x = 0, b̃ω = 0, b̃a = 0}. Let |xc5|A5 ≥ 0 denote the distance to the set A5 such
that |xc5|2A5

:= infy=(X̄,I3,0,t̄,b̄ω ,0,b̄a,0)∈A5
(‖X̄ − X̂‖2

F + |R̃|2I + ‖x‖2 + ‖t̄− t‖2 + ‖b̄ω − b̂ω‖2 +

‖b̃ω‖2 + ‖b̄a − b̂a‖2 + ‖b̃a‖2) = |R̃|2I + ‖x‖2 + ‖b̃ω‖2 + ‖b̃a‖2.

Now, one can state the following result:

Theorem 4.5 Consider the hybrid observer (4.41)-(4.42) for the system (4.4)-(4.5).
Suppose that Assumption 4.1 - Assumption 4.3 hold. Let ki > 0, i = 1, 2, · · · , N , and
choose the set U as per Lemma 3.3 and δ < (1 − cos θ)∆∗M with ∆∗M defined in (3.14).
Let kR > 0, kω > 0, and Q(t), V (t) be strictly positive definite. Then, for any initial
condition xc5(0, 0) ∈ Sc5 the number of discrete jumps is finite, and the solution of xc5(t, j)
is complete and there exist κ, λF > 0 (depending on the initial conditions) such that

|xc5(t, j)|2A5
≤ κ exp (−λF (t+ j)) |xc5(0, 0)|2A5

, (4.46)

for all (t, j) ∈ domxc5.
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Remark 4.7 The proof of Theorem 4.5 can be conducted using similar steps as in the
proof of Theorem 4.4, which is omitted here. In view of (4.19), (4.22), (4.41)-(4.44) and
(2.116), one obtains the following hybrid closed-loop system:

Hc
5 :

{
ẋc5 = F5(xc5) xc5 ∈ F c5
xc5

+ = G5(xc5) xc5 ∈ J c
5

(4.47)

where the flow and jump sets are defined as: F c5 := {(X̂, R̃, x, t, b̂ω, b̃ω, b̂a, b̃a) ∈ Sc5 : X̂ ∈
Fo} and J c

5 := {(X̂, R̃, x, t, b̂ω, b̃ω, b̂a, b̃a) ∈ Sc5 : X̂ ∈ Jo} with Fo and Jo given in (4.17)
and (4.18), respectively. The flow and jump maps are given by

F5(xc5) =



f(X̂, ωy − b̂ω, ay − b̂a)−∆X̂

R̃((R̂b̃ω)× − kRPso(3)(MR̃))
Ax−KCx + ν

1

−kωR̂>ψso(3)(MR̃)

−kωR̂>ψso(3)(MR̃)

−kcR̂>KaR̃
>p̃e

−kcR̂>KaR̃
>p̃e


, G5(xc5) =



(X−1
q X̂)

(R̃Rq)
x
t

b̂ω
b̃ω
b̂a
b̃a


.

Note that the sets F c5 ,J c
5 are closed, and F c5 ∪ J c

5 = Sc5. Note also that the closed-loop
system (4.47) satisfies the hybrid basic conditions given Section 2.5.1 and is autonomous
by taking ωy, ay, A and K as functions of t.

4.6 Simulation results

In this section, simulation results are presented to illustrate the performance of the
proposed hybrid observers. We make use of the HyEQ Toolbox in Matlab [Sanfelice et al.,
2013]. We refer to the continuous inertial navigation observer (i.e., observer Ho

3 without
jumps) as ‘CINO’, the fixed-gain hybrid inertial navigation observer Ho

3 as ‘HINO’, the
CRE-based variable-gain hybrid inertial navigation observer Ho

4 as ‘HINO-CRE’, and the
CRE-based variable-gain hybrid inertial navigation observer Ho

5 as ‘HINO-CRE2’.
We consider an autonomous vehicle moving on a 10-meter diameter circle at 10-meter

height, on the trajectory: p(t) = 10[cos(0.8t), sin(0.8t), 1]. Consider the initial rotation
as R(0) = I3 and the angular velocity as ω(t) = [sin(0.3π), 0, 0.1]>. Six landmarks
are randomly selected such that Assumption 4.1 holds. We consider the same initial
conditions for each observer as: R̂(0) = Ra(0.99π, u), u ∈ E(M), v̂(0), p̂(0) = b̂ω = 03×1.
We consider the gain parameters ki = 1/6, i = 1, 2, · · · , 6, kR = 1, kv, kp = 3, kw = 1.
For the hybrid design, we choose U = E(M), θ = 0.8π, and δ = 0.3(1 − cos θ)∆∗M
with ∆∗M designed as per Lemma 3.3. Two sets of simulation are presented: the first
one considers biased angular velocity measurements and the second one considers biased
angular velocity and linear acceleration. The matrix parameters for the first CRE are
chosen as P (0) = 0.5I5, V (t) = I6, Q(t) = 10I3, and for the second CRE are chosen as
P (0) = I9, V (t) = 0.05I9, Q(t) = 10I3.
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Figure 4.1: Simulation results with biased angular velocity bω = [−0.1 0.02 0.02]> and
additive white Gaussian noise of 0.4 variance in the measurements of ω and a, and 0.1
variance in the landmark position measurements.
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Figure 4.2: Simulation results with biased angular velocity bω = [−0.1 0.02 0.02]> and
linear acceleration ba = [−0.01 0.55 0.07]>, additive white Gaussian noise of 0.1 variance
in the angular velocity, linear acceleration and landmark position measurements.

Simulation results are shown in Figure 4.1 and Figure 4.2. As one can see, the
proposed hybrid observers exhibit fast convergence when the initial conditions are large.
Simulation results also illustrate the good performances of the proposed hybrid observers
in the presence of biases in the angular velocity and linear acceleration.

4.7 Experimental results

To further validate the performance of our proposed hybrid observers, we applied our
algorithms to real data from the EuRoc dataset [Burri et al., 2016], where the trajectories
are generated by a real flight of a quadrotor. This dataset includes a set of stereo images,
IMU measurements and ground truth. The sampling rate of the IMU measurements from
ADIS16448 is 200Hz and the sampling rate of the stereo images from MT9V034 is 20Hz.
The ground truth of the states are obtained by a nonlinear least-squares batch solution
using the Vicon pose and IMU measurements. More details about the EuRoC dataset
can be found in [Burri et al., 2016].

4.7.1 Experimental setting

The images are undistorted with the camera parameters calibrated using Stereo Camera
Calibrator App in MATLAB. The features are tracked via the Kanade-Lucas-Tomasi
(KLT) tracker using minimum eigenvalue feature detection [Shi and Tomasi, 1994], which
are shown in Figure 4.3. Since no physical landmarks are available in the EuRoc dataset, a
set of ‘virtual’ landmarks are generated from the stereo images and the ground truth pose
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at the beginning. More precisely, the coordinate of the i-th landmark expressed in the
inertial frame is calculated as pi = RGyi+pG, where RG, pG are the ground truth rotation
and position of the vehicle, yi denotes the current three-dimensional position of the i-th
point-feature generated from the current stereo images. For the sake of efficiency, we limit
the maximum number of detected and tracked point-features to a certain number (60 in
our experiments). It is quite unrealistic to track the same set of point-features through a
long time image sequence. Hence, when the number of visible point-features is less than
a certain threshold (6 in our experiments), a new set of point-features is generated using
current stereo images and ground truth again. The three-dimensional coordinates of the
point-features from stereo images expressed in the camera frame (cam0) are transformed
to the frame attached to the vehicle using the calibration matrix provided in the dataset.
To remove matched point-feature outliers the technique proposed in [Hua et al., 2018]
has been used by choosing the thresholds S = 30, D = 6.

Matched points left

Matched points right

Figure 4.3: Example of features detection and tracking in the left and right images from
a stereo camera using the MATLAB Computer Vision System Toolbox. Pictures come
from the EuRoc dataset [Burri et al., 2016].

4.7.2 Realtime implementation

In practice, the IMU measurements can be obtained at a high rate, while the landmark
measurements are often obtained, for example with stereo cameras, at a much lower rate.
Taking into account this fact, we define a strictly increasing sequence {tk}k∈N/{0} as
the time-instants when the landmark measurements are obtained. Inspired by the work
of continuous-discrete Kalman filter and extended Kalman filter in [Lewis et al., 2007,
page 194] and [Kulikov and Kulikova, 2014], we implement our hybrid observer HINO-
CRE2 as shown in Algorithm 1. The proposed algorithm has two parts: the states are
continuously updated from IMU when no measurements of landmarks are received (i.e.,
t ∈ (tk−1, tk)); when the measurements arrive (i.e., t = tk) the state variables are updated
using the landmark measurements. This type of continuous-discrete observers for inertial
navigation has also been considered in [Barrau and Bonnabel, 2017; Hua et al., 2018].
The CRE is continuously integrated from the time tk−1 to the next time instant tk when
the new landmark measurements arrive, and then a numerical discretization method is
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Algorithm 1 Continuous-discrete algorithm of HINO-CRE2

Initialization: X̂(t0) ∈ SE2(3), b̂ω(t0) ∈ R3, b̂a(t0) ∈ R3, P (t0) ∈ R9×9 > 0.
Output: X̂(t), b̂ω(t), b̂a(t) for all t ≥ t0
1: for 1 ≤ k do
2: while tk−1 ≤ t ≤ tk do
3: Integrate the following equations:

˙̂
X = f(X̂, ωy − b̂ω, ay − b̂a)
˙̂
bω = 03×1

˙̂
ba = 03×1

Ṗ = A(t)P + PA(t)> + V (t)

4: end while
5: Set X̂k|k−1 = X̂(tk), b̂ω,k|k−1 = b̂ω(tk), b̂a,k|k−1 = b̂a(tk) and Pk|k−1 = P (tk)
6: Compute the gain matrices

Kk = Pk|k−1C
>(CPk|k−1C

> +Q(t)−1)−1

Kp = 1
kc
R̂k|k−1K1,kR̂

>
k|k−1

Kv = 1
kc
R̂k|k−1K2,kR̂

>
k|k−1

Ka = 1
kc
R̂k|k−1K3,kR̂

>
k|k−1

from Kk = [K>1,k, K
>
2,k, K

>
3,k]
> and X̂k|k−1 = TSE2(3)(R̂k|k−1, v̂k|k−1, p̂k|k−1)

7: Compute the innovation terms ∆k in (4.42) with Kp and Kv, ∆R,k in (4.11) and
∆p,k in (4.12)

8: Update the state estimates as
X̂k|k = exp(−∆k)X̂k|k−1

b̂ω,k|k = b̂ω,k|k−1 − kωR̂>k|k−1ψso(3)(∆R,k)

b̂a,k|k = b̂a,k|k−1 − R̂>k|k−1Ka∆p,k

Pk|k = Pk|k−1 −KkCPk|k−1

9: if (µQ(X̂k|k, r, bk) ≥ δ) then

10: Reset the state X̂k|k = X−1
q X̂k|k, Xq ∈ γ(X̂k|k)

11: end if
12: Set X̂(tk) = X̂k|k, b̂ω(tk) = b̂ω,k|k, b̂a(tk) = b̂a,k|k and P (tk) = Pk|k
13: end for
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applied at the instant of time tk. A first-order numerical discretization method is applied
to the dynamics of the estimated angular velocity bias b̂ω and linear acceleration bias
b̂a. However, an exponential map based discrete update of X̂ has been considered, i.e.,
X̂k|k = exp(−∆k)X̂k|k−1, which guarantees that X̂k|k ∈ SE2(3). Note that the estimated

state X̂ is reset once the condition µQ(X̂, r, b) ≥ δ (i.e., X̂ ∈ Jo) is satisfied. Algorithm
1 can be easily adjusted to other observers proposed in this chapter.

4.7.3 Results
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Figure 4.4: Experimental results using biased gyro and unbiased accelerometer measure-
ments from the dataset V1 01 easy. The true and estimated trajectories are shown in the
left plot. The estimation errors of rotation, position, velocity and IMU bias are shown
in right plot.
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Two sets of experiments have been presented with large initial conditions: R̂(0) =
exp(0.99πe×3 )RG and p̂(0) = v̂(0) = b̂ω(0) = b̂a(0) = 0. The gain parameters are carefully
tuned with a trade-off between the convergence rate and the noise at steady state. Note
that higher gains result in faster convergence but amplify noise at steady-state. As
one can see, in the first plot of Figure 4.4 and Figure 4.5, the estimates provided by
both observers HINO and HINO-CRE, using the biased gyro and unbiased accelerometer
measurements from IMU and stereo vision, converge to the vicinity of the ground truth
after a few seconds. In the second plot of Figure 4.4 and Figure 4.5, the estimates
(including accelerometer-bias) provided by observer HINO-CRE2, using the biased IMU
measurements and stereo vision, also converge to the vicinity of the ground truth after a
few seconds. Note that the ground truth pose is used to validate the performance of the
proposed algorithms and also to generate the virtual landmarks in the experiments due
to the lack of physical landmarks.

4.8 Conclusions

In this chapter, we addressed the state estimation problem of the inertial navigation
systems using IMU and landmark position measurements. The observer design relies on
a resetting mechanism motivated from the previous chapter, where all undesired equilib-
rium points are avoided in the flows, and a decrease of the Lyapunov function after each
jump is ensured. The proposed nonlinear geometric hybrid observers are designed on the
matrix Lie group SE2(3), with global exponential stability guarantees.

We proposed two hybrid observers in Theorem 4.1 and Theorem 4.2, respectively,
using bias-free angular velocity and linear acceleration measurements. The first observer
relies on fixed gains, while the second one uses variable gains depending on the solution of
a CRE. Based on a conceptually similar approach, these results are extended in Theorem
4.3 and 4.4 to handle biased angular velocity measurements. To handle the case of biased
angular velocity and linear acceleration measurements, we proposed a new variable-gain
hybrid observer in Theorem 4.5 with global exponential stability guarantees. All the pro-
posed observers in this chapter are endowed with strong stability properties (i.e., global
exponential stability). Simulation and experimental results are provided to illustrate the
performance of the proposed observers.



Chapter 5

Hybrid State Estimation for Inertial
Navigation Using Intermittent
Measurements

5.1 Introduction

In this chapter, we are interested in the problem of simultaneous estimation of the at-
titude, position and linear velocity of a rigid body using continuous IMU measurements
and intermittent landmark position measurements. In practical applications, the land-
mark position measurements are obtained, usually via a vision system, at a much lower
rate than IMU measurements. Therefore, the stability is not guaranteed if one tries
to implement continuous-time observers in applications involving intermittent measure-
ments combining sensors with different bandwidth characteristics (such as IMU and vision
systems), and as such, the observers proposed in the previous chapter needs to be care-
fully redesigned. In the literature, most of the existing results are based on (discrete)
Kalman-type filter such as extended Kalman filters (EKF) and unscented Kalman fil-
ters (UKF) [Mourikis and Roumeliotis, 2007; Mourikis et al., 2009], and the invariant
Extended Kalman Filter (IEKF) [Barrau and Bonnabel, 2017]. It is well known that
these Kalman-type filters, relying on local linearizations, suffer from large computational
overhead and lack of strong stability guarantees.

Motivated by the recent work in [Ferrante et al., 2016; Li et al., 2017; Sferlazza et al.,
2019; Berkane and Tayebi, 2017b; Berkane and Tayebi, 2019], two types of hybrid non-
linear observers for inertial navigation systems,with and without the knowledge of the
gravity vector, relying on continuous angular velocity and linear acceleration measure-
ments, and intermittent landmark measurements. For each observer, we provide two
different design approaches for the gain parameters; a fixed-gain approach relying on an
infinite-dimensional optimization, and a variable-gain approach relying on a continuous-
discrete Riccati equation. The proposed observers are endowed with strong stability
guarantees and do not rely on linearizations compared to the recent work in [Barrau and
Bonnabel, 2017; Hamel and Samson, 2018]. In fact, the proposed observers do not have
any restrictions on the initial conditions of the position and linear velocity. Moreover, the
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first hybrid observer proposed here does not require the knowledge of the gravity vector,
which was not considered in [Barrau and Bonnabel, 2017; Wang and Tayebi, 2019a]. Un-
like the results of [Berkane and Tayebi, 2017b; Berkane and Tayebi, 2019], the estimated
attitude from our hybrid observers is continuous, which is desirable in practice, especially
when dealing with observer-controller implementations. These results of the this chapter
have been published in [Wang and Tayebi, 2019d].

5.2 Problem formulation

Consider a rigid body system, navigating in a three-dimensional space, modeled as (2.83)-
(2.85), i.e.,

Ṙ = Rω×, (5.1)

ṗ = v, (5.2)

v̇ = g +Ra, (5.3)

where g ∈ R3 denotes the gravity vector, ω ∈ R3 denotes the angular velocity expressed
in the body-frame, and a ∈ R3 is the body-frame “apparent acceleration” capturing
all non-gravitational force applied to the rigid body expressed in the body-frame. We
assume that the measurements of ω and a are continuously available.

We consider a family of N landmarks with pi ∈ R3 being the position of the i-th
landmark expressed in the inertial frame I. The landmark measurements expressed in
the body-fixed frame B are denoted as

yi := R>(pi − p), i = 1, 2, · · · , N. (5.4)

Note that the landmark measurements can be directly constructed, for instance, using
bearing measurements generated from a stereo vision system as (2.98). The following
assumptions are needed in our observers design:

Assumption 5.1 Assume that there exist at least three non-collinear landmarks among
the N ≥ 3 measurable landmarks at each instant of time.

Note that Assumption 5.1 is commonly used in the problem of pose estimation on SE(3)
using landmark measurements [Vasconcelos et al., 2010; Hua et al., 2015; Khosravian
et al., 2015b; Wang and Tayebi, 2017; Wang and Tayebi, 2019b].

Assumption 5.2 We assume that the landmark measurements are available at some
instant of time tj, j ∈ N>0, and there exist constants 0 < Tm ≤ TM such that Tm ≤
tj+1 − tj ≤ TM for all j ∈ N>0.

Assumption 5.2 givens upper and lower bound on the time differences of two consecutive
landmark measurements. Note that Tm > 0 is required to be strictly positive to avoid the
Zeno behaviors. Note also that one has regular (i.e., periodic) measurements if Tm = TM .
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Figure 5.1: An example of the solution of the timer τ with Tm = 1 and TM = 2.

Due to the impulsive nature of such intermittent measurements, the sampling events
can be modeled by a decreasing timer τ that has the following hybrid dynamics:{

τ̇ = −1 τ ∈ [0, TM ]

τ+ ∈ [Tm, TM ] τ ∈ {0} (5.5)

with τ(0) ∈ [0, TM ]. Note that τ decreases to zero continuously when there is not land-
mark measurements, and upon reaching zero (i.e., landmark measurements are available)
it is reset to a value between Tm and TM . An example of the solution of the timer τ is
shown in Figure 5.1.

The following lemma is useful in the subsequent developments:

Lemma 5.1 Define pc = 1
kc

∑N
i=1 kipi and kc =

∑N
i=1 ki with ki > 0, i = 1, 2, · · ·N .

Then, for each R̄ ∈ SO(3), p̄ ∈ R3 one has

N∑
i=1

ki(pi − pc)×(pi − p̄− R̄yi) = 2ψso(3)(MRR̄>) (5.6)

N∑
i=1

ki(pi − p̄− R̄yi) = kc
(
R̄R>(p− pc)− (p̄− pc)

)
(5.7)

where yi denotes the measurement of landmark pi defined in (5.4) , and M :=
∑N

i=1 ki(pi−
pc)(pi − pc)> =

∑N
i=1 kipip

>
i − kcpcp>c .

See the proof in Appendix D.2. Given at least three non-collinear landmarks pi, i =
1, 2, · · · , N , it is always possible to guarantee that the matrix M is positive semidefinite
and has no more that one zero eigenvalue, through an appropriate choice of the gains
ki, i = 1, 2, · · · , N .

Given constant matrices A ∈ Rn×n, C ∈ Rm×n and K ∈ Rn×m, for each P ∈ Rn×n,
we define the following real-valued matrix mapping ΞP : [0, TM ]→ Rn×n as

ΞP (τ) := (I −KC)>Φ̂(τ)>P Φ̂(τ)(I −KC)− P, (5.8)

where Φ̂(τ) = exp(Aτ). Let A(t) ∈ Rn×n, C(t) ∈ Rm×n, and V (t), Q(t) ∈ Rn×n be the
matrix-valued functions of time t, which are continuous and bounded for all t ≥ 0. Then,
we consider the CDRE (2.119)-(2.120) with P (0) being a symmetric positive definite
matrix and Q(t), V (t) being positive definite matrices.
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5.3 Observers design with unknown gravity vector

In this section, we assume that the gravity vector is unknown. Define ĝ ∈ R3 as the
estimate of the gravity vector g. Let R̂ ∈ SO(3) denote the estimate of the attitude
R, p̂ ∈ R3 denote the estimate of the position p, and v̂ ∈ R3 denote the estimate of
velocity v. Let us introduce an auxiliary variable η ∈ R3. We propose the following
hybrid nonlinear observer:

˙̂
R = R̂(ω + R̂>η)×

η̇ = 03×1

˙̂p = η×(p̂− pc) + v̂
˙̂v = η×v̂ + r̂ + R̂a
˙̂g = η×ĝ︸ ︷︷ ︸

τ∈[0,TM ]

R̂+ = R̂
η+ = σR
p̂+ = p̂+ R̂KpR̂

>σp
v̂+ = v̂ + R̂KvR̂

>σp
ĝ+ = ĝ + R̂KgR̂

>σp︸ ︷︷ ︸
τ∈{0}

(5.9)

where R̂(0) ∈ SO(3), p̂(0), v̂(0), ĝ(0) ∈ R3 and η(0) = 03×1. The gain matricesKp, Kv, Kg ∈
R3×3 will be designed later, and the innovation terms σR and σp are given as

σR =
kR
2

N∑
i=1

ki(pi − pc)×(pi − p̂− R̂yi) (5.10)

σp =
N∑
i=1

ki(pi − p̂− R̂yi) (5.11)

with kR > 0, ki > 0,∀i = 1, 2, · · · , N , the measurement yi given in (5.4), and pc defined
as per Lemma 5.1. The structure of this observer is given by Figure 5.2.

Figure 5.2: Nonlinear observer (5.9) with gravity vector estimation

Remark 5.1 The variables R̂, η, p̂, v̂ and ĝ are continuously integrated when no landmark
measurements are received (i.e., t ∈ [tj−1, tj], ∀j ∈ N>0), and updated via appropriate
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jumps once the landmark measurements are received (i.e., t = tj, j ∈ N>0). It should be

pointed out that the estimated rotation R̂ from the hybrid observer (5.9) is continuous,
leading to an interesting difference with respect to the results in [Berkane and Tayebi,
2017b; Barrau and Bonnabel, 2017; Berkane and Tayebi, 2019].

Define the geometric estimation errors: R̃ = RR̂>, ṽ = v−R̃v̂, p̃ = p−R̃p̂−(I−R̃)pc,
and g̃ = g− R̃ĝ. From the identities (5.6) and (5.7) given in Lemma 5.1, the innovation
terms σR defined in (5.10) and σp defined in (5.11) can be rewritten as

σR = kRψso(3)(MR̃), σp = kcR̃
>p̃ (5.12)

with kc defined in Lemma 5.1. In view of (5.1)-(5.3), (5.9) and (5.12), the closed-loop
dynamics of the estimation errors are given as follows:

˙̃R = R̃(−η)×

η̇ = 03×1

˙̃p = ṽ
˙̃v = g̃
˙̃g = 03×1︸ ︷︷ ︸

τ∈[0,TM ]

R̃+ = R̃

η+ = kRψso(3)(MR̃)
p̃+ = p̃− kcRKpR

>p̃
ṽ+ = ṽ − kcRKvR

>p̃
g̃+ = g̃ − kcRKgR

>p̃︸ ︷︷ ︸
τ∈{0}

(5.13)

In the following subsections, we provide two design approaches; a fixed-gain design relying
on an infinite-dimensional optimization and a variable-gain design relying on a CDRE,
for the proposed hybrid observer (5.9).

5.3.1 Fixed-gain design

In this subsection, we consider constant gain matrices Kp, Kv and Kg. Let Kp =
kpI3, Kv = kvI3, and Kg = kgI3 with some constant scalars kp, kv and kg to be de-
signed. Let us introduce the new vector x := [p̃>, ṽ>, g̃>]> ∈ R9. From (5.13), one has
the following dynamics: {

ẋ = Ax, τ ∈ [0, TM ]

x+ = (I −KC)x, τ ∈ {0} (5.14)

where the matrices A,K and C are given by

A =

03×3 I3 03×3

03×3 03×3 I3

03×3 03×3 03×3

 , K := kc

kpI3

kvI3

kgI3

 , C =
[
I3, 03×3, 03×3

]
. (5.15)

Define the extended space f := SO(3) × R3. We introduce the new state x1 =
(R̃, η, x, τ) ∈ f×R9× [0, TM ]. From (5.13) and (5.14), one obtains the hybrid closed-loop
system H1 = (F1, G1,F1,J1) as

H1 :

{
ẋ1 = F1(x1) x1 ∈ F1

x+
1 ∈ G1(x1) x1 ∈ J1

(5.16)
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with the flow and jump maps defined as

F1(x1) =
(
R̃(−η)×, 03×1, Ax,−1

)
(5.17)

G1(x1) =
(
R̃, kRψso(3)(MR̃), (I −KC)x, [Tm, TM ]

)
(5.18)

F1 = f× R9 × [0, TM ] (5.19)

J1 = f× R9 × {0} (5.20)

Note that the flow set F1 and jump set J1 of H1 are closed, and F1 ∪ J1 = f × R9 ×
[0, TM ]. Moreover, the flow map F1 and jump map G1 is outer semicontinuous and locally
bounded. Therefore, the hybrid system H1 satisfies the hybrid basic conditions given in
Section 2.5.1.

Let M̄ := 1
2
(tr(M)I3−M) be a positive definite matrix, where M is defined in Lemma

5.1, and define ςM := λM̄m /λ
M̄
M = (tr(M)−λMM)/(tr(M)−λMm ). Let us define the following

closed set:

A := {(R̃, η, x, τ) ∈ f× R9 × [0, TM ]| R̃ = I3, η = 03×1, x = 09×1}. (5.21)

Now, one can state the following result:

Theorem 5.1 Consider the hybrid dynamical system (5.16)-(5.20). Let Assumption 5.1
and Assumption 5.2 hold. Suppose that the matrix M̄ is positive definite, and there exists
a positive definite symmetric matrix P satisfying ΞP (τ) < 0,∀τ ∈ [Tm, TM ], with ΞP (τ)
defined in (5.8) and matrices A,K and C given in (5.15). Then, for any |R̃(0)|I <

√
ςM ,

there exist a constant k∗R > 0 such that, for every 0 < kR < k∗R, the set A is exponentially
stable.

Proof See Appendix D.3.

Remark 5.2 Recall the matrix M defined in Lemma 5.1. To increase the basin of attrac-
tion for the attitude estimation error, it is always possible to have ςM = 1 (i.e., M = kI3

with some k > 0) by tuning the weights ki, i = 1, · · · , N , when there exist at least four
non-coplanar landmarks. Moreover, when there exist three non-collinear landmarks, it is
still possible to make ςM = 1 as in [Tayebi et al., 2013].

Remark 5.3 The optimization problem ΞP (τ) < 0,∀τ ∈ [Tm, TM ] can be solved us-
ing the polytopic embedding technique proposed in [Ferrante et al., 2016] and the finite-
dimensional LMI approach proposed in the recent work [Sferlazza et al., 2019]. A com-
plete procedure for solving this infinite-dimensional optimization problem, adapted from
the work in [Sferlazza et al., 2019], is provided in Appendix D.1.

5.3.2 Variable-gain design

In this subsection, we consider time-varying gains related to the solutions of continuous-
discrete Ricatti equations. Consider the new vector x = [p̃>R, ṽ>R, g̃>R]> ∈ R9. Then,
from (5.1) and (5.9), the dynamics of x are given by{

ẋ = A(t)x, τ ∈ [0, TM ]

x+ = (I −KC(t))x, τ ∈ {0} (5.22)
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where the matrices A(t), K and C(t) are given by

A(t) =

−ω× I3 03×3

03×3 −ω× I3

03×3 03×3 −ω×

 , K = kc

Kp

Kv

Kg

 , C(t) =
[
I3 03×3 03×3

]
. (5.23)

The gain matrix K is designed as

K = PC(t)>(C(t)PC(t)> +Q(t))−1, (5.24)

where P is the solution of the CDRE (2.119)-(2.120) with matrices (A(t), C(t)) given by
(5.23) and matrices Q(t) and V (t) being uniformly positive definite.

Introducing the new state x2 = (R̃, η, x, τ) ∈ f×R9× [0, TM ], from (5.13) and (5.22),
one obtains the following hybrid closed-loop system H2 = (F2, G2,F2,J2):

H2 :

{
ẋ2 = F2(x2) x2 ∈ F2

x+
2 ∈ G2(x2) x2 ∈ J2

(5.25)

with the flow and jump maps defined as

F2(x2) =
(
R̃(−η)×, 03×1, A(t)x,−1

)
(5.26)

G2(x2) =
(
R̃, kRψso(3)(MR̃), (I −KC(t))x, [Tm, TM ]

)
(5.27)

F2 := f× R9 × [0, TM ] (5.28)

J2 := f× R9 × {0} (5.29)

Note that the flow set F2 and jump set J2 of H2 are closed, and F2 ∪ J2 = f × R9 ×
[0, TM ]. Moreover, the flow map F2 and jump map G2 is outer semicontinuous and locally
bounded. Therefore, the hybrid system H2 satisfies the hybrid basic conditions given in
Section 2.5.1.

Now, one can state the following result:

Theorem 5.2 Consider the hybrid dynamical system (5.25)-(5.29). Let Assumption 5.1
and Assumption 5.2 hold. Suppose that the matrix M̄ is positive definite, and the condi-
tions given in Lemma 2.12 are satisfied. Choose the gain K as (5.24) with P being the
solution of CDRE (2.119)-(2.120) and matrices (A(t), C(t)) defined in (5.23). Then, for
any |R̃(0)|I <

√
ςM , there exist a constant k∗R > 0 such that, for any 0 < kR < k∗R, the

set A is exponentially stable.

Proof See Appendix D.4.

5.4 Observers design with known gravity vector

In this section, we provide different observers in the case where the gravity vector g
is known, which is reasonable in many practical applications. With the knowledge of
the gravity vector g, the number of the estimated states is reduced. On one hand, it
reduces the cost of computation, while, on the other hand, it increases the difficulty of
the stability analysis. To this end, we will need the following technical lemma:
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Lemma 5.2 Consider two continuously differentiable functions V1 : f → R≥0 and V2 :
Rn → R≥0 such that the following inequalities hold:

α1‖ζ‖2 ≤ V1(ζ) ≤ ᾱ1‖ζ‖2, ∀ζ ∈ f (5.30)

V̇1 ≤ −λ1V1 (5.31)

α2‖x‖2 ≤ V2(x) ≤ ᾱ2‖x‖2, ∀x ∈ Rn (5.32)

V̇2 ≤ −λ2V2 + β‖ζ‖‖x‖ (5.33)

where α1, ᾱ1, α2, ᾱ2, λ1, λ2, β are strictly positive real scalars. Then, the following inequal-
ity holds:

εV̇1 + V̇2 ≤ −λ(εV1 + V2) (5.34)

with some ε > β2

2λ1λ2α1α2
and λ = min{λ1

2
, (λ2 − β2

2ελ1α1α2
)}.

Proof See the proof in Appendix D.5.

We propose the following hybrid nonlinear observer:

˙̂
R = R̂(ω + R̂>η)×

η̇ = 03×1

˙̂p = η×(p̂− pc) + v̂
˙̂v = η×v̂ + g + R̂a︸ ︷︷ ︸

τ∈[Tm,TM ]

R̂+ = R̂
η+ = σR
p̂+ = p̂+ R̂KpR̂

>σp
v̂+ = v̂ + R̂KvR̂

>σp︸ ︷︷ ︸
τ∈{0}

(5.35)

where R̂(0) ∈ SO(3), p̂(0), v̂(0) ∈ R3 and η(0) = 03×1. The gain matrices Kp, Kv ∈ R3×3

will be designed later, and the innovation terms σR and σp are given in (5.10) and (5.11),
respectively. The structure of this observer is given by Figure 5.3.

Figure 5.3: Nonlinear observer (5.35) without gravity vector estimation
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In view of (5.1)-(5.3), (5.12) and (5.35), the dynamics of the estimation errors are
given by

˙̃R = R̃(−η)×

η̇ = 03×1

˙̃p = ṽ
˙̃v = (I − R̃)g︸ ︷︷ ︸

τ∈[0,TM ]

R̃+ = R̃

η+ = kRψso(3)(MR̃)
p̃+ = p̃− kcRKpR

>p̃
ṽ+ = ṽ − kcRKvR

>p̃︸ ︷︷ ︸
τ∈{0}

(5.36)

where M is defined in Lemma 5.1.

5.4.1 Fixed-gain design

Consider the variable x = [p̃>, ṽ>]> ∈ R6, and choose Kp = kpI3 and Kv = kvI3 with
some positive scalars kp, kv > 0. From (5.36), the hybrid dynamics of x are given by{

ẋ = Ax + δg, τ ∈ [0, TM ]

x+ = (I −KC)x, τ ∈ {0} (5.37)

where δg = [01×3, g
>(I3 − R̃)]>, and the matrices A,K and C are given by

A =

[
03×3 I3

03×3 03×3

]
, K = kc

[
kpI3

kvI3

]
, C = [I3 03×3]. (5.38)

Note that the main difference of (5.37) with respect to (5.14), is the additional term δg
induced by the gravity.

Let x3 = (R̃, η, x, τ) ∈ f × R6 × [0, TM ]. From (5.36) and (5.37), one obtains the
hybrid closed-loop system H3 = (F3, G3,F3,J3) as follows:

H3 :

{
ẋ3 = F3(x3) x3 ∈ F3

x+
3 ∈ G3(x3) x3 ∈ J3

(5.39)

with the flow and jump maps defined as

F3(x3) =
(
R̃(−η)×, 03×1, Ax + δg,−1

)
(5.40)

G3(x3) =
(
R̃, kRψso(3)(MR̃), (I −KC)x, [Tm, TM ]

)
(5.41)

F3 := f× R6 × [0, TM ] (5.42)

J3 := f× R6 × {0} (5.43)

One can show that the hybrid system H3 satisfies the hybrid basic conditions given in
Section 2.5.1. Let us introduce the following closed set:

Ā := {(R̃, η, x, τ) ∈ f× R6 × [0, TM ]| R̃ = I3, η = 03×1, x = 06×1}. (5.44)

Now, one can state the following result:
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Theorem 5.3 Consider the hybrid dynamical system (5.39)-(5.43). Let Assumption 5.1
and Assumption 5.2 hold. Suppose that the matrix M̄ is positive definite, and there exists
a positive definite symmetric matrix P satisfying ΞP (τ) < 0,∀τ ∈ [Tm, TM ], with ΞP (τ)
defined in (5.8) and matrices A,K and C given in (5.38). Then, for any |R̃(0)|I <

√
ςM ,

there exist a constant k∗R > 0, such that for any kR < k∗R the set Ā is exponentially stable.

Proof See Appendix D.6.

5.4.2 Variable-gain design

Let x = [p̃>R, ṽ>R]> ∈ R6 and x4 = (R̃, η, x, τ). From (5.1) and (5.36), the hybrid
dynamics of x are given by{

ẋ = A(t)x + δ̄g, τ ∈ [0, TM ]

x+ = (I −KC(t))x, τ ∈ {0}

where δ̄g = [01×3 g>(R− R̂)]>, and the matrices A(t), K and C(t) are given by

A(t) =

[
−ω× I3

03×3 −ω×
]
, K = kc

[
Kp

Kv

]
, C(t) = [I3 03×3]. (5.45)

Let us design the gain matrix K as

K = PC(t)>(C(t)PC(t)> +Q(t))−1 (5.46)

where P is the solution of the CDRE (2.119)-(2.120) with matrices (A(t), C(t)) given by
(5.45) and matrices Q(t), V (t) ∈ R6×6 being uniformly positive definite.

From (5.36) and (5.45), one obtains the following hybrid closed-loop system H4 =
(F4, G4,F4,J4):

H4 :

{
ẋ4 = F4(x4) x4 ∈ F4

x+
4 ∈ G4(x4) x4 ∈ J4

(5.47)

with the following flow and jump maps:

F4(x4) =
(
R̃(−η)×, 03×1, A(t)x + δ̄g,−1

)
(5.48)

G4(x4) =
(
R̃, kRψso(3)(MR̃), (I −KC(t))x, [Tm, TM ]

)
(5.49)

F4 := f× R6 × [0, TM ] (5.50)

J4 := f× R6 × {0} (5.51)

One can show that the hybrid system H4 satisfies the hybrid basic conditions given in
Section 2.5.1. Now, one can state the following result:

Theorem 5.4 Consider the hybrid dynamical system (5.47)-(5.51). Let Assumption 5.1
and Assumption 5.2 hold. Suppose that the matrix M̄ is positive definite, and the condi-
tions given in Lemma 2.12 are satisfied. Choose the gain K as (5.24) with P being the
solution to the CDRE (2.119)-(2.120) and matrices (A(t), C(t)) defined in (5.45). Then,
for any |R̃(0)|I <

√
ςM , there exist a constant k∗R > 0, such that for any kR < k∗R the set

Ā is exponentially stable.

Proof See Appendix D.7.
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5.5 Simulation results

In this section, simulation results are presented to illustrate the performance of the
proposed hybrid observers. We refer to the hybrid inertial navigation observer (5.9) with
fixed gain as ‘HINO1-F’, the hybrid inertial navigation observer (5.9) with variable gain
as ‘HINO1-V’, the hybrid inertial navigation observer (5.35) with fixed gain as ‘HINO2-
F’, and the hybrid inertial navigation observer (5.35) with variable gain as ‘HINO2-V’.
Moreover, we refer to the invariant observer proposed in [Barrau and Bonnabel, 2017] as
‘IEKF’.

Consider an autonomous vehicle moving on the ‘8’-shape trajectory given by p(t) =
10[sin(t), sin(t) cos(t), 1]>, with the initial rotation R(0) = I3 and the angular velocity
ω(t) = [sin(0.3π), 0.1, cos(0.3π)]>. The same initial conditions are considered for each
observer as: R̂(0) = Ra(0.1π, u) with u ∈ S2, v̂(0) = p̂(0) = ĝ(0) = 03×1, and P (0) =
I. Eight landmarks are randomly selected on the ground such that Assumption 5.1
holds. We consider continuous IMU measurements and intermittent landmark position
measurements with Tm = 0.1 and TM = 0.2. Moreover, additive white Gaussian noise
has been considered with the variances ny = 0.1, na = 0.1 and nω = 0.01 in the landmark
position measurements, acceleration a and angular velocity w, respectively. The gain
parameters are taken as ki = 1/8, i = 1, 2, · · · , 8 and kR = 1.2. In addition, we chose

V (t) = diag(n2
wI3, (n

2
w + n2

a)I3, n
2
wI3), Q(t) = n2

yI3

for HINO1-V, and

V (t) = diag(n2
wI3, (n

2
w + n2

a)I3), Q(t) = n2
yI3

for HINO2-V. For the HINO1-F and HINO2-F, we pick kp = 0.5, kv = 1.0 and kg = 0.6,
such that, for both observers, there exists a matrix P satisfying ΞP (τ) < 0,∀τ ∈ [Tm, TM ].
For the IEKF, we choose the parameters Q̂t and N̂t in equation (35) in [Barrau and
Bonnabel, 2017] as suggested in the paper.

Simulation results are shown in Figure 5.4. As one can see, the estimates from the
proposed hybrid observers and IEKF converge, after a few seconds, to the vicinity of
the real state. Interestingly, from the observation in the simulation, the computations
of our observers HINO2-F and HINO2-V are significantly faster than the computations
required by IEKF. This is mainly due to the fact that the IEKF [Barrau and Bonnabel,
2017, Eqn. (35)] requires the computation of the inverse of a potentially high-dimensional
matrix S ∈ R3N×3N , when the number of landmarks N is large.

5.6 Experimental results

To further validate the performance of our proposed hybrid observers, we applied our
algorithms to real data from the EuRoc dataset given in Section 4.7. The IMU measure-
ments are obtained at the rate of 200Hz, while, the measurements of the stereo camera
are obtained approximately at the rate of 20Hz. In our experiments, the numerical in-
tegration of the estimated attitude is performed as follows: R̂k+1 = R̂k exp(ω×k ∆T ) with
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Figure 5.4: Simulation results using intermittent landmark measurements. The true and
estimated trajectories are shown in the top. The estimation errors of rotation, position,
linear velocity and gravity vector are shown in the bottom.
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∆T := tk+1 − tk,∀k ∈ N>0 and the sequence {tk}k∈N>0 denoting the time instants of the
IMU measurements, while a first-order numerical discretization method is applied for the
integration of the other variables such as p̂, v̂, η and ĝ.

Three sets of experiments have been performed with the initial conditions: R̂(0) =
exp(0.1πu×)RG with u ∈ S2, p̂(0) = v̂(0) = 03×1, and η(0) = ĝ(0) = 03×1. The gain
parameters are tuned such that all the observers have a similar performance, which is a
trade-off between the convergence rate and the noise at steady state. Note that higher
gains result in faster convergence but amplify noise at steady-state. As one can see in
Figure 5.5 - Figure 5.7, the estimates provided by all the proposed hybrid observers and
IEKF, using the high rate IMU measurements and low rate stereo vision measurements,
converge after a few seconds, to the vicinity of the ground truth. Note that the ground
truth pose is used to validate the performance of the proposed algorithms and also to
generate the virtual landmarks in the experiments, as explained in Section 4.7.1, due to
the lack of physical landmarks.

5.7 Conclusion

In this chapter, we addressed the full state estimation problem for inertial navigation
systems using continuous IMU measurements and intermittent landmark position mea-
surements. Hybrid inertial navigation observers relying on continuous angular velocity
and linear acceleration, and intermittent landmark position measurements, have been
proposed. Different versions have been developed depending on whether the gravity
vector is known or not and whether the observer gains are constant or time-varying.
All the proposed observers are endowed with exponential stability guarantees. This is,
to the best of our knowledge, the first work dealing with inertial navigation observers
design, using intermittent measurements, with strong stability guarantees. Simulation
and experimental results, illustrating the performance of the proposed hybrid nonlinear
observers, have been provided.



86

-2

-1

x(m)

0

1
0

y(m)

-3 2-2 -1 0 1 2 3 4

0.5

1

z
(m

)

1.5

2

True trajectory

HINO1-F

HINO1-V

HINO2-F

HINO2-V

IEKF

0 50 100
0

0.1

0.2

0.3

HINO1-F

HINO1-V

HINO2-F

HINO2-V

IEKF

0 50 100
0

1

2

3

0 50 100
0

5

10

0 50 100
0

5

10

15

Figure 5.5: Experimental results using dataset V1 01 easy. The true (groundtruth) and
estimated trajectories are shown in the top. The estimation errors of rotation, position,
velocity and gravity vector are shown in the bottom.



87

-2

x(m)

00

-2

0.5

-1

y(m)

0

1

1 2

z
(m

)

23

1.5

4

2

2.5

True trajectory

HINO1-F

HINO1-V

HINO2-F

HINO2-V

IEKF

0 20 40 60
0

0.1

0.2

0.3

HINO1-F

HINO1-V

HINO2-F

HINO2-V

IEKF

0 20 40 60
0

0.5

1

1.5

2

0 20 40 60
0

5

10

0 20 40 60
0

5

10

15

Figure 5.6: Experimental results using dataset V1 02 medium. The true (groundtruth)
and estimated trajectories are shown in the top. The estimation errors of rotation,
position, velocity and gravity vector are shown in the bottom.



88

0

-2

1

-1

z
(m

)

4

2

x(m)

0
2

y(m)

3

1 0
2 -2

True trajectory

HINO1-F

HINO1-V

HINO2-F

HINO2-V

IEKF

0 20 40 60 80
0

0.05

0.1

0.15

0.2 HINO1-F

HINO1-V

HINO2-F

HINO2-V

IEKF

0 20 40 60 80
0

1

2

3

0 20 40 60 80
0

5

10

0 20 40 60 80
0

5

10

15

Figure 5.7: Experimental results using dataset V1 03 difficult. The true (groundtruth)
and estimated trajectories are shown in the top. The estimation errors of rotation,
position, velocity and gravity vector are shown in the bottom.



Chapter 6

Nonlinear Observers for Inertial
Navigation Using Stereo Bearing
Measurements

6.1 Introduction

In this chapter, we consider the problem of simultaneous estimation of the attitude,
position and linear velocity for INSs using IMU and stereo bearing measurements. A
vision aided INS, combining an IMU and onboard cameras, is an interesting alternative
for autonomous navigation in GPS-denied environments [Rehbinder and Ghosh, 2003;
Hamel and Samson, 2017]. In practice, inertial-vision systems either use a single camera,
known as monocular vision [George and Sukkarieh, 2007; Chowdhary, 2013; Qin et al.,
2018], or two cameras, known as stereo vision [Matthies and Shafer, 1987; Kriegman
et al., 1989]. In fact, vision systems do not directly provide three-dimensional landmarks
positions [Le Bras et al., 2017], and as such, additional algorithms are needed to obtain the
three-dimensional body-frame landmark positions [Hartley and Zisserman, 2003; Corke,
2017]. From the model of a pinhole camera, the measurements obtained from images
can be seen as a set of bearing vectors (unit vectors pointing to the landmarks from
the optical center of the camera expressed in the camera frame). Therefore, it is of
great interest to design observers for autonomous navigation systems using directly the
bearing measurements provided by vision systems [Pachter and Porter, 2004; Baldwin
et al., 2009; Le Bras et al., 2017; Hamel and Samson, 2018; Hamel and Samson, 2017].
In the literature, most of the existing results, relying on bearing measurements, are
Kalman-type filters with local stability guarantees.

Motivated by the recent work in [Hamel and Samson, 2018; Le Bras et al., 2017;
Hamel and Samson, 2017], a generic stability result for a class of nonlinear time-varying
systems evolving on SO(3)×Rn, guaranteeing almost global asymptotic stability and local
exponential stability, has been derived. Based on this, two observers for INS, depend-
ing on the number of available landmarks, are proposed using IMU and stereo bearing
measurements. These observers are then extended to handle biased accelerometer mea-
surements. Finally, to handle the case of biased IMU measurements, these results are

89
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further extended using some high gain conditions. Unlike the results of [Hamel and Sam-
son, 2018; Le Bras et al., 2017; Hamel and Samson, 2017], stereo bearing measurements
are considered in this work to provide full-state (including attitude, position and linear
velocity) estimation for INSs. One of the main contribution of our work is that the
proposed observers guarantee almost global asymptotic stability and local exponential
stability in the cases of non-biased IMU measurements and biased-accelerometer-only
IMU measurements. This is distinct from the classical KF-based filters where only local
stability is guaranteed. Numerical simulation are provided to illustrate the performance
of the proposed observers. These results appeared in our work [Wang and Tayebi, 2019c;
Wang and Tayebi, 2019e].

6.2 Problem formulation

Consider the following kinematic equations of a rigid body:

Ṙ = Rω×, (6.1a)

ṗ = v, (6.1b)

v̇ = g +Ra, (6.1c)

where g ∈ R3 denotes the gravity vector, ω ∈ R3 denotes the body-frame angular velocity
expressed in frame B, and a ∈ R3 denotes the body-frame “apparent acceleration” cap-
turing all non-gravitational forces applied to the rigid body expressed in the body-frame.
We assume that the rigid body system is equipped with an IMU, which provides the
measurements of the angular velocity ω and acceleration a.

Consider a family of N landmarks available for measurement. Let pi be the position
of the i-th landmark expressed in frame I and pBi := R>(pi − p) be the position of the
i-th landmark expressed in frame B. Consider CL and CR as the frames attached to the
optical center of the left camera and the right camera, respectively. Let (RcL, pL) and
(RcR, pR) denote the homogeneous transformation from the body-fixed frame to the left
and right camera frames, respectively. The model of the bearing vectors obtained from
a stereo vision system is given as follows:

xsi :=
R>cs(p

B
i − ps)

‖pBi − ps‖
, s ∈ {L,R}, i = 1, 2, · · · , N. (6.2)

Note that the bearing measurement xsi is not linear with respect to the landmark position
pBi , and only partial position information is available in each bearing. An example of the
stereo bearing measurements is shown Figure 6.1.

Remark 6.1 Note that pCsi = R>cs(p
B
i − ps) denotes the position of the i-th landmark,

w.r.t. the left or right camera frame. Let (usi , v
s
i ) be the coordinates of the i-th landmark,

w.r.t. the center of the image in pixels obtained from the left or right camera. The bearing
measurements of the i-th landmark can be written in terms of the pixel measurement as
xsi = 1

‖K−1zsi ‖
K−1zsi ∈ S2 with K ∈ R3×3 denoting the intrinsic matrices of the camera and

zsi = [usi , v
s
i , 1]> ∈ R3.
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Figure 6.1: An illustration of the stereo vision system. The stereo bearing vectors are
highlighted in blue arrows.

Assumption 6.1 There exists a constant cp > 0 such that ‖pi‖ ≤ cp for all i =
1, 2, · · · , N .

Assumption 6.1 implies that the landmarks position can not be infinite, which is rea-
sonable in practice. The knowledge on the value of cp is not assumed. This assumption
implies that the stereo bearing vectors xRi and xLi are not collinear.

6.3 Nonlinear observers design with non-biased IMU

measurements

6.3.1 AGAS for a class of nonlinear systems on SO(3)× Rn

Let A(t) ∈ Rn×n and C(t) ∈ Rm×n be continuous and bounded matrix-valued functions.
Consider a generalized nonlinear time-varying system on SO(3)× Rn as

˙̃R = R̃(kRσR)×

ẋ = A(t)x−K(t)y

y = C(t)x

(6.3)

with (R̃, x) ∈ SO(3)× Rn the system state, y ∈ Rm the system output. The term σR is
given as follows:

σR = −ψso(3)(MR̃) + φ(x, t) (6.4)

where φ(x, t) ∈ R3, M ∈ R3×3 and K(t) = PC>(t)Q(t) with P being the solution to
the CRE (2.116). Note that the dynamics of R̃ and x are decoupled if φ(x, t) = 0,∀x ∈
Rn, t ≥ 0. In this chapter, we consider the case where φ(x, t) satisfies the following
assumption:
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Assumption 6.2 There exists a constant cφ > 0 such that ‖φ(x, t)‖ ≤ cφ‖x‖ for all
x ∈ Rn and t ≥ 0.

The following assumptions are needed in the proof of the following main result:

Assumption 6.3 Matrix M = M> is positive semi-definite with distinct eigenvalues.

Assumption 6.4 The pair (A(t), C(t)) in (6.3) is uniformly observable.

Theorem 6.1 Consider the nonlinear time-varying system (6.3)-(6.4). Suppose that
Assumption 6.2 - Assumption 6.4 are satisfied. Then, the following statements hold:

i) The set of equilibrium points of system (6.3) is given by

Ψ := (I3, 0) ∪ {(R̃, x) ∈ SO(3)× Rn : R̃ = Rα(π, v), v ∈ E(M), x = 0}. (6.5)

ii) The desired equilibrium (I3, 0) is AGAS and the other three undesired equilibria are
unstable.

iii) There exist a constant κ∗ > 0 such that the desired equilibrium (I3, 0) is exponen-
tially stable if

tr((I − R̃(0))M) + κx(0)>P (0)−1x(0) ≤ εR,

where κ > κ∗ and εR ∈ (0, 2(tr(M)− λMmax)).

Proof See Appendix E.1.

Theorem 6.1 provides AGAS and local exponential stability results for a class of systems
on SO(3) × Rn. Note that the topological obstruction to global asymptotic stability
of for this class of systems is mainly due to the topological obstruction on SO(3). In
the following subsections, Two nonlinear observers for INS using IMU and direct stereo
bearing measurements are presented.

6.3.2 Observer design using stereo bearing measurements

Let R̂ and p̂ be the estimates of the attitude R, and the position p, respectively. We
define the attitude estimation error as R̃ := RR̂>, and the geometric position estimation
error as p̃ := R>(p − p1) − R̂>(p̂ − p1). Similar to Section 3.5, the term p1 is used here
to translate the inertial frame. In fact, p̃ = R>p− R̂>p̂ = R>(p− R̃p̂) as long as p1 = 0,
i.e., the origin of the inertial frame is located at p1. Define p̂i as the estimate of pi and
p̃i := R>(pi−p1)−R̂>(p̂i−p1) as the landmark estimation errors for i = 2, · · · , N . Then,
we introduce the following vectors:

yi = νRi + νLi , ∀i = 1, 2, · · · , N (6.6)

where for each s ∈ {L,R}, νs1 := Rcsπxs1R
>
cs(R̂

>(p1− p̂)−ps) and νsi := RcsπxsiR
>
cs(R̂

>(p̂i−
p̂)− ps) for i = 2, · · · , N . Let pCsi = R>cs(R

>(pi− p)− ps) denote the measurement of the
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i-th landmark expressed in the s-camera frame. From the definitions of the projection
operator πx and the bearing vector xsi , one has πxsi p

Cs
i = 0. Making use of the definitions of

p̃ and p̃i, for each s ∈ {L,R}, one can show that νs1 = Rcsπxs1(R>cs(R̂
>(p1−p̂)−ps)−pCsi ) =

Rcsπxs1R
>
csp̃ and νsi = Rcsπxsi (R

>
cs(R̂

>(p̂i − p̂)− ps)− pCsi ) = Rcsπxs1R
>
cs(p̃− p̃i). Then, one

can rewrite (6.6) in terms of the estimation errors as

yi =

{
Πip̃ i = 1

Πi(p̃− p̃i), i = 2, · · · , N, (6.7)

where Πi := RcRπxRi R
>
cR +R>cLπxLi R

>
cL,∀i = 1, 2, · · · , N . The choice of the virtual output

yi defined in (6.6) leads to a nice linear relationship with respect to the estimation errors
p̃ and p̃i as shown in (6.7). This allows us to obtain a linear time-varying error dynamics
for which the design of the gains can be carried out via a CRE. In practice, one can
always have RcR u RcL through a proper design. Hence, in this paper, we assume that
RcR = RcL. From Assumption 6.1, the stereo bearing vectors xRi and xLi are not collinear.
This implies that the matrix Πi is (uniformly) positive definite for all i = 1, 2, · · · , N .
Let us introduce the following output

y = [y>1 , y
>
2 , · · · , y>N ]> ∈ R3N . (6.8)

Let v̂ and ĝ be the estimates of the linear velocity v and the gravity vector g, respectively.
We propose the following nonlinear observer:

Σ1 :
{

˙̂
R = R̂(ω − kRR̂>σR)×

Σ2 :


˙̂p = v̂ − kRσ×R(p̂− p1) + R̂Kpy
˙̂v = ĝ + R̂a− kRσ×R v̂ + R̂Kvy
˙̂g = −kRσ×R ĝ + R̂Kgy
˙̂pi = −kRσ×R(p̂i − p1) + R̂Kiy, i = 2, · · · , N

, (6.9)

where kR > 0, the gain matrices Kp, Kv, Kg, K2, · · · , KN ∈ R3×3N to be designed later
via a CRE, and the term σR is given by

σR := ρ0m
×
I R̂mB + ρ1g

×ĝ +
N∑
i=2

ρip̄
×
i (p̂i − p1) (6.10)

with p̄i := pi − p1 and ρi ≥ 0 for all i = 0, 1, · · · , N . Note that the innovation term
(6.10) is given in a general manner. One can set ρi to zero when the associated in-
formation is not available. For example, one chooses ρ0 = 0 when the magnetometer
measurements are not available. The structure of this observer is given by Figure 6.2.
The position, velocity, gravity vector and landmark positions are estimated using ω, a
and stereo bearing measurements. The attitude is thereafter estimated using the angular
velocity, the magnetometer measurements, the estimated gravity vector, and landmark
positions estimates.
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Figure 6.2: Nonlinear observer (6.9) using non-biased IMU and stereo bearing measure-
ments

Define the velocity estimation error as ṽ := R>v − R̂>v̂ and the gravity vector es-
timation error as g̃ := R>g − R̂>ĝ. In view of (6.1a)-(6.1c) and (6.9), one obtains the
following closed-loop system:

˙̃R = R̃(kRσR)×, (6.11a)

˙̃p = −ω×p̃+ ṽ −Kpy, (6.11b)

˙̃pi = −ω×p̃i −Kiy, i = 2, · · · , N (6.11c)

˙̃v = −ω×ṽ + g̃ −Kvy, (6.11d)

˙̃g = −ω×g̃ −Kgy, (6.11e)

Define the new variable x := [p̃>, p̃>2 , · · · , p̃>N , ṽ>, g̃>]> ∈ R6+3N . In view of (6.8) and
(6.11a)-(6.11e), the dynamics of x and the output y can be written in the form of (6.3)
with

A =



−ω× 03×3 · · · 03×3 I3 03×3

03×3 −ω× · · · 03×3 03×3 03×3
...

...
. . .

...
...

...
03×3 03×3 · · · −ω× 03×3 03×3

03×3 03×3 · · · 03×3 −ω× I3

03×3 03×3 · · · 03×3 03×3 −ω×


, (6.12)

C =


Π1 03×3 · · · 03×3 03×3 03×3

Π2 −Π2 · · · 03×3 03×3 03×3
...

...
. . .

...
...

...
ΠN 03×3 · · · −ΠN 03×3 03×3

 . (6.13)

The gain matrix K is chosen as[
K>p , K

>
2 , · · · , K>N , K>v , K>g

]>
:= K = PC>Q(t)

where P ∈ R(6+3N)×(6+3N) is the solution to the CRE (2.116). Using the facts ĝ =
R̂(R>g − g̃) = R̃>g − R̂g̃ and p̂i − p1 = R̂(R>(pi − p1) − p̃i) = R̃>p̄i − R̂p̃i, one can
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show that g×ĝ = g×R̃>g − g×R̂g̃ and p̄×i (p̂i − p1) = p̄×i R̃
>p̄i − p̄×i R̂p̃i. Then, from

(2.46), one can rewrite the term σR as (6.4) where φ(x, t) = −Γ(t)x with Γ(t) :=
[03×3, ρ2p̄

×
2 R̂(t), · · · , ρN p̄×N R̂(t), 03×3, ρ1g

×R̂(t)], and

M := ρ0mIm
>
I + ρ1gg

> +
N∑
i=2

ρip̄ip̄
>
i (6.14)

Making use of the fact ‖Γ‖ ≤ ρ1‖g‖ +
∑N

i=2 ρi‖p̄i‖ := cφ, one can show that ‖φ(x, t)‖ ≤
cφ‖x‖. This implies that the Assumption 6.2 is satisfied for σR given in (6.10).

Lemma 6.1 Consider the matrix M defined in (6.14) with ρi ≥ 0, i = 0, 1, · · · , N .
Then, the matrix M has three distinct eigenvalues if

1) N ≥ 1 and vectors mI and g are not collinear;

2) N ≥ 2 and there exist at least one landmark pi such that pi − p1 and g are not
collinear;

3) N ≥ 3 and there exist at least three non-collinear landmarks.

Remark 6.2 Given at least two non-collinear vectors, including the inertial vectors and
the vectors generated by landmarks, one can verify that the matrix M is positive semi-
definite with no more than one zero eigenvalue. Moreover, it is always possible to guar-
antee that the matrix M has three distinct eigenvalues through an appropriate choice of
the gains ρi ≥ 0, i = 0, 1, · · · , N .

Remark 6.3 At least three non-collinear landmarks are common in the full-state esti-
mation problem of inertial-vision navigation systems with inertial vision systems, for ex-
ample [Barrau and Bonnabel, 2017; Wang and Tayebi, 2018b; Wang and Tayebi, 2019a].
Thanks to the knowledge of the gravity vector and its estimate, the number of landmarks
can be reduced to 2 in our design. Moreover, with the magnetometer measurements, only
one landmark is required in the observer (6.9) .

Lemma 6.2 The pair (A,C) defined in (6.12) and (6.13) is uniformly observable.

Proof See Appendix E.2.

6.3.3 Simplified observer for N > 3 landmarks

It is noted that, in the previous subsection, the dimension of the estimated state increases
as the number of landmarks increases. This means that the computation time could be
large when the number of landmarks is large. To solve this problem, a simplified observer
for the case of N > 3 landmarks is presented in this subsection.

Let e1, e2, e3 be the standard basis vectors of the linear space R3, that is, ei has all
entries equal to zero except for the i-th entry which is equal to 1. Then, for each landmark
pi = [pi,1, pi,2, pi,3]>, one verifies that pi =

∑3
j=1 pi,jej. Let ê1, ê2, ê3 be the estimates of
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e1, e2, e3, respectively. Define the new position estimation error p̃ = R>p− R̂>p̂ and the
basis vectors estimation error ẽj = R>ej − R̂>êj. Let us introduce the following vectors:

yi = νRi + νLi , i = 1, 2, · · · , N (6.15)

where for each i = 1, 2, · · · , N and s ∈ {L,R}, νsi := RcsπxsiR
>
cs(R̂

>(ˆ̄pi − p̂) − ps), with
ˆ̄pi =

∑3
j=1 pi,j êj. Note that the difference of the vector νsi , with respect to the one in

the previous subsection, is the vector ˆ̄pi constructed from the estimates ê1, ê2, ê3. In this
case, only three basis vectors will be estimated no matter the number of landmarks. This
is a very efficient way when the number of landmark is very large. Making use of the
fact πxsiR

>
cs(R

>(pi − p)− ps) = 0, one has νsi = RcsπxsiR
>
cs(R

>p− R̂>p̂− (R>pi − R̂> ˆ̄pi)).
Then, one can rewrite (6.15) in terms of the estimation errors as

yi = Πip̃−
3∑
j=1

pi,jΠiẽj, i = 1, 2, · · · , N (6.16)

with Πi = RcRπxRi R
>
cR +R>cLπxLi R

>
cL being positive definite for all t ≥ 0 from Assumption

6.1. Note that, with the new choice of the the output yi, the linear relationship with
respect to estimation errors p̃ and ẽj still holds as (6.7). Then, we introduce the following
output

y = [y>1 , y
>
2 , · · · , y>N ]> ∈ R3N . (6.17)

We propose the following nonlinear observer

Σ1 :
{

˙̂
R = R̂(ω − kRR̂>σR)×

Σ2 :


˙̂p = v̂ − kRσ×R p̂+ R̂Kpy
˙̂v = ĝ + R̂a− kRσ×R v̂ + R̂Kvy
˙̂g = −kRσ×R ĝ + R̂Kgy
˙̂ei = −kRσ×R êi + R̂Kiy, i = 1, 2, 3

(6.18)

where kR > 0, the gain matrices Kp, Kv, Kg, Ki ∈ R3×3N , i = 1, 2, 3 to be designed later,
and the term σR is given by

σR := ρ0m
×
I R̂mB + ρ1g

×ĝ +
3∑
i=1

ρi+1e
×
i êi (6.19)

with ρi ≥ 0, for all i = 0, 1, · · · , 4. The structure of this observer is given by Figure 6.3.
The position, velocity, gravity vector and axis vectors are estimated using ω, a and stereo
bearing measurements. The attitude is thereafter estimated using the angular velocity
and magnetometer measurements, as well as the estimated basis vectors and gravity.

Define the new variable x := [p̃>, ẽ>1 , ẽ
>
2 , ẽ

>
3 , ṽ

>, g̃>]> ∈ R18. In view of (6.1a)-(6.1c),
(6.18), one obtains the following closed-loop system (6.3) with

A =


−ω× 03×3 03×3 03×3 I3 03×3

03×3 −ω× 03×3 03×3 03×3 03×3

03×3 03×3 −ω× 03×3 03×3 03×3

03×3 03×3 03×3 −ω× 03×3 03×3

03×3 03×3 03×3 03×3 −ω× I3

03×3 03×3 03×3 03×3 03×3 −ω×

 (6.20)
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Figure 6.3: Simplified nonlinear observer (6.18) using non-biased IMU and stereo bearing
measurements

C =


Π1 −p11Π1 −p12Π1 −p13Π1 03×3 03×3

Π2 −p21Π2 −p22Π2 −p23Π2 03×3 03×3
...

...
...

...
...

ΠN −pN1ΠN −pN2ΠN −pN3ΠN 03×3 03×3

 (6.21)

The gain matrix K is chosen as[
K>p , K

>
1 , K

>
2 , K

>
3 , K

>
v , K

>
g

]>
:= K = PC>Q(t)

where P is the solution to the CRE (2.116). Using the fact êi = R̂(R>ei−ẽi) = R̃>ei−R̂ẽi,
one obtains e×i êi = e×i R̃

>ei−e×i R̂ẽi. Then, from (2.46) one can rewrite σR as (6.4) where
φ(x, t) = −Γ(t)x with Γ(t) = [03×3, ρ2e

×
1 R̂(t), ρ3e

×
2 R̂(t), ρ4e

×
3 R̂(t), 03×3, ρ1g

×R̂(t)] ∈ R3×18,
and

M := ρ0mIm
>
I + ρ1gg

> +
3∑
i=1

ρi+1eie
>
i (6.22)

Making use of the fact ‖Γ‖ ≤ ρ1‖g‖ +
∑4

i=2 ρi‖ei‖ := cφ, one can show that ‖φ(x, t)‖ ≤
cφ‖x‖.

Lemma 6.3 The pair (A(t), C(t)) defined in (6.20) and (6.21) is uniformly observable.

Proof See Appendix E.3.

6.4 Nonlinear observers design with biased IMU mea-

surements

6.4.1 Biased accelerometer measurements only

In this subsection, we consider the case where the acceleration measurements contain an
unknown constant bias. Let ba be the unknown acceleration bias such that ay = a + ba.
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Define b̂a as the estimation of ba and b̃a := b̂a − ba as the estimation error. We propose
the following observer modified from (6.9) as

Σ1 :
{

˙̂
R = R̂(ω − kRR̂>σR)×

Σ2 :



˙̂p = v̂ − kRσ×R(p̂− p1) + R̂Kpy
˙̂v = ĝ + R̂(ay − b̂a)− kRσ×R v̂ + R̂Kvy
˙̂g = −kRσ×R ĝ + R̂Kgy
˙̂
ba = −Kay
˙̂pi = −kRσ×R(p̂i − p1) + R̂Kiy, i = 2, · · · , N,

(6.23)

where kR > 0, the gain matrices Kp, Kv, Kg, Ka, Ki ∈ R3×3N , i = 1, 2, · · · , N to be
designed later via a CRE, and the term σR is given by (6.10). Similar to the previous
section, one verifies that Assumption 6.2 and Assumption 6.3 are satisfied.

Let x := [p̃>, p̃>2 , · · · , p̃>N , ṽ>, g̃>, b̃>a ]> ∈ R9+3N . In view of (6.1a)-(6.1c), (6.23), one
obtains the dynamics of x and the output y in the compact form (6.3) with

A =



−ω× 03×3 · · · 03×3 I3 03×3 03×3

03×3 −ω× · · · 03×3 03×3 03×3 03×3
...

...
. . .

...
...

...
...

03×3 03×3 · · · −ω× 03×3 03×3 03×3

03×3 03×3 · · · 03×3 −ω× I3 I3

03×3 03×3 · · · 03×3 03×3 −ω× 03×3

03×3 03×3 · · · 03×3 03×3 03×3 03×3


(6.24)

C =


Π1 03×3 · · · 03×3 03×3 03×3 03×3

Π2 −Π2 · · · 03×3 03×3 03×3 03×3
...

...
. . .

...
...

...
...

ΠN 03×3 · · · −ΠN 03×3 03×3 03×3

 . (6.25)

The gain matrix K is chosen as[
K>p , K

>
2 , · · · , K>N , K>v , K>g , K>a

]>
:= K = PC>Q(t)

where P is the solution to the CRE (2.116). The term σR can be easily rewritten as (6.4)
where φ(x, t) = −Γ(t)x with Γ(t) = [03×3, ρ2p̄

×
2 R̂(t), · · · , ρN p̄×N R̂(t), 03×3, ρ1g

×R̂(t), 03×3]
and M defined in (6.14). One can show that ‖φ(x, t)‖ ≤ cφ‖x‖ with cφ := ρ1‖g‖ +∑N

i=2 ρi‖p̄i‖, which implies that Assumption 6.2 is satisfied for σR given in (6.10).

Lemma 6.4 Consider the pair (A,C) defined in (6.24) and (6.25). Assume that ω, ω̇, ω̈
and

...
ω exist and are uniformly bounded. Then, the inequality (2.111) holds for all t ≥ 0,

if there exist constants δ̄, µ̄ > 0 such that∫ t+δ̄

t

‖ω(τ)× ω̇(τ)‖dτ > µ̄, ∀t ≥ 0. (6.26)
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Proof See Appendix E.4.

Remark 6.4 In practice, it is reasonable to assume that ω, ω̇, ω̈ and
...
ω are uniformly

bounded. The persistence of excitation condition (6.26) is required to generate sufficient
motion such that the gravity vector and accelerometer bias can be estimated separately.
This can be verified by the fourth and fifth equations in (6.23).

For the case of N > 3, we propose the following nonlinear observer modified from
(6.18) as

Σ1 :
{

˙̂
R = R̂(ω − kRR̂>σR)×

Σ2 :



˙̂p = v̂ − kRσ×R p̂+ R̂Kpy
˙̂v = ĝ + R̂(ay − b̂a)− kRσ×R v̂ + R̂Kvy
˙̂g = −kRσ×R ĝ + R̂Kgy
˙̂
ba = −Kay
˙̂ei = −kRσ×R êi + R̂Kiy, i = 1, 2, 3

(6.27)

where kR > 0, the gain matrices Kp, Kv, Kg, Ka, Ki ∈ R3×3N , i = 1, 2, 3 to be designed
later via a CRE, and the term σR is given by (6.19).

Let x := [p̃>, ẽ>1 , ẽ
>
2 , ẽ

>
3 , ṽ

>, g̃>, b̃>a ]> ∈ R21. In view of (6.1a)-(6.1c), (6.27), one
obtains the following close-loop system (6.3) with

A =



−ω× 03×3 03×3 03×3 I3 03×3 03×3

03×3 −ω× 03×3 03×3 03×3 0 03×3

03×3 03×3 −ω× 03×3 03×3 03×3 03×3

03×3 03×3 03×3 −ω× 03×3 03×3 03×3

03×3 03×3 03×3 03×3 −ω× I3 I3

03×3 03×3 03×3 03×3 03×3 −ω× 03×3

03×3 03×3 03×3 03×3 03×3 03×3 03×3


(6.28)

C =


Π1 −p11Π1 −p12Π1 −p13Π1 03×3 03×3 03×3

Π2 −p21Π2 −p22Π2 −p23Π2 03×3 03×3 03×3
...

...
...

...
...

...
ΠN −pN1ΠN −pN2ΠN −pN3ΠN 03×3 03×3 03×3

 (6.29)

The gain matrix K is chosen as[
K>p , K

>
1 , K

>
2 , K

>
3 , K

>
v , K

>
g , K

>
a

]>
:= K = PC>Q(t)

where P is the solution to the CRE (2.116). One can rewrite σR as (6.4 ) where φ(x, t) =
−Γ(t)x with Γ(t) = [03×3, ρ2e

×
1 R̂(t), ρ3e

×
2 R̂(t), ρ4e

×
3 R̂(t), 03×3, ρ1g

×R̂(t), 03×3] ∈ R3×21,
and M defined in (6.22). Making use of the fact ‖Γ‖ ≤ ρ1‖g‖ +

∑N
i=2 ρi‖p̄i‖ := cφ, one

can show that ‖φ(x, t)‖ ≤ cφ‖x‖.
Lemma 6.5 Consider the pair (A,C) defined in (6.28) and (6.29). Suppose that ω, ω̇, ω̈
and

...
ω exist and are uniformly bounded, and at least four non-coplanar landmarks are

available. Then, inequality (2.111) holds for all t ≥ 0 if condition (6.26) is satisfied.

Proof See Appendix E.5.
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6.4.2 Biased accelerometer and gyroscope measurements

In this subsection, we consider the case where both the acceleration and gyroscope mea-
surements contain unknown constant biases. Let bω be the unknown acceleration bias
such that ωy = ω + bω. Define b̂ω as the estimation of bω and b̃ω := b̂ω − bω as the
estimation error. We propose the following nonlinear observer modified from (6.27) as

Σ1 :

{
˙̂
R = R̂(ωy − b̂ω − kRR̂>σR)×

˙̂
bω = Pε

δ(b̂ω, kωR̂
>σR)

Σ2 :


˙̂p = v̂ − kRσ×R p̂+ R̂Kpy
˙̂v = g + R̂(ay − b̂a)− kRσ×R v̂ + R̂Kvy
˙̂
ba = −Kay
˙̂ei = −kRσ×R êi + R̂Kiy, i = 1, 2, 3

(6.30)

where KR, kω > 0, the gain matrices Kp, Kv, Ka, Ki ∈ R3×3N , i = 1, 2, 3 to be designed
later via a CRE, and the term σR is given by

σR := ρ0m
×
I R̂mB +

3∑
i=1

ρie
×
i satce(êi) (6.31)

where the saturation function satce is defined as satce(êi) = min{1, ce/‖êi‖}êi with some
scalar ce > 1. Note that satce(êi) is reduced to êi when ‖êi‖ ≤ ce. In this case, σR can be
rewritten as (6.4 ) where M = ρ0mIm

>
I +

∑3
i=1 ρieie

>
i , and φ(x, t) = −Γ(t)x with Γ(t) =

[03×3, ρ1e
×
1 R̂(t), ρ2e

×
2 R̂(t), ρ3e

×
3 R̂(t), 03×3, 03×3]. Then, one shows ‖φ(x, t)‖ ≤ cφ‖x‖ with

cφ :=
∑3

i=1 ρi, which implies that Assumption 6.2 is satisfied for σR given in (6.31). The
projection map is given in (3.75). The structure of this observer is given by Figure 6.4.
The position, velocity, accelerometer bias and basis vectors are estimated using biased
IMU and stereo bearing measurements. The attitude is then estimated using the angular
velocity and magnetometer measurements, as well as the estimated basis vectors.

Figure 6.4: Nonlinear observer (6.30) using biased IMU and stereo bearing measurements

Remark 6.5 The projection map Pε
δ(·, ·) was introduced to guarantee that b̂ω is uni-

formly bounded. Moreover, since ‖satce(êi)‖ < ce for all êi ∈ R3, one can show that
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‖Pε
δ(b̂ω, kωR̂

>σR)‖ ≤ kω‖σR‖ < kω(ρ0‖mI‖2 +
∑3

i=1 ρice). This implies that the first-

order derivative of b̂ω is bounded for all t ≥ 0. The boundedness of b̂ω and its first-order
derivative will be used later to show the existence of the solution P to the CRE (2.116).

Remark 6.6 It is noted that the estimate of the gravity is not considered in this case.
This is due to the difficulties it introduces, with respect to the existence of the solution to
the CRE (2.116) when the gyro and accelerometer biases are considered simultaneously.
From a simple extension of Lemma 6.4 and 6.5, the second and third derivatives of
(ωy − b̂ω) are required to be bounded if the estimate of the gravity vector is included as
the observer (6.27). However, it is difficult to show the boundedness of the second and
third derivatives of b̂ω since σR contains êi whose dynamics depend on the solution of the
CRE.

Define the new variable x := [p̃>, ẽ>1 , ẽ
>
2 , ẽ

>
3 , ṽ

>, b̃>a ]> ∈ R18. In view of (6.1a)-(6.1c)
and (6.30), one obtains the following closed-loop system:

˙̃R = R̃(R̂b̃ω + kRσR)×

˙̃bω = Pε
δ(b̂ω, kωR̂

>σR)

ẋ = A(t)x−Ky + ϕ(R̃, b̃ω, t)

y = C(t)x

(6.32)

with ϕ(R̃, b̃ω, t) = [p>Rb̃×ω , e
>
1 Rb̃

×
ω , e

>
2 Rb̃

×
ω , e

>
3 Rb̃

×
ω , v

>Rb̃×ω + g>(I − R̃)>, 01×3]>, and

A =


−ω̂×y 03×3 03×3 03×3 I3 03×3

03×3 −ω̂×y 03×3 03×3 03×3 03×3

03×3 03×3 −ω̂×y 03×3 03×3 03×3

03×3 03×3 03×3 −ω̂×y 03×3 03×3

03×3 03×3 03×3 03×3 −ω̂×y I3

03×3 03×3 03×3 03×3 03×3 03×3

 (6.33)

C =


Π1 −p11Π1 −p12Π1 −p13Π1 03×3 03×3

Π2 −p21Π2 −p22Π2 −p23Π2 03×3 03×3
...

...
...

...
...

ΠN −pN1ΠN −pN2ΠN −pN3ΠN 03×3 03×3

 (6.34)

where ω̂y := ωy − b̂ω = ω − b̃ω. The gain matrix K is chosen as[
K>p , K

>
2 , · · · , K>N , K>v , K>g , K>a

]>
:= K = PC>Q(t)

where P is the solution of the CRE (2.116).

Assumption 6.5 There exit constants cp, cv, cω, cω̇ > 0 such that ‖p(t)‖ ≤ cp, ‖v(t)‖ ≤
cv, ‖ω(t)‖ ≤ cω and ‖ω̇(t)‖ ≤ cω̇ for all t ≥ 0.

Lemma 6.6 Consider the pair (A,C) defined in (6.33) and (6.34). Suppose that As-
sumption 6.5 holds and at least four non-coplanar landmarks are available. Then, in-
equality (2.111) holds for all t ≥ 0.
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From Assumption 6.5 and the boundedness of b̂ω and its first-oder derivative, it is easy
to verify that A and its first-oder derivative are uniformly bounded. Then, the proof of
Lemma 6.6 can be conducted using similar steps as in the proof of Lemma 6.5, which is
omitted here. Given the facts that the pair (A(t), C(t)) is uniformly observable and the
matrix-valued functions V (t) ∈ Rn×n and Q(t) ∈ Rm×m are positive definite matrices,
one can show that the conditions in Lemma 2.10 are satisfied, and hence there exist
positive constants 0 < pm ≤ pM <∞ such that pmIn ≤ P (t) ≤ pMIn for all t > δ.

Define ς(t) = [|R̃(t)|I , ‖b̃ω(t)‖, ‖x(t)‖]> ∈ R3. Now, one can state the following result:

Theorem 6.2 Consider the nonlinear time-varying system (6.32) with (6.31) and (6.33)-
(6.34). Suppose that Assumption 6.5 holds. For each εR < 1 and for all initial conditions
|R̃(0)|I ≤ εR, ‖b̃ω(0)‖ < 2cb + δ, x(0) ∈ R18, there exist k∗R > 0 and v∗m > 0 such that, for
all kR ≥ k∗R and V (t) ≥ v∗mI, ς(t) is bounded and

‖ς(t)‖ ≤ κ exp(−λ(t− T ))‖ς(T )‖, ∀t ≥ T, (6.35)

for some positive scalars κ, λ, T .

Proof See Appendix E.6.

Theorem 6.2 shows that, with an appropriate tunning of the gains, the proposed observer
(6.30) guarantees exponential convergence of the estimation errors (after a finite time). It
is important to mention that the high gain conditions, provided in the proof, are rather
conservative, and simulation has shown that the proposed observer (6.30) has a large
region of attraction without high gains. Note that observer (6.23) can also be easily
extended to handle biased accelerometer and gyroscope measurements, which is omitted
here.

In practice, the IMU measurements can be obtained at a high rate, while the vision
measurements are often obtained at a much lower rate. Hence, the IMU measurements
can be seen as continuous measurements and stereo bearing measurements can be seen
as intermittent measurements. Taking into account this fact, the proposed observer
(6.30) can be implemented as in Algorithm 2. Similar to Algorithm 1 in Section 4.7,
this Algorithm contains two parts: a continuous integration of the state using IMU
measurements when the stereo bearing measurements are not available, and a discrete
correction to the estimated linear state is applied when the vision measurements arrive.
Moreover, between two consecutive stereo bearing measurements, the continuous part of
Algorithm 1 can be discretized using first order numerical integrations for vectors, and
the following numerical integration for the rotation matrix, R̂κ+1 = R̂κ exp(dT (ωy,κ −
b̂ω,κ − kRR̂>κ σR)×) with dT being the sampling period of the IMU measurements. The
Algorithm 2 can be easily modified for other observers proposed in this chapter which
are omitted here.
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Algorithm 2 Continuous-discrete implementation algorithm

Initialization: Set k = 0, t0 = 0, ‖R̂(t0)‖ ≤ εR, ‖b̂ω(t0)‖ < δ, p̂(t0) ∈ R3, v̂(t0) ∈ R3,
b̂a(t0) ∈ R3, êi(t0) ∈ R3, i = 1, 2, 3, P (t0) ∈ R21×21 > 0. Choose Q, V > 0.

Output: State R̂(t), b̂ω, p̂(t), v̂(t), ĝ(t), b̂a(t) for all t ≥ t0
1: while Simulation time not exceeded do
2: Set k = k + 1
3: while tk−1 ≤ t ≤ tk do
4: Compute σR in (6.19)
5: Integrate the following equations:

˙̂
R = R̂(ωy − b̂ω − kRR̂>σR)×

˙̂
bω = Pε

δ(b̂ω, kωR̂
>σR)

˙̂p = v̂ − kRσ×R p̂
˙̂v = g + R̂(ay − b̂a)− kRσ×R v̂
˙̂
ba = 0
˙̂ei = −kRσ×R êi, i = 1, 2, 3

Ṗ = AP + PA> + V

6: end while
7: Set Pk|k−1 = P (tk) and Sk|k−1 = S(tk) for each S ∈ {R̂, b̂ω, p̂, v̂, b̂a, ê1, ê2, ê3}
8: Compute the gain matrices[

K>p,k, K
>
1,k, K

>
2,k, K

>
3,k, K

>
v,k, K

>
a,k

]>
:= Kk

= Pk|k−1C
>(CPk|k−1C

> +Q−1)−1

9: Obtain stereo bearing measurements xLi , x
R
i for each i = 1, 2, . . . .

10: Compute the output y in (6.17).
11: Update the state estimates as

p̂k|k = p̂k|k−1 + R̂Kp,ky

v̂k|k = v̂k|k−1 + R̂Kv,ky

b̂a,k|k = b̂a,k|k−1 −Ka,ky

êi,k|k = êi,k|k−1 + R̂Ki,ky, i = 1, 2, 3

Pk|k = (I −KkC)Pk|k−1

12: Set P (tk) = Pk|k and S(tk) = Sk|k for each S ∈ {R̂, b̂ω, p̂, v̂, b̂a, ê1, ê2, ê3}
13: end while



104

6.5 Simulation results

6.5.1 Simulation with continuous and noise-free measurements

In this simulation, we consider an autonomous vehicle moving on the ‘8’-shape trajectory
described by p(t) = 10[sin(t), sin(t) cos(t), 1]>, with the initial attitude R(0) = I3 and
angular velocity ω(t) = [− cos(2t), 1, sin(2t)]>. The gravity and magnetic vectors, ex-
pressed in the inertial frame, are given as g = [0, 0,−9.81]> and mI = [0.8, 0.6, 0]>,
respectively. There are 10 randomly selected non-coplanar landmarks. The stereo
bearing measurements are generated from (6.2). The accelerometer bias is given as
ba = [−0.0209, 0.1216, 0.0788]>.

Four observers are considered in this simulation. We refer to the observer (6.23) us-
ing the knowledge of the gravity vector, magnetometer measurements and stereo bearing
measurements of one landmark as ‘SBINO1’, the observer (6.23) using magnetometer
measurements and stereo bearing measurements of two landmarks as ‘SBINO2’, the ob-
server (6.23) using stereo bearing measurements of N ≥ 3 landmarks as ‘SBINO3’, and
the observer (6.27) as ‘SBINO4’. The same initial conditions are considered for each
observer as: R̂(0) = Ra(0.5π, u) with u ∈ S2, v̂(0) = p̂(0) = ĝ(0) = b̂a(0) = 03×1, and
P (0) = I. The parameters of each observer are taken as kR = 8, ρ0 = 0.5/‖g‖2, ρ1 = ρ2 =
· · · = ρ10 = 0.5 (ρi = 0 when it is not used in the design of σR), and Q = 105I, V = 10−6I
for each CRE. Simulation results are shown in Figure 6.5. As one can see, the estimated
states from all the observers converge, after a few seconds, to the vicinity of the real
states.

6.5.2 Simulation using real IMU data from the EuRoc dataset

To further validate the performance of our proposed observers, we consider a real trajec-
tory (generated by a real flight of a quadrotor) and real (biased and noisy) IMU mea-
surements from the EuRoc dataset [Burri et al., 2016]. We consider N = 25 randomly
selected landmarks such that there are at least four non-coplanar landmarks. In this sim-
ulation, the stereo bearing measurements are generated from (6.2) and pBi = R>G(pi− pG)
with the ground truth rotation RG and position pG. Additional noise in the bearing
measurements is considered as [Hamel and Samson, 2018]

xsi =
sign(xsi,3)

dxsi
(xsi,1/x

s
i,3 + ni,2, x

s
i,2/x

s
i,3 + ni,1, 1), (6.36)

dxsi = ‖xsi,1/xsi,3 + ni,1, x
s
i,2/x

s
i,3 + ni,2, 1‖, (6.37)

with s ∈ {L,R}, i = 1, 2, · · · , N and ni,1, ni,2 being uncorrelated zero-mean uniformly
distributed noise inputs with a maximum deviation of 0.005. The calibration matrix
RcL, RcR, pL, pR are provided in the dataset. The initial conditions for the observer (6.27)
are given as R̂(0) = Ra(0.2π, u

×)RG(0) with u ∈ S2, p̂(0) = v̂(0) = b̂a(0) = 0, and êi(0) =
ei for all i = 1, 2, 3. The parameters are taken as kR = kω = 2, ρ0 = 0, ρ1 = ρ2 = ρ3 =
0.5, P (0) = I18, V (t) = 10−5I18, Q(t) = 105blkdiag(Π−>1 Π−1

1 ,Π−>2 Π−1
2 , · · · ,Π−>N Π−1

N ).
The simulation results are given in Figure 6.6. As one can see, the estimates converge to
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Figure 6.5: Simulations results using ideal IMU measurements.
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the vicinity of the ground truth after a few seconds with large initial errors of position,
velocity and gravity vector. It is important to mention that, due to the limited field of
view of the cameras, the number of visible landmarks are not fixed, especially when the
motion of the vehicle is large. It is difficult to show the existence of a solution of the
CRE when the dimension of the matrix C changes frequently. Hence, it is still an open
problem to design an observer with rigorous stability guarantees, and proper parameters
Q and V , that ensures ‘optimal’ solutions (in terms of measurement noise) to the CRE
where the visible landmarks are not fixed.

6.6 Conclusion

In this chapter, the problem of attitude, position and linear velocity estimation for inertial
navigation relying on IMU and stereo bearing measurements has been addressed. First,
a stability result for a generic class of nonlinear time-varying systems on SO(3) × Rn

has been derived. This stability result has been exploited to develop two nonlinear
navigation observers. These observers are then extended to handle biased accelerometer
and gyroscope measurements. Numerical results using simulated landmark measurements
together with IMU data from the EuRoc dataset have been provided to illustrate the
performance of the proposed observers. An interesting direction of future work would be
applying the hybrid techniques to handle the case where the visible landmarks are not
fixed.
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Chapter 7

Conclusions

Summary

In this thesis, we explored the topics of state estimation for autonomous navigation sys-
tems. We considered the pose estimation problem on the Lie group SE(3) using inertial
and landmark position measurement. Then, we considered the pose and linear velocity
estimation problem for INSs using continuous landmark position measurements, inter-
mittent landmark position measurements and stereo bearing measurements, respectively.

With regards to the pose estimation on SE(3), we proposed a generic hybrid pose
and velocity-bias estimation scheme on SE(3) × R6 with global asymptotic (exponen-
tial) stability guarantees. The main feature of this hybrid estimation scheme is the
new observer-state jump mechanism that adjusts the observer state through appropriate
jumps in the direction of a decreasing potential function on SE(3) when the pose estima-
tion error is in the neighborhood of an undesired critical point of this potential function.
Then, an explicit hybrid observer for pose and velocity-bias estimation, using inertial
and landmark position measurements, was derived. To remove the coupling between
the rotational and translational error dynamics, in the bias-free case, the explicit hybrid
observer was re-designed. Moreover, this modified hybrid observer was further extended
to a practically implementable version with fully decoupled rotational and translational
error dynamics in the presence of biased linear and angular velocities.

Concerning the full-state (pose and linear velocity) estimation problem for INSs, we
proposed three different estimation schemes based on the type of measurements used, i.e.,
continuous landmark position measurements, intermittent landmark position measure-
ments, and stereo bearing measurements. In fact, globally exponentially stable nonlinear
geometric hybrid observers on SE2(3) using ideal IMU and landmark position measure-
ments have been proposed. These results have been extended to handle biased IMU
measurements with GES guarantees. Moreover, two hybrid nonlinear observers for INSs,
with strong stability guarantees, have been developed using continuous IMU measure-
ments and intermittent landmark position measurements. Finally, the full-sate estimation
problem, with AGAS guarantees, relying directly on stereo bearing measurements has
been addressed.
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Perspectives

There are still several issues related to the state estimation problem for INSs, and the
proposed solutions in this work constitute a good platform for several future extensions.
In this dissertation, we assume that the landmark positions are obtained from vision
systems, such as stereo-vision systems. However, it is interesting to explore the extension
of the proposed algorithms using intermittent monocular-bearing measurements and to
conduct an in-depth study on the observability constraints related to the use of a single
camera. There are very few results in the literature dealing with this problem, for example
[Hamel and Samson, 2018; Chowdhary, 2013; Qin et al., 2018].

In this dissertation, it is assumed that the number of landmarks is fixed and all the
landmarks are time-invariant. However, in practice, it is quit unrealistic to track the
same set of landmarks all the time, especially when the motion of the vehicle is large.
On the other hand, the location of the landmarks may be time-varying, such as the case
where they are attached to a moving object. There are a few interesting results on SO(3)
using time-varying reference vectors, for instance [Grip et al., 2012; Trumpf et al., 2012].
However, due to the complexity of the INS dynamics, it is still a challenging task to design
full-state observers with strong stability guarantees, when the number of landmarks is
not fixed or/and the positions of landmarks are time-varying.

The Simultaneous Localization and Mapping (SLAM) is a very popular and practical
problem in robotics. It consists of building a map of an unknown environment while
keeping track of the vehicle’s location [Durrant-Whyte and Bailey, 2006; Bailey and
Durrant-Whyte, 2006]. Recently, geometric nonlinear observers for SLAM from a Lie
group perspective, with strong stability guarantees, have made their appearance in the
literature [Barrau and Bonnabel, 2015; Mahony and Hamel, 2017; Zlotnik and Forbes,
2018; Wang and Tayebi, 2018a]. The design of monocular-vision based geometric SLAM
algorithms, with strong stability guarantees, in dynamic environments, is an interesting
problem yet to be solved.
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Appendix A

Proofs of Chapter 2

A.1 Proof of Lemma 2.4

Let r = (r>v , rs)
>, b = (b>v , bs)

> ∈ R4 with rv, bv ∈ R3 and rs, bs ∈ R. From the definition
of wedge product defined in (2.65), one can easily verify that

r ∧ r =

[
rv × rv

rsrv − rsrv

]
= 0

b ∧ r =

[
bv × rv

bsrv − rsbv

]
= −

[
rv × bv

rsbv − bsrv

]
= −r ∧ b

where we made use of the fact that rv× rv = 0 in (2.15) and rv× bv = −bv× rv in (2.17).
This implies (2.66) and (2.67). Let R ∈ SO(3), p ∈ R3 such that g = TSE(3)(R, p). Then
one can show that

(I − g)rr>

=

[
I −R −p

0 0

] [
rvr
>
v rvrs

rsr
>
v rsrs

]
=

[
(I −R)rvr

>
v − rspr>v (I −R)rsrv − rsrsp

0 0

]
=

[
rvr
>
v − (Rrv + rwp)r

>
v rwrv − rw(Rrv + rwp)

0 0

]
From the definition of ψse(3)(·) defined in (2.57), one deduces

ψse(3)

(
(I − g)rr>

)
=

[
ψso(3)

(
rvr
>
v − (Rrv + rwp)r

>
v

)
1
2
(rwrv − rw(Rrv + rwp))

]
=

1

2

[
(Rrv + rwp)× rv

rwrv − rw(Rrv + rwp)

]
=

1

2
(gr) ∧ r
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where we made use of the facts ψso(3)(rvr
>
v ) = 0 and ψso(3)((Rrv+rwp)r

>
v ) = 1

2
rv× (Rrv+

rwp) = −1
2
(Rrv + rwp)× rv in (2.31). Hence, one concludes (2.68). Using the facts:

gr =

[
Rrv + rsp

rs

]
, gb =

[
Rbv + bsp

bs

]
and from (2.65), one can show that

(gb) ∧ (gr) =

[
(Rbv + bsp)× (Rrv + rsp)

bs(Rrv + rsp)− rs(Rbv + bsp)

]
=

[
(Rbv)× (Rrv) + (Rbv)× (rsp) + (bsp)× (Rrv) + (bsp)× (rsp)

bs(Rrv + rsp)− rs(Rbv + bsp)

]
=

[
R(bv × rv)− rsp× (Rbv) + bsp× (Rrv)

bsRrv − rsRbv

]
=

[
R p×R

03×3 R

] [
bv × rv

bsrv − rsbv

]
. (A.1)

where we made use of the facts (Rbv)× (Rrv) = R(bv× rv), (Rbv)× (rsp) = −rsp× (Rbv)
and (bsp)× (rsp) = 0. Recall the definition of Ad∗g in (2.63), one has

Ad∗g−1 =

[
(R>)> −(R>)>(−R>p)×
03×3 (R>)>

]
=

[
R p×R

03×3 R

]
. (A.2)

where we made use of the facts g−1 = TSE(3)(R
>,−R>p) and R(R>p)× = p×R in (2.25).

In view of (A.1) and (A.2), one concludes (2.69). This completes the proof.

A.2 Proof of Lemma 2.5

Let A =

[
A1 a2

a3 a4

]
with A1 ∈ R3×3, a2, a

>
3 ∈ R3 and a4 ∈ R, and g = TSE(3)(R, p) with

R ∈ SO(3), p ∈ R3. The first two properties can be verified straighted as

MA =

[
M1 m2

01×3 0

] [
A1 a2

a3 a4

]
=

[
M1A1 +m2a3 M1a2 +m2a4

01×3 0

]
∈M4

0,

gM =

[
R p

01×3 1

] [
M1 m2

01×3 0

]
=

[
RM1 Rm2

01×3 0

]
∈M4

0. (A.3)

Recall that g−1 = TSE(3)(R
>,−R>p) and g−> = (g−1)>, then one has

g−>M =

[
R 0
−p>R 1

] [
M1 m2

01×3 0

]
=

[
RM1 Rm2

−p>RM1 −p>Rm2

]
Using the definition of Pse(3)(·) in (2.56), one obtains

Pse(3)(gM) =

[
Pso(3)(RM1) Rm2

01×3 0

]
= Pse(3)(g

−>M).
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This gives (2.72). Using the facts

g>g =

[
R> 03×1

p> 1

] [
R p

01×3 1

]
=

[
I3 R>p
p>R 1 + p>p

]
MM̄> =

[
M1 m2

01×3 0

] [
M̄>

1 03×1

m̄>2 0

]
=

[
M1M̄

>
1 +m2m̄

>
2 03×1

01×3 0

]
,

one can show that

tr(g>gMM̄>) = tr

([
I3 R>p
p>R 1 + p>p

] [
M1M̄

>
1 +m2m̄

>
2 03×1

01×3 0

])
= tr(M1M̄

>
1 +m2m̄

>
2 ) = tr(MM̄>).

This implies (2.73). Applying the fact that

g>gM =

[
I3 R>p
p>R 1 + p>p

] [
M1 m2

01×3 0

]
=

[
M1 m2

p>RM1 p>Rm2

]
,

and the definition of ψse(3)(·) in (2.57), one can easily show that

ψse(3)(g
>gM) = ψse(3)

([
M1 m2

p>RM1 p>Rm2

])
=

[
ψso(3)(M1)

1
2
m2

]
= ψse(3)(g

>gM).

This implies (2.74). Moreover, substituting

g>Mg−> =

[
R> 03×1

p> 1

] [
M1 m2

01×3 0

] [
R 0
−p>R 1

]
=

[
R>M1 R>m2

p>M1 p>m2

] [
R 0
−p>R 1

]
=

[
R>M1R−R>m2p

>R R>m2

∗ ∗

]
,

into the definition of ψse(3)(·) in (2.57), one has

ψse(3)(g
>Mg−>) =

[
ψso(3)(R

>M1R−R>m2p
>R)

1
2
R>m2

]
=

[
R>ψso(3)(M1)− 1

2
R>p×m2

1
2
R>m2

]
=

[
R> −R>p×
03×3 R>

] [
ψso(3)(M1)

1
2
m2

]
where made use of the facts ψso(3)(R

>M1R) = R>ψso(3)(M1) from (2.29) and ψso(3)(R
>m2p

>R) =
1
2
(R>p) × (R>m2) = 1

2
R>(p ×m2) = 1

2
R>p×m2 from (2.24) and (2.31). Applying that

the results of Ad∗g and ψse(3)(M), one concludes (2.75). This completes the proof.
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A.3 Proof of Lemma 2.6

From the definitions of xLi and xRi defined in (2.96), one has the following identities:

xLi × xRi =
pCLi × (pCLi + bLR)

‖pCLi ‖‖pCLi + bLR‖
=

pCLi × bLR
‖pCLi ‖‖pCLi + bLR‖

bLR × xLi =
bLR × pCLi
‖pCLi ‖

bLR × xRi =
bLR × (pCLi + bLR)

‖pCLi + bLR‖
=

bLR × pCLi
‖pCLi + bLR‖

Hence, one can show that

‖pCLi ‖ =
‖bLR × xRi ‖
‖xLi × xRi ‖

, ‖pCLi + bLR‖ =
‖bLR × xLi ‖
‖xLi × xRi ‖

Since pCLi = ‖pCLi ‖xLi and pCLi + bLR = pCRi = ‖pCLi + bLR‖xRi , one deduces that pCLi =
‖bLR×xRi ‖
‖xLi ×xRi ‖

xLi and pCLi =
‖bLR×xLi ‖
‖xLi ×xRi ‖

xRi − bLR and thus also

pCLi =
xLi ‖bLR × xRi ‖+ xRi ‖bLR × xLi ‖

2‖xLi × xRi ‖
− 1

2
bLR (A.4)

Applying the fact pCLi := R>cL(pBi − pL), i.e., pBi = RcLp
CL
i + pL, one has (2.98). This

completes the proof.

A.4 Proof of Lemma 2.7

Since Φ̄(t, τ) is the state transition matrix associated to Ā, one can easily verify that

Φ(t, t) = T (t)Φ̄(t, t)T−1(t) = T (t)T−1(t) = In

Φ−1(t, τ) = T (τ)Φ̄−1(t, τ)T−1(t) = T (τ)Φ̄(τ, t)T−1(t) = Φ(τ, t)

Φ(t3, t2)Φ(t2, t1) = T (t3)Φ̄(t3, t2)T−1(t2)T (t2)Φ̄(t2, t1)T−1(t1)

= T (t3)Φ̄(t3, t2)Φ̄(t2, t1)T−1(t1)

= T (t3)Φ̄(t3, t1)T−1(t1)

= Φ(t3, t1)

Applying the facts Ṫ (t) = S(t)T (t) and T (t)Ā = ĀT (t), one can further show that

d

dt
Φ(t, τ) = Ṫ (t)Φ̄(t, τ)T−1(τ) + T (t)

d

dt
Φ̄(t, τ)T−1(τ)

= S(t)T (t)Φ̄(t, τ)T−1(τ) + T (t)ĀΦ̄(t, τ)T−1(τ)

= S(t)T (t)Φ̄(t, τ)T−1(τ) + ĀT (t)Φ̄(t, τ)T−1(τ)

= A(t)T (t)Φ̄(t, τ)T−1(τ)

= A(t)Φ(t, τ)

Therefore, one can conclude that Φ(t, τ) is the state transition matrix associated to A(t).
This completes the proof.
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A.5 Proof of Lemma 2.11

The proof of this lemma is motivated by [Hamel and Samson, 2017, Lemma 2.5]. To
prove that P (t) is well-defined for all t ≥ 0 and positive definite, it is sufficient to show
that neither the eigenvalues of P nor the eigenvalues of P−1, can tend to infinity in finite
time with positive definite initial condition (i.e., P (0) > 0). This implies that none of the
eigenvalues of P can either reach zero or tend to infinity in finite time. Let (λ(t), v(t))
be one pair of the eigenvalues and eigenvectors of P (t) such that Pv = λv and v ∈ Sn−1.
Taking the time-derivative on both sides of Pv = λv, one has

Ṗ v + P v̇ = λ̇v + λv̇

Since ‖v‖ = 1, one verifies that v>v̇ = 0. Then, one has

λ̇ = v>Ṗ v + v>P v̇ = v>Ṗ v + λv>v̇ = v>Ṗ v

where we made use of the fact that v>P = λv>. From (2.119)-(2.120), one has the
dynamics of λ as

λ̇ = λv>Av + λv>A>v + v>V v, (A.5)

λ+ = λ− λ2v>C>(CPC> +Q−1)−1Cv, (A.6)

Let a be the upper bounded of ‖A‖ and v be the upper bound of ‖V ‖. Using the fact
C>(CPC> +Q−1)−1C ≥ 0, one has

λ̇ ≤ 2aλ+ v

λ+ ≤ λ

Recall the definition of the solution to a hybrid system, one has the solution of λ as
λ(t, j) with t ∈ [tj, tj+1]. Then, one can show that

λ(t, j) ≤
(
λ(0, 0) +

v

2a

)
e2at − v

2a
(A.7)

for all j ∈ N and t ∈ [tj, tj+1).
On the other hand, let (λ̄(t), v(t)) be one pair of the eigenvalues and eigenvectors of

P−1(t) such that P−1v = λ̄v and v ∈ Sn−1. One can show that ˙̄λ = v>Ṗ−1v. From
(2.119)-(2.120), one has the following dynamics:

Ṗ−1 = −P−1A− A>P−1 − P−1V P−1 (A.8)

(P+)−1 = P−1 + C>QC, (A.9)

where we made use of the fact Ṗ−1 = −P−1ṖP−1 and

(P + PC>RCP )−1 = P−1 − C>(R−1 + CPC>)−1C = P−1 + C>QC,

with R = −(CPC> + Q−1)−1 from the property of matrix inversion (2.7). Then, the
dynamics of λ̄ is given by

˙̄λ = −λ̄v>Av − λ̄v>A>v − λ̄2v>V v, (A.10)
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λ̄+ = λ̄+ v>C>QCv, (A.11)

Let q be the upper bound of ‖C>QC‖. Then, one obtains

˙̄λ ≤ 2aλ̄,

λ̄+ = λ̄+ q

Then, one can show that

λ̄(t, j) ≤ λ̄(0, 0)e2at +

j∑
i=0

qe2a(t−ti) (A.12)

for all j ∈ N and t ∈ [tj, tj+1). Hence, from (A.7) and (A.12), it is clear that λ, λ̄ can
not grow to infinity in finite time for any P (0) being positive definite. It follows that the
solution of P is well defined on R≥0. This completes the proof.



Appendix B

Proofs of Chapter 3

B.1 Proof of Lemma 3.1

From the definition of A, one can show that

A =
n∑
i=1

kirir
>
i =

[∑n1

i=1 kip
I
i (pIi )> +

∑n2

j=1 kj+n1v
I
j (vIj )>

∑n1

i=1 kip
I
i∑n1

i=1 ki(p
I
i )>

∑n1

i=1 ki

]
,

which implies:

A :=

n1∑
i=1

kip
I
i (pIi )> +

n2∑
j=1

kj+n1v
I
j (vIj )>

b :=

n1∑
i=1

kip
I
i d :=

n1∑
i=1

ki.

From Assumption 3.1, there exists at least one ki > 0 for all i = 1, 2, · · · , n1. Hence, one
has d > 0. Let αi = ki/(

∑n1

i=1 ki), it is easy to verify that pIc =
∑n1

i=1 αip
I
i = bd−1. In

view of (3.8) and (3.9), one has

M = A− bb>d−1

=

n1∑
i=1

kip
I
i

(
pIi
)>

+

n2∑
i=1

kj+n1v
I
i

(
vIi
)> −( n1∑

i=1

kip
I
i

)(
n1∑
i=1

kip
I
i

)>( n1∑
i=1

ki

)−1

=

n1∑
i=1

kip
I
i

(
pIi
)> − n1∑

i=1

kip
I
c

(
pIc
)>

+

n2∑
i=1

kj+n1v
I
i

(
vIi
)>
.

Substituting pIi = v̄Ii + pIc from (3.8) and
∑n1

i=1 kiv̄
I
i = 0, one obtains

M =

n1∑
i=1

ki
(
v̄Ii + pIc

) (
v̄Ii + pIc

)> − n1∑
i=1

kip
I
c

(
pIc
)>

+

n2∑
i=1

kj+n1v
I
i

(
vIi
)>

=

n1∑
i=1

ki(v̄
I
i )(v̄Ii )> +

n2∑
i=1

kj+n1v
I
i (vIi )>.
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It is straightforward to verify that M is positive semi-definite. Then, one can further
show that

M̄ =
1

2

n1∑
i=1

ki((v̄
I
i )×)2 +

1

2

n2∑
j=1

kj+n1((vIj )×)2. (B.1)

From lemma 2 in [Tayebi et al., 2013], one can conclude that M̄ is positive definite. This
completes the proof.

B.2 Proof of Lemma 3.2

From the definition of A in (3.9) as per Lemma 3.1, one obtains

n∑
i=1

ki‖ri − g−1ri‖2 = tr
(
(I4 − g−1)A(I4 − g−1)>

)
= tr

(
g>g(I4 − g−1)A(I4 − g−1)>

)
= tr

(
(I4 − g)A(I4 − g)>

)
,

where property (2.73) and the facts (I4 − g−1) ∈ M4
0 and (I4 − g−1)A ∈ M4

0 have been
used. Furthermore, using the fact (ḡ−1g−1ri) ∧ (ḡ−1ri) = Ad∗ḡ−1((g−1ri) ∧ ri), one verifies
that

ψse(3)

(
Pse(3)((I4 − g−1)A)

)
=

n∑
i=1

kiψse(3)

(
(I4 − g−1)rir

>
i

)
=

1

2

n∑
i=1

ki(g
−1ri) ∧ ri

Ad∗g1

n∑
i=1

ki(ḡg
−1ri) ∧ ri =

n∑
i=1

ki(g
−1ri) ∧ (ḡ−1ri).

This completes the proof.

B.3 Proof of Lemma 3.3

Let (λMv , v) denote the pair of eigenvalue and eigenvector of the matrix M , i.e., Mv =
λMv v. Then, one has

∆M(uq, v) = tr(M)− u>q Muq − 2λMv (1− (u>q v)2). (B.2)

1) For the sake of analysis, let E(M) = {v1, v2, v3} with v1, v2, v3 are three orthogonal
eigenvector of M . Using the fact E(M) ⊆ U, for any v ∈ E(M) one has

max
uq∈U

∆M(uq, v) ≥ max
uq∈E(M)

∆M(uq, v).

a) For the case M = λM1 I3, for any v ∈ E(M) and uq ∈ E(M), from (B.2) one
has

∆M(uq, v) = tr(M)− u>q Muq − 2λM(1− (u>q v)2)
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= 2λM1 (u>q v)2, q = 1, 2, 3.

Using the fact
∑3

q=1(u>q v)2 = 1 for any v ∈ S2, one has maxuq∈U(u>q v)2 ≥ 1
3

which implies maxuq∈U u
>
q Wvuq ≥ 2

3
λM1 . Then, for any v ∈ E(M), one can

show that

∆∗M = min
v∈E(M)

max
uq∈U

∆(uq, v) ≥ 2

3
λM1 . (B.3)

b) For the case λM1 = λM2 6= λM3 > 0, without loss of generality let E(M) =
{v3} ∪ S12 with S12 := span{v1, v2} ∩ S2. Then, if v = v3, from (B.2) one has

∆(uq, v) = tr(M)− u>q Muq − 2λM3 (1− (u>q v3)2)

=

{
tr(M)− λM1 − 2λM3 , uq ∈ {v1, v2}
tr(M)− λM3 , uq = v3

.

Consequently, one has

max
uq∈U

∆(uq, v) = 2λM12 , v = v3. (B.4)

If v ∈ S12, one has

∆(uq, v) = tr(M)− u>q Muq − 2λM1 (1− (u>q v)2)

=

{
λM3 − λM1 + 2λM1 (u>q v)2 uq ∈ {v1, v2}
0, uq = v3

.

Using the fact that u1 and u2 are orthogonal, one has
∑2

q=1(u>q v)2 = 1 for any
v ∈ S12. Then, one has

max
uq∈U

∆(uq, v) ≥ λQ3 , v ∈ S12. (B.5)

Hence, in view of (B.4) and (B.5), one obtains

min
v∈E(M)

max
uq∈U

∆(uq, v) ≥ min
{

2λM12 , λ
M
3

}
. (B.6)

c) If M has three distinct eigenvalues λMi 6= λMj , i 6= j = 1, 2, 3, then, for each
vs ∈ E(M), one has

∆(uq, vs) = tr(M)− u>q Muq − 2v>s Mvs(1− (u>q vs)
2)

=

{
tr(M)− u>q Muq − 2v>s Mvs q 6= s

tr(M)− u>sMus q = s
.

Since tr(M)− u>q Muq ≥ tr(M)− u>q Muq − 2v>s Mvs, one obtains

max
u∈U

∆(uq, vs) = tr(M)− λMs , ∀vs ∈ E(M).
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Hence, one has

min
v∈E(M)

max
u∈U

∆(uq, v) = tr(M)− λMmax. (B.7)

From (B.3), (B.6) and (B.7), one concludes (3.15).

2) If tr(M)−2λMmax > 0, let u1, u2, u3 be any orthonormal basis in R3 and {u1, u2, u3} ⊆
U. Then, for any v ∈ E(M), uq ∈ U, one has

∆(uq, v) = tr(M)− u>q Muq − 2λMv (1− (u>q v)2).

Using the facts
∑3

q=1(u>q v)2 = 1 for any v ∈ S2 and
∑3

q=1 u
>
q Muq = tr(M), one has

1

3

3∑
q=1

∆(uq, v) =
1

3

(
3tr(M)−

3∑
q=1

u>q Muq − 2λMv

(
3−

3∑
q=1

(u>q v)2

))

=
1

3

(
2tr(M)− 4λMv

)
,

which implies that maxuq∈U ∆(uq, v) ≥ 2
3

(
tr(M)− 2λMv

)
. Then, for any v ∈ E(M),

one can show that

min
v∈E(M)

max
uq∈U

∆(uq, v) ≥ 2

3

(
tr(M)− 2λMmax

)
.

which gives (3.16).

This completes the proof.

B.4 Proof of Proposition 3.1

. In view of (2.53), one can show that

U̇(g̃) =
〈
∇g̃U , g̃(Adĝ(b̃ξ − kββ))∧

〉
g̃

= 〈〈g̃−1∇g̃U , (Adĝ(b̃ξ − kββ))∧〉〉. (B.8)

Let us consider the following real-valued function on SE(3)× R6,

V (g̃, b̃ξ) = U(g̃) + b̃ξΓ
−1b̃ξ (B.9)

From the definition of the potential function, one can verify that V is positive definite
with respect to the equilibrium point (I4, 0). Taking the time derivative of V , along the
trajectories of (3.21)-(3.22), one has

V̇ = 〈〈g̃−1∇g̃U , (Adĝ(b̃ξ − kββ))∧〉〉 − 2b̃>ξ σb

= −kβ〈〈g̃−1∇g̃U , (ψse(3)(g̃
−1∇g̃U))∧〉〉+ 〈〈g̃−1∇g̃U ,Adĝ(b̃∧ξ )〉〉 − 2b̃>ξ σb
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≤ −kβ〈〈g̃−1∇g̃U , (ψse(3)(g̃
−1∇g̃U))∧〉〉+ 〈〈Ad∗ĝ (g̃−1∇g̃U), b̃∧ξ 〉〉 − 2b̃>ξ σb

= −2kβ‖ψse(3)(g̃
−1∇g̃U)‖2 + 2b̃>ξ Ad

∗
ĝψse(3)(g̃

−1∇g̃U)− 2b̃>ξ σb

= −2kβ‖ψse(3)(g̃
−1∇g̃U)‖2, (B.10)

where we made use of the fact AdĝAdĝ−1 = I6, (2.61), (2.62), (2.58), and the definitions of

β, σb. Thus, V is non-increasing for all t ≥ 0 and the estimation errors (g̃, b̃ξ) are bounded.
There exist a constant µ > 0 and a set Dµ := {(g̃, b̃ξ) ∈ SE(3) × R6| V (g̃, b̃ξ) < µ},
such that (g̃(t), b̃ξ(t)) ∈ Dµ,∀t ≥ 0 if (g̃(0), b̃ξ(0)) ∈ Dµ. Applying LaSalle’s invariance
theorem, one concludes that that (g̃, b̃ξ) must converge to the largest invariant subset of
W ∩Dµ

W = {(g̃, b̃ξ) ∈ SE(3)× R6| g̃ ∈ CSE(3)U , b̃ξ ∈ R6}.

One can easily verify that (I4, 0) ∈ W ∩Dµ. Choose µ small enough such thatW∩Dµ =
{(g̃, b̃ξ) ∈ SE(3)×R6| g̃ = I4, b̃ξΓ

−1b̃ξ < µ}. Hence the solution of g̃ must converge to I4.
For g̃ ≡ I4, it follows that ˙̃g ≡ 0 and β ≡ 0. Using the facts ˙̃g ≡ 0 and β ≡ 0, one can
conclude from (3.21) that b̃ξ ≡ 0. Therefore, the solutions of (g̃, b̃ξ) must converge to the
equilibrium (I4, 0). Finally, the equilibrium (I4, 0) is locally asymptotically stable. This
completes the proof.

B.5 Proof of Theorem 3.1

Let us consider the following real-valued function on S,

V (x) = U(g̃) + b̃ξΓ
−1b̃ξ. (B.11)

Similar to (B.10), the time derivative of V , along the flows of trajectories of (3.30), is
given by

V̇ =
〈
∇g̃U , g̃(Adĝ(b̃ξ − kββ))∧

〉
g̃
− 2b̃>ξ σb

= 〈〈g̃−1∇g̃U , (Adĝ(b̃ξ − kββ))∧〉〉 − 2b̃>ξ σb

= −2kβ‖ψse(3)(g̃
−1∇g̃U)‖2, (B.12)

Then, for any x ∈ Fc, V is non-increasing along the flows of (3.30). For any x ∈ Jc, one
can show that

V (x+)− V (x) = U(g̃+)− U(g̃)

≤ min
gq∈Q
U(g̃gq)− U(g̃) ≤ −δ, (B.13)

which implies that V is strictly decreasing over the jumps of (3.30). Applying the hybrid
invariance principle in Theorem 2.1, it follows that the set Ā is stable.

Next we are going to show the asymptotic stability and finite number of jumps. From
(B.12) and (B.13), one can verify that

0 ≤ V (x(t, j)) ≤ V (x(t, j − 1))− δ ≤ V (x(0, 0))− δj, (B.14)
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where (t, j), (t, j − 1) ∈ dom x with (t, j) � (t, j − 1). This leads to j ≤ J :=
⌈
V (x(0,0))

δ

⌉
,

where, d·e denotes the ceiling function. Hence, one concludes that the number of jumps
is finite and it is linked to the initial conditions.

In view of (B.14), it follows from Theorem 2.1 that x must converge to the largest
invariant subset of Fc ∩W with

W =
{
x ∈ S| g̃ ∈ CSE(3)U

}
= CSE(3)U × R3 × SE(3)× R6 × R≥0,

where we made use of the definition of CSE(3)U . From the definition of Fc and condition
(3.31), one can verify that XU × R6 × SE(3) × R6 × R≥0 * Fc and XU × R6 × SE(3) ×
R6 × R≥0 ⊆ Jc. Using the facts:

W = XU × R3 × SE(3)× R6 × R≥0 ∪ {I4} × R6 × SE(3)× R6 × R≥0

XU × R6 × SE(3)× R6 × R≥0 * Fc
{I4} × R6 × SE(3)× R6 × R≥0 ⊆ Fc,

one has

Fc ∩W = Fc ∩
(
XU × R3 × SE(3)× R6 × R≥0 ∪ {I4} × R6 × SE(3)× R6 × R≥0

)
=
(
Fc ∩ XU × R3 × SE(3)× R6 × R≥0

)
∪
(
Fc ∩ {I4} × R6 × SE(3)× R6 × R≥0

)
= ∅ ∪ {I4} × R6 × SE(3)× R6 × R≥0

= {I4} × R6 × SE(3)× R6 × R≥0 (B.15)

Hence the solution of x must converge to {I4} × R6 × SE(3) × R6 × R≥0, i.e., the pose
estimation error g̃ must converge to I4. For g̃ ≡ I4, it follows that ˙̃g ≡ 0 and β ≡ 0.
Using the facts ˙̃g ≡ 0 and β ≡ 0, one can conclude from (3.30) that b̃ξ ≡ 0. Therefore,
the solutions of x must converge to Ā. Finally, the set Ā is globally attractive and stable
which shows that Ā is GAS.

B.6 Proof of Theorem 3.2

Let us consider the following real-valued function V : S → R≥0 in (B.11). In view of
(B.12) and (B.13), one obtains

V̇ = −2kβ‖ψse(3)(g̃
−1∇g̃U)‖2, ∀x ∈ Fc, (B.16)

V (x+) ≤ V (x)− δ, , ∀x ∈ Jc. (B.17)

These imply that V is non-increasing along the flows of (3.30) and strictly decreasing
over the jumps of (3.30). Similar to (B.14), the number of jumps is no more than the
finite value Jmax := dV (x(0, 0))/δ e. From the definitions of CSE(3)U and XU , one has
‖ψse(3)(g̃

−1∇g̃U)‖ = 0 and |g̃|I 6= 0 for all g̃ ∈ XU . From condition (3.33), one can
show that XU × R3 × SE(3) × R6 × R≥0 * Fc. Since Fc ∪ Jc = S, one concludes that
XU × R3 × SE(3)× R6 × R≥0 ⊆ Jc.
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To show exponential stability, let us consider the following Lyapunov function candi-
date:

L(x) = V (x)− z>Ub̃ξ, (B.18)

where U := diag(µ1I3, µ2I3) with µ1, µ2 > 0 and z := [ψso(3)(R̃)>R̂, p̃>R]>. Let e :=

[|g̃|I , ‖b̃ω‖, ‖b̃v‖]> and let ei be the i-th elements of e. Letting ψR̃ := ψso(3)(R̃), from

(2.38) and (2.55) one verifies that ‖ψR̃‖2 ≤ tr(I3−R) = 1
2
‖I3− R̃‖2

F ≤ 1
2
|g̃|2I = 1

2
e2

1. From
(3.32), one obtains

L ≤ α2e
2
1 +

1

kω
e2

2 +
1

kv
e2

3 + e1(

√
2µ1

2
e2 + µ2e3)

L ≥ α1e
2
1 +

1

kω
e2

2 +
1

kv
e2

3 − e1(

√
2µ1

2
e2 + µ2e3),

which implies

e>

 α1
−
√

2
4
µ1

−1
2
µ2

−
√

2
4
µ1

1
kω

0
−1
2
µ2 0 1

kv


︸ ︷︷ ︸

P1

e ≤ L(x) ≤ e>

 α2

√
2

4
µ1

1
2
µ2√

2
4
µ1

1
kω

0
1
2
µ2 0 1

kv


︸ ︷︷ ︸

P2

e.

Using the fact |x|2Ā = |g̃|2I + ‖b̃ξ‖2 = ‖e‖2, one obtains the following inequalities:

λP1
min|x|2Ā ≤ L(x) ≤ λP2

max|x|2Ā. (B.19)

From (3.30), one has

˙̃R = R̃(−kβψω + R̂b̃ω)×, (B.20)

˙̃p = R̃(−kβψv + p̂×R̂b̃ω + R̂b̃v), (B.21)

ψ̇R̃ = E(R̃)(−kβψω + R̂b̃ω), (B.22)

where E(R̃) := 1
2
(tr(R̃) − R̃>). The arguments of ψ have been omitted for simplicity,

and ψω, ψv are given by ψ := [ψ>ω , ψ
>
v ]>. From Lemma 2.1, one has ‖E(R̃)‖F ≤

√
3 and

v>(I3−E(R̃))v ≤ 2|R|2I‖v‖2 ≤ 2|R|I‖v‖2 ≤
√

2
2
‖I3−R̃‖F‖v‖2 ≤

√
2

2
|g̃|I‖v‖2 for all v ∈ R3.

Define the constants cω := supt≥0 ‖ω(t)‖ and cp := supt≥0 ‖p(t)‖. Since b̃ω is bounded

both in the flow and jump sets, there exists a constant cbω := sup(t,j)�(0,0) ‖b̃ω(t, j)‖. In

view of (B.20)-(B.22), the time-derivative of the cross term X := z>Ub̃ξ = −µ1b̃
>
ω R̂
>ψR̃−

µ2p̃
>Rb̃v is obtained as

Ẋ = −ż>Ub̃ξ − z>U ˙̃ba

= −µ1b̃
>
ω (

˙̂
R>ψR̃ + R̂>ψ̇a(R̃))− µ2b̃

>
v (R> ˙̃p+ Ṙ>p̃)− z>U ˙̃ba

= µ1b̃
>
ω (ω − b̃ω + kβψω)×R̂>ψR̃ − µ1b̃

>
ω R̂
>E(R̃)(−kβψω + R̂b̃ω) + µ2b̃

>
v (ω)×R>p̃
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− µ2b̃
>
v R̂
>(−kβψv + p̂×R̂b̃ω + R̂b̃v)− z>UΓAd∗gAd

∗
g̃−1ψ

≤ −µ1‖b̃ω‖2 − µ2‖b̃v‖2 + µ1cω‖ψR̃‖‖b̃ω‖+ µ1kβ‖b̃ω‖‖ψω‖‖ψR̃‖
+ µ1b̃

>
ω R̂
>(I3 − E(R̃))R̂b̃ω + µ1kβ‖b̃ω‖‖E(R̃)‖F‖ψω‖+ µ2cω‖b̃v‖‖p̃‖

+ µ2kβ‖b̃v‖‖ψv‖+ µ2cbω‖b̃v‖‖p̃‖+ µ2cp‖b̃v‖‖b̃ω‖+ kΓ‖U‖2‖z‖‖Ad∗g‖F‖Ad∗g̃−1ψ‖

≤ −µ1‖b̃ω‖2 − µ2‖b̃v‖2 + 2
√
α4µ1kβ‖b̃ω‖|g̃|I +

√
2

2
µ1cω|g̃|I‖b̃ω‖

+
√

2
2
µ1cbω |g̃|I‖b̃ω‖+

√
3α4µ1kβ‖b̃ω‖|g̃|I + µ2cω‖b̃v‖|g̃|I +

√
α4µ2kβ‖b̃v‖|g̃|I

+ µ2cbω‖b̃v‖|g̃|I + µ2cp‖b̃v‖‖b̃ω‖+ kΓcg
√
α5(u1 + u2)|g̃|2I

≤ −µ1‖b̃ω‖2 − µ2‖b̃v‖2 + µ1(
√

2
2
cω + 2

√
α4kβ +

√
2

2
cbω +

√
3α4kβ)|g̃|I‖b̃ω‖

+ µ2(cω +
√
α4kβ + cbω)‖b̃v‖|g̃|I + µ2cp‖b̃v‖‖b̃ω‖+ kΓcg

√
α5(u1 + u2)|g̃|2I ,

where kΓ := ‖Γ‖F , cg := ‖Ad∗g‖F =
√

6 + 2c2
p, and the following facts have been used:

|g̃|2I = ‖I3 − R̃‖2 + ‖p̃‖2, ‖p̂‖ = ‖R̃>(p − p̃)‖ ≤ cp + ‖p̃‖, ‖ψω‖2 + ‖ψv‖2 ≤ α4|g̃|2I ,
‖z‖ = ‖ψR̃‖+ ‖p̃‖ ≤ |g̃|I , ‖U‖2 ≤ (µ1 + µ2) and Eq. (3.34). Let c1 :=

√
2

2
cω + 2kβ

√
α4 +

√
2cbω
2

+ kβ
√

3α4, c2 := kβ
√
α4 + cbω + cω, c3 := kΓ

√
α5cg. Then, the time-derivative of X

satisfies

Ẋ ≤ −µ1‖b̃ω‖2 − µ2‖b̃v‖2 + µ1c1‖b̃ω‖|g̃|I + µ2c2‖b̃v‖|g̃|I
+ (µ1c3 + µ2c3)|g̃|2I + µ2cp‖b̃v‖‖b̃ω‖, (B.23)

Consequently, in view of (B.12) and (B.23), one obtains

L̇ ≤ −2kβα3e
2
1 + (µ1c3 + µ2c3)e2

1 − µ1‖b̃ω‖2 − µ2‖b̃v‖2

+ µ1c1‖b̃ω‖e1 + µ2c2‖b̃v‖e1 + µ2cp‖b̃v‖‖b̃ω‖

= −e>
2kβα3 − µ1c3 − µ2c3 −1

2
µ1c1 −1

2
µ2c2

−1
2
µ1c1 µ1 −1

2
µ2cp

−1
2
µ2c2 −1

2
µ2cp µ2

 e
= −e>12P31e12 − e>13P32e13 − e>23P33e23,

where eij := [ei, ej]
>, i, j = 1, 2, 3 with ei denoting the i-th elements of e, and

P31 :=

[
kβα3 − µ1c3 −1

2
µ1c1

−1
2
µ1c1

1
2
µ1

]
, P32 :=

[
kβα3 − µ2c3 −1

2
µ2c2

−1
2
µ2c2

1
2
µ2

]
,

P33 :=

[
1
2
µ1 −1

2
µ2cp

−1
2
µ2cp

1
2
µ2

]
.

To guarantee that the matrices P1, P2, P31, P32 and P33 are positive definite, the param-
eters µ1 and µ2 are chosen as follows:

µ1 <
2
√
α1√
kω

, µ2 <

√
2α1√
kv

for P1, P2 > 0

µ1 <
kβα3

c3 + 1
4
c2

1

, µ2 <
kβα3

c3 + 1
4
c2

2

for P31, P32 > 0
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µ2 <
1

c2
p

µ1 for P33 > 0

which are equivalent to

0 < µ1 < min

{
2
√
α1√
kω

,
kβα3

c3 + 1
4
c2

1

}
0 < µ2 < min

{√
2α1√
kv

,
kβα3

c3 + 1
4
c2

2

,
1

c2
p

µ1

}
.

One concludes that
L̇(x) ≤ −λFL(x), x ∈ Fc, (B.24)

with λF := min{λP31
min, λ

P32
min, λ

P33
min}/λP2

max. On the other hand, from (B.12) and (B.13), it
is clear that b̃ξ is bounded in the flow and jump sets. Hence, there exists a constant
cba := sup(t,j)�(0,0) ‖b̃ξ(t, j)‖. Let gq = TSE(3)(Rq, pq) ∈ Q. Using the facts: R̃+ = R̃Rq

and p̃+ = p̃+ R̃pq, one has

‖z+ − z‖ =

∥∥∥∥[(R̂+)>ψso(3)(R̃
+)− R̂>ψso(3)(R̃)

R>p̃+ −R>p̃

]∥∥∥∥
≤ ‖Rqψso(3)(R̃Rq)− ψso(3)(R̃)‖+ ‖p̃+ − p̃‖
≤ ‖Rqψso(3)(R̃Rq)‖+ ‖ψso(3)(R̃)‖+ ‖R̃pq‖
≤ 2 + ‖pq‖

where we have made use of the fact |ψso(3)(R)‖ ≤ 1,∀R ∈ SO(3) in (2.47). Then, one can
further show that

L(x+)− L(x) = V (x+)− V (x) + (z+)>Ub̃ξ − z>Ub̃ξ
= V (x+)− V (x) + ‖(z+)− z‖‖Ub̃ξ‖
≤ −δ + (µ1 + µ2)c4,

where c4 := (2 + ‖pq‖)cba . Choosing µ1 and µ2 such that

0 < µ1 < min

{
2
√
α1√
kω

,
kβα3

c3 + 1
4
c2

1

,
δ

2c4

}
,

0 < µ2 < min

{√
2α1√
kv

,
kβα3

c3 + 1
4
c2

2

,
1

c2
p

µ1, µ1

}
,

there exists a constant 0 < δ∗ ≤ δ − 2µ1c4 > 0 such that

L(x+) ≤ L(x)− δ∗, x ∈ Jc. (B.25)

In view of (B.24) and (B.25), it follows that L(t, j) ≤ exp(−λF t)L(0, 0) for each (t, j) ∈
domx. One verifies that L(x+) ≤ exp(−λJ)L(x), with λJ := − ln(1− δ∗/L(0, 0)). Con-
sequently, one obtains

L(t, j) ≤ exp(−2λ(t+ j))L(0, 0), (B.26)
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where λ := 1
2

min{λF , λJ}. From (B.19) and (B.26), for each (t, j) ∈ domx one has

|x(t, j)|Ā ≤ k exp (−λ(t+ j)) |x(0, 0)|Ā, (B.27)

where k :=
√
λP2

max/λ
P1
min. Since Fc∪Jc = S, the number of jumps if finite and there is no

finite escape-time, one concludes that the solution to the hybrid system H is complete
as per Proposition 2.10 in [Goebel et al., 2012]. This completes the proof.

B.7 Proof of Lemma 3.4

Given g = TSE(3)(R, p), M = A− bb>d−1, from (3.9) one can verify that

U(g) =
1

2
tr

([
I3 −R −p

0 0

] [
A b
b> d

] [
I3 −R −p

0 0

]>)
=

1

2
tr
(
(I3 −R)A(I3 −R)> − 2(I3 −R)bp> + dpp>

)
= tr (M(I3 −R)) +

1

2
d
∥∥p− (I3 −R)bd−1

∥∥2
.

The gradient ∇gU(g) can be computed using the differential of U(g) in an arbitrary
tangential direction gX ∈ TgSE(3) with some X ∈ se(3)

dU(g) · gX = 〈∇gU(g), gX〉g = 〈〈g−1∇gU(g), X〉〉. (B.28)

On the other hand, from the definition of the tangent map, one has

dU(g) · gX = tr
(
−gXA(I4 − g)>

)
= 〈〈g>(g − I4)A, X〉〉
= 〈〈Pse(3)(g

>(g − I4)A), X〉〉
= 〈〈Pse(3)(g

−1(g − I4)A), X〉〉
= 〈〈Pse(3)((I4 − g−1)A), X〉〉, (B.29)

where the fact (I4 − g−1)A ∈M4
0 and property (2.72) have been used. Hence, in view of

(B.28) and (B.29), one can verify (3.37).
Using the fact gP((I4 − g−1)A) ∈ M4

0, the identity ∇gU(g) = 0 implies that (I4 −
g−1)A = A(I4− g−1)>, which can be further reduced as Ag> = gA. Applying the matrix
decomposition (2.8), one obtains[

M 0
0 d

] [
R p− (I3 −R)bd−1

0 1

]>
=

[
R p− (I3 −R)bd−1

0 1

] [
M 0
0 d

]
.

Consequently, one can further deduce that

RM = MR>, p = (I3 −R)bd−1. (B.30)

From Lemma 2.3, one has the solution of (B.30) as

(R, p) ∈ {(I3, 0)} ∪ {(R, p) : R = Ra(π, v), p = (I3 −Ra(π, v))bd−1, v ∈ E(M)},
which implies (3.38). This completes the proof.
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B.8 Proof of Lemma 3.5

Let pe := p−(I3−R)bd−1. For the case (I3−R)bd−1 = 0, one has ‖I3−R‖2
F +‖pe‖2 = |g|2I .

For the case (I3 − R)bd−1 6= 0, there exists a positive scalar 0 < %1(R) < ‖bd−1‖ such
that ‖(I3 − R)bd−1‖ = %1‖I3 − R‖F . Let φ1 := ](p, (I3 − R)bd−1) with ](·, ·) denoting
the angle between two vectors. Then, one has

‖I3 −R‖2
F + ‖pe‖2

= (1 + %2
1)‖I3 −R‖2

F + ‖p‖2 − 2%1 cosφ1‖p‖‖I3 −R‖F

=
[
‖p‖ ‖I3 −R‖F

] [ 1 −%1 cosφ1

−%1 cosφ1 1 + %2
1

]
︸ ︷︷ ︸

Θ1

[
‖p‖

‖I3 −R‖F

]
.

which implies that
s1|g|2I ≤ ‖I3 −R‖2

F + ‖pe‖2 ≤ s2|g|2I , (B.31)

where s1 := min{1, λΘ1
min} and s2 := max{1, λΘ1

max}. Note that the matrix Θ1 is always
positive definite. Using the facts M̄ = 1

2
(tr(M)I3 −M) and λM̄min > 0 for any R ∈ SO(3)

one verifies that

1

2
λM̄min‖I3 −R‖2

F ≤ tr(M(I3 −R)) ≤ 1

2
λM̄max‖I3 −R‖2

F . (B.32)

Then, from (3.36) one can show that

U(g) ≥ 1

2
λM̄min‖I3 −R‖2

F +
d

2
‖pe‖2 ≥ α1|g|2I ,

U(g) ≤ 1

2
λM̄max‖I3 −R‖2

F +
d

2
‖pe‖2 ≤ α2|g|2I ,

with

α1 := min

{
1

2
λM̄min,

1

2
d

}
s1, α2 := max

{
1

2
λM̄max,

1

2
d

}
s2. (B.33)

Using the fact

(I4 − g−1)A =

[
I −R> R>p

0 0

] [
A b
b> d

]
=

[
(I −R>)A+R>pb> (I −R>)b+R>pd

0 0

]
=

[
(I3 −R>)M +R>peb

> R>dpe
0 0

]
,

From (2.57), one verifies that

ψse(3)((I4 − g−1)A) =
1

2

[
2ψso(3)(MR) + b×R>pe

R>ped

]
. (B.34)

Hence, one can show that

‖ψse(3)((I4 − g−1)A)‖2
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=
1

4
‖2ψso(3)(MR) + b×R>pe‖2 +

1

4
d2‖pe‖2

= ‖ψso(3)(MR)‖2 + ψso(3)(MR)>b×R>pe +
1

4
‖b×R>pe‖2 +

1

4
d2‖pe‖2

≥ ‖ψso(3)(MR)‖2 − ‖ψso(3)(MR)‖‖b×R>pe‖+
1

4
‖b×R>pe‖2 +

1

4
d2‖pe‖2

= ‖ψso(3)(MR)‖2 − | sinφ2|‖b‖‖ψso(3)(MR)‖‖pe‖+
1

4
s1‖b‖2‖pe‖2 +

1

4
d2‖pe‖2

=
[
‖ψso(3)(MR)‖ ‖pe‖

]
Θ2

[
‖ψso(3)(MR)‖
‖pe‖

]
,

with

Θ2 :=

[
1 −1

2
| sinφ2|‖b‖

−1
2
| sinφ2|‖b‖ 1

4
(sin2 φ2‖b‖2 + d2)

]
,

where we used the facts ‖b×R>pe‖2 = p>e R(b>bI3 − bb>)R>pe = sin2 φ2‖b‖2‖pe‖2 and
φ2 := ](b, R>pe). It is straightforward to verify that the matrix Θ2 is positive definite.
Let λΘ2

min be the minimum eigenvalue of the matrix Θ2. One has

‖ψse(3)((I4 − g−1)A)‖2 =
1

4
‖2ψso(3)(MR) + b×R>pe‖2 +

1

4
d2‖pe‖2

≥ λΘ2
min(‖ψso(3)(MR)‖2 + ‖pe‖2)

= λΘ2
min(ϑ(M,R)tr(M(I3 −R)) + ‖pe‖2)

= λΘ2
min

(
1

2
ϑ(M,R)λMmin‖I3 −R‖2

F + ‖pe‖2

)
,

whereM := tr(M̄2)I3−2M̄2, and we made use of the fact ‖ψso(3)(MR)‖2 = ϑ(M,R)tr(M(I3−
R)) with ϑ(M,R) := (1− |R|2I cos2(](u, M̄u))) and u ∈ S2 is the axis of the rotation R
(see (2.38) in Lemma 2.1). For any TSE(3)(R, p) ∈ SE(3)/XU , one has 0 < ϑ(M,R) ≤ 1.
Hence, there exists a positive ϑ∗ such that

ϑ∗ := min
TSE(3)(R,p)∈Υ

(
1− 1

8
‖I3 −R‖2

F cos2(](u, M̄u)))

)
.

Therefore, one obtains

‖ψse(3)((I4 − g−1)A)‖2 ≥ λΘ2
min

(
1

2
ϑ∗λMmin‖I4 −R‖2

F + ‖pe‖2

)
≥ α3|g|2I ,

where

α3 := λΘ2
min min

{
1,

1

2
ϑ∗λMmin

}
s1. (B.35)

Moreover, one can also show that

‖ψse(3)((I4 − g−1)A)‖2 =
1

4
‖2ψso(3)(MR) + b×R>pe‖2 +

1

4
d2‖pe‖2
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≤ 2‖ψso(3)(MR)‖2 +
1

2
‖b×R>pe‖2 +

1

4
d2‖pe‖2

≤ 2‖ψso(3)(MR)‖2 +
1

2
‖b‖2‖pe‖2 +

1

4
d2‖pe‖

≤ λMmax‖I3 −R‖2
F + (

1

2
‖b‖2 +

1

4
d2)‖pe‖2

= α4|g|2I .

where

α4 := max

{
(
1

2
‖b‖2 +

1

4
d2),

1

2
λMmax

}
s2. (B.36)

From (B.34), one obtains

Ad∗g−1ψse(3)((I4 − g−1)A) =
1

2

[
R p×R
0 R

] [
2ψso(3)(MR) + b×R>pe

R>ped

]
=

1

2

[
2Rψso(3)(MR) +Rb×R>pe + dp×pe

dpe

]
=

1

2

[
2Rψso(3)(MR) + (Rb+ dp)×pe

dpe

]
=

1

2

[
2Rψso(3)(MR) + b×pe

dpe

]
,

where the facts dp = dpe+ (I3−R)b and p×e pe = 0 have been used. One can further show
that

‖Ad∗g−1ψse(3)((I4 − g−1)A)‖2 ≤ 2‖ψso(3)(MR)‖+
1

2
‖b×pe‖2 +

1

4
d‖pe‖2

≤ λMmax‖I3 −R‖2
F + (

1

2
‖b‖2 +

1

4
d)‖pe‖2

≤ α4|g|2I .

This completes the proof.

B.9 Proof of Proposition 3.2

Let g̃ = TSE(3)(R̃, p̃) with R̃ = Ra(θ, v), θ ∈ R and v ∈ S2. In view of (3.9) and (3.43),
one obtains

U1(g̃) = tr((I3 − R̃)M) +
1

2
d‖p̃− (I3 − R̃)bd−1‖2 (B.37)

= 2(1− cos θ)v>M̄v +
1

2
d‖p̃− (I3 − R̃)bd−1‖2 (B.38)

where the matrix M̄ is defined in Lemma 3.1. Under Assumption 3.1, one has d > 0 and
M̄ is positive definite. Consequently, U1(g̃) has a unique global minimum at g̃ = I4, i.e.,
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U1 is a potential function on SE(3). From (B.37), for any g̃ = TSE(3)(R̃, p̃) ∈ XU1 and
gq = TSE(3)(Rq, pq) ∈ Q, one has

U1(g̃gq) = tr((I3 − R̃Rq)M) +
1

2
d
∥∥pq − (I3 −Rq)bd

−1
∥∥2

= tr((I3 − R̃)M) + tr(R̃(I3 −Rq)M)

= U1(g̃)− (1− cos θ∗)∆M(uq, v). (B.39)

where uq ∈ U, v ∈ E(M), ∆M(·) is defined in (3.13). We also made use of the following
facts: pq = (I3 −Rq)bd

−1, R̃ = Ra(π, v) = 2vv> − I3, Rq = Ra(θ
∗, uq). From (B.39), one

can obtain

U1(g̃)−min
gq∈Q
U1(g̃gq) = (1− cos θ∗) max

uq∈U
∆M(uq, v),∀v ∈ E(M)

≥ (1− cos θ∗) min
v∈E(M)

max
uq∈U

∆M(uq, v)

= (1− cos θ∗)∆∗M > δ,

which implies that XU1 × R6 × SE(3) × R6 × R≥0 ⊆ Jc from (3.29). In view of (3.3)
and (3.46)-(3.48), one can write the hybrid closed-loop system as in (3.30). The proof is
completed by using Lemma 3.4, Theorem 3.2 and the facts XU1×R6×SE(3)×R6×R≥0 ⊆
Jc and XU1 × R6 × SE(3)× R6 × R≥0 * Fc.

B.10 Proof of Theorem 3.3

As in Proposition 3.2, for any g̃ ∈ XU2 , one verifies that

U2(g̃)−min
gq∈Q
U2(g−1

c g̃gqgc) = U2(g̃)−min
gq∈Q
U2(g̃g−1

c gqgc)

= U1(g̃)−min
gq∈Q
U1(g̃gq) > δ,

which implies that XU2 × R6 × SE(3) × R6 × R≥0 ⊆ J ′c . Let us consider the following
real-valued function:

LR = tr(M(I − R̃)) +
1

2kω
b̃>ω b̃ω − µ̄1ψso(3)(R̃)>R̂b̃ω, (B.40)

where µ̄1 > 0. Let ē1 := [‖I3 − R̃‖F , ‖b̃ω‖]>. Following similar steps as in the proof of
Theorem 3.2, it is clear that there exist a constant cbω := sup(t,j)�(0,0) ‖b̃ω(t, j)‖, and a
constant µ̄∗1 such that for all µ̄1 < µ̄∗1

c̄1‖ē1‖2 ≤ LR ≤ c̄2‖ē1‖2, (B.41)

L̇R ≤ −c̄3LR, x′ ∈ F ′c, (B.42)

for some positive constants c̄1, c̄2 and c̄3. Let us consider the following real-valued func-
tion:

Lp =
d

2
p̃>p̃+

1

kv
b̃>v b̃v − µ̄2p̃

>Rb̃v. (B.43)
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Let ē2 := [‖p̃‖, ‖b̃v‖]>. It is straightforward to show that

ē>2

[
d
2
− µ̄2

2

− µ̄2

2
1
kv

]
︸ ︷︷ ︸

H1

ē2 ≤ Lp ≤ ē>2

[
d
2

µ̄2

2
µ̄2

2
1
kv

]
︸ ︷︷ ︸

H2

ē2. (B.44)

The time-derivative of Lp along the trajectories of (3.72) and (3.74) is obtained as

L̇p = dp̃> ˙̃p+
1

kv
b̃>v

˙̃bv − µ̄2
˙̃p>Rb̃v − µ̄2p̃

>R ˙̃bv − µ̄2p̃
>Ṙb̃v

= −d
2

2
kβ p̃

>p̃+ dp̃>R̃p̂×R̂b̃ω + µ̄2kβ
d

2
p̃>Rb̃v + µ̄2b̃

>
ω R̂
>
p̂×R̃

>
Rb̃v − µ̄2b̃

>
v b̃v

+
d

2
kvµ̄2p̃

>RR̂
>
R̃
>
p̃− µ̄2p̃

>Rω×b̃v

≤ −d
2

2
kβ p̃

>p̃− µ̄2b̃
>
v b̃v + dp̃>R̃(R̃

>
p− R̃>p̃)×R̂b̃ω + µ̄2kβ

d

2
‖p̃‖‖b̃v‖

+ µ̄2b̃
>
ω R̂(R̃

>
p− R̃>p̃)×R̃>Rb̃v + µ̄2

d

2
kv‖p̃‖2 + µ̄2‖ω‖‖p̃‖‖b̃v‖

≤ −d
2

2
kβ‖p̃‖2 − µ̄2‖b̃v‖2 + dc̄p‖p̃‖‖b̃ω‖+ µ̄2kβ

d

2
‖p̃‖‖b̃v‖+ µ̄2c̄p‖b̃ω‖‖b̃v‖

+ µ̄2cbω‖p̃‖‖b̃v‖+ µ̄2
d

2
kv‖p̃‖2 + µ̄2cω‖p̃‖‖b̃v‖,

where c̄p := ‖p‖ = ‖p − bd−1‖, and the following facts have been used: R̂ = R̂, R = R

and p̂ = R̃
>

(p− p̃). Let c̄4 := max{d, µ̄2} and c̄5 := kβ
d
2

+ cω + cbω . Then, one has

L̇p ≤ −ē>2
[
d2

2
kβ − µ̄2

d
2
kv −1

2
µ̄2c̄5

−1
2
µ̄2c̄5 µ̄2

]
︸ ︷︷ ︸

H3

ē2 +
√

2c̄4c̄p‖b̃ω‖‖ē2‖.

To guarantee that the matrices H1, H2 and H3 are positive definite, it is sufficient to pick

µ̄2 such that 0 < µ̄2 < min
{√

2d√
kv
,

kβd
2

dkv+ 1
2
c̄25

}
. Hence, one has

L̇p ≤ −λH3
min‖ē2‖2 +

√
2c̄4c̄p‖ē1‖‖ē2‖

≤ −η2Lp + η3

√
LR
√
Lp, x′ ∈ F ′c, (B.45)

where η2 := λH3
min/λ

H2
max > 0, η3 :=

√
2c̄4c̄p/

√
λH1

minc̄1 > 0, and we made use of the fact

‖b̃ω‖ ≤ ‖ē1‖ ≤ 1√
c̄1

√LR. Let ζ1 :=
√LR. ζ2 :=

√
Lp and ζ := [ζ1, ζ2]>. From (C.3) and

(C.6), one obtains

ζ̇ ≤ −H4ζ, H4 :=

[
c̄3 0
−η3

2
η2

2

]
. (B.46)

One can easily verify that H4 is positive definite. Let us consider the following Lyapunov
function candidate:

L′(x′) = LR + Lp = ‖ζ‖2. (B.47)
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Using the fact |x′|2Ā′ = |g̃|2I + ‖b̃ξ‖2 = ‖ē1‖2 + ‖ē2‖2, from (B.41), (C.3), (B.44) and (C.6),
one has

α|x′|2Ā′ ≤ L′(x′) ≤ ᾱ|x′|2Ā′ (B.48)

L̇′(x′) ≤ −ζ>H4ζ ≤ −λ′FL′(x′), x′ ∈ F ′c, (B.49)

where λ′F := λH4
min, α := min{c̄1, λ

H1
min} and ᾱ := max{c̄2, λ

H2
max}. On the other hand, using

the facts R̃
+

= R̃Rq, b̃
+
ω = b̃ω, b̃

+
v = b̃v and p̃+ = p̃, one has

L(x′+)− L(x′) = ‖ζ+‖2 − ‖ζ‖2 = L+
R + L+

p − LR − Lp
= tr(M(I − R̃+

))− tr(M(I − R̃))− µ̄1ψso(3)(R̃)>R̂b̃ω + µ̄1ψso(3)(R̃
+

)>R̂+b̃+
ω

< −δ + µ̄1(‖ψso(3)(R̃)‖+ ‖ψso(3)(R̃Rq)‖)‖b̃ω‖
≤ −δ + 4µ̄1cbω .

Choosing µ̄1 < min{µ̄∗1, δ/4cbω} such that

L(x′+) ≤ L(x′)− δ̄∗, x′ ∈ J ′c , (B.50)

where δ̄∗ := −δ + 4µ̄1cbω > 0. In view of (B.49) and (B.50), one shows that 0 ≤ j ≤
Jmax :=

⌈
L′(0, 0)/δ̄∗

⌉
and L′(t, j) ≤ L′(0, 0) exp(−λ′F t). One can show that L′(x′+) ≤

exp(−λ′J)L′(x′), with λ′J := − ln(1− δ̄∗/L′(0, 0)). Consequently, one obtains

L′(t, j) ≤ exp(−2λ′(t+ j))L′(0, 0), (B.51)

where λ′ := 1
2

min{λ′F , λ′J}. From (B.48) and (B.51), for each (t, j) ∈ domx′ one has

|x′(t, j)|Ā′ ≤ k′ exp (−λ′(t+ j)) |x′(0, 0)|Ā′ , (B.52)

where k′ :=
√
ᾱ/α. Using the same arguments as in the proof of Theorem 3.2, one can

conclude that the solution to the hybrid systemH′ is complete. This completes the proof.



Appendix C

Proofs of Chapter 4

C.1 Proof of Proposition 4.2

For each xc1 ∈ SE2(3) × Ψ × R+, let us rewrite R̃ = Ra(π, v) with v ∈ E(M), and
Rq = Ra(θ, uq) with θ ∈ (0, π] and uq ∈ U. In view of (4.15) and (4.16), one can show
that

µQ(R̂, r, b) = Υ(X̂, r, b)− min
Xq=T (Rq ,pq ,vq)∈Q

Υ(X>q X̂, r, b)

= tr((I3 − R̃)M)− min
Rq∈Ra(θ,U)

tr((I3 − R̃Rq)M)

= max
Rq∈Ra(θ,U)

tr(R̃(I3 −Rq)M)

= (1− cos θ) max
uq∈U

∆(uq, v)

≥ (1− cos θ) max
uq∈E(M)

∆(uq, v),

where we made use of the fact maxuq∈U ∆(uq, v) ≥ maxuq∈E(M) ∆(uq, v) for any v ∈ R3

and the definition (3.13). From the definition of ∆∗M given in (3.14) such that for any
xc1 ∈ SE2(3)×Ψ× R+, one has

µQ(R̂, r, b) ≥ (1− cos θ) min
v∈E(M)

max
uq∈E(M)

∆(u, v)

≥ (1− cos θ)∆∗M > δ,

which gives SE2(3)×Ψ× R+ ⊆ J c
1 from (4.18) and (4.23). This completes the proof.

C.2 Proof of Theorem 4.1

Consider the following real-valued function LR : SO(3)→ R+:

LR(R̃) = tr((I − R̃)M). (C.1)

Let M̄ := 1
2
(tr(M)I3 −M),M := tr(M̄2)I − 2M̄2 and M̄ := 1

2
(tr(M)I3 −M). Applying

the results in [Berkane et al., 2017b, Lemma 2], one obtains

4λM̄m |R̃|2I ≤ LR ≤ 4λM̄M |R̃|2I , (C.2)

142



143

L̇R ≤ −λR|R̃|2I xc1 ∈ F c1 (C.3)

where λR := 4kR%Mλ
M̄
m , and %M := minxc1∈Fc1 α(M, R̃) with α(·, ·) defined as per Lemma

2.1. Moreover, one can verify that α(M, R̃) > 0 for all xc1 ∈ F c1 , which implies λR > 0 in
the flows.

On the other hand, consider the following real-valued function Lp : R3×R3 → R+ as

Lp(p̃e, ṽ) =
1

2
‖p̃e‖2 +

1

2kckv
‖ṽ‖2 − µp̃>e ṽ. (C.4)

with some µ > 0. Let e2 := [‖p̃e‖ ‖ṽ‖]>. One verifies that

e>2

[
1
2

−µ
2

−µ
2

1
2kckv

]
︸ ︷︷ ︸

P1

e2 ≤ Lp ≤ e>2

[
1
2

µ
2

µ
2

1
2kckv

]
︸ ︷︷ ︸

P2

e2, (C.5)

The time-derivative of Lp along the flows of (4.23) is given by

L̇p = p̃>e (−kckpp̃e + ṽ) +
1

kckv
ṽ>(−kckvp̃e + (I − R̃)g)

− µ(−kckpp̃e + ṽ)>ṽ − µp̃>e (−kckvp̃e + (I3 − R̃)g)

= −kckpp̃>e p̃e + µkckvp̃
>
e p̃e − µṽ>ṽ + µkckpp̃

>
e ṽ

+
1

kckv
ṽ>(I − R̃)g − µp̃>e (I3 − R̃)g

≤ −(kp − µkv)kc‖p̃e‖2 − µ‖ṽ‖+ µkckp‖p̃e‖‖ṽ‖
+

g

kckv
‖ṽ‖‖I − R̃‖F + µg‖p̃e‖‖I3 − R̃‖F .

Let c1 := max{ g
kckv

, µg}, one can further deduce that

L̇p ≤ −e>2
[
(kp − µkv)kc µkckp

2
µkckp

2
µ

]
︸ ︷︷ ︸

P3

e2 + 4c1|R̃|I‖e2‖ (C.6)

where we made use of the facts ‖I3− R̃‖2
F = 8|R̃|2I and ‖ṽ‖+‖p̃e‖ ≤

√
2(‖ṽ‖2 + ‖p̃e‖)2 =√

2‖e2‖. To guarantee that the matrices P1, P2 and P3 are positive definite, it is sufficient
to pick µ as

0 < µ < min

{
1√
kckv

,
4kp

4kv + kck2
p

}
.

To show exponential stability, let us consider the following Lyapunov function candi-
date:

L(xc1) := LR(R̃) + εLp(p̃e, ṽ), (C.7)

with some 0 < ε. Let |xc1|A1 ≥ 0 denote the distance to the set A1 such that |xc1|2A1
:=

infy=(X̄,I3,0,0,t̄)∈A1
(‖X̄ − X̂‖2

F + |R̃|2I + ‖p̃e‖2 + ‖ṽ‖2 + ‖t̄ − t‖2) = |R̃|2I + ‖p̃e‖2 + ‖ṽ‖2 =

|R̃|2I + ‖e2‖2. From (C.2) and (C.5), one has

α|xc1|2A1
≤ L(xc1) ≤ ᾱ|xc1|2A1

, (C.8)
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where α := min{4λM̄m , ελP1
m }, ᾱ := max{4λM̄M , ελP2

M }. From (C.3) and (C.6), one has

L̇(xc1) ≤ −λR|R̃|2I − ελP3
m ‖e2‖2 + 4εc1|R̃|I‖e2‖

= −
[
|R̃|I ‖e2‖

] [ λR −2εc1

−2εc1 ελP3
m

]
︸ ︷︷ ︸

P4

[
|R̃|I
‖e2‖

]

≤ −λFL(xc1), (C.9)

where P4 is positive definite by choosing ε < λRλ
P3
m /(4c

2
1), and λF := λP4

m /ᾱ with ᾱ given
in (C.8). In view of the jumps of (4.16)-(4.18), (4.23) and (C.1), one shows

L(xc1
+)− L(xc1)

= LR(R̃+)− LR(R̃) + εLp(p̃e+, ṽ+)− εLp(p̃e, ṽ)

= −Υ(X̂, r, b) + min
Xq∈Q

Υ(X>q X̂, r, b)

= −µQ(X̂, r, b) ≤ −δ, (C.10)

where we made use of the facts: LR = Υ(X̂, r, b),L+
R = minXq∈Q Υ(X>q X̂, r, b) from

(4.15)-(4.16), and L+
p = Lp from p̃e = p̃e, ṽ

+ = ṽ. Using the facts L+
R − LR ≤ −δ and

(C.3), one has LR(R̃(t, j)) ≤ · · · ≤ LR(R̃(0, 0))− jδ, where (t, j) ∈ domxc1. From (C.2),
one obtains j ≤ J := d4λM̄M/δe, where d·e denotes the ceiling function. Hence, one can
conclude that the number of jumps is finite.

Since the solution of xc1 is complete and the number of jumps is bounded, the hybrid
time domain takes the form domxc1 = ∪J−1

j=0 ([tj, tj+1]× {j}) ∪ ([tJ ,+∞)× {J}). In view
of (C.9)-(C.10), one obtains

L(xc1(t, j)) ≤ exp(−λF (t− tj))L(xc1(tj, j)) ≤ exp(−λF t)L(xc1(0, 0))

≤ exp(λFJ) exp(−λF (t+ j))L(xc1(0, 0)).

Substituting (C.8), one concludes that for each (t, j) ∈ domxc1,

|xc1(t, j)|2A1
≤ κ exp (−λF (t+ j)) |xc1(0, 0)|2A1

,

where κ := exp(λFJ)ᾱ/α. This completes the proof.

C.3 Proof of Lemma 4.1

To show uniform observability, we need to explicitly calculate the state transition matrix

Φ(t, τ). Consider a time-varying rotation matrix R̄(t) with R̄(0) ∈ SO(3) and ˙̄R(t) =
(−ω(t))×R̄(t). Note that R̄(t) does not have to be equal to R(t). Let us introduce the
matrices T (t) = blkdiag(R̄(t), R̄(t)), S(t) = blkdiag((−ω(t))×, (−ω(t))×) and constant
matrix Ā = A(t) − S(t). Then, one verifies that Ṫ (t) = S(t)T (t) and T (t)Ā = ĀT (t).
From Lemma 2.7, the state transition matrix Φ(t, τ) associated to A(t) can be expressed
as

Φ(t, τ) = T (t)Φ̄(t, τ)T−1(τ) (C.11)
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with Φ̄(t, τ) = exp (Ā(t− τ)) being the state transition matrix associated to Ā. Using
the facts T−1(τ) = T>(τ), T−1(τ)C> = C>R̄>(τ) and R̄>(τ)R̄(τ) = I3 one obtains

1

δ

∫ t+δ

t

T (t)Φ̄(τ, t)>T−1(τ)C>CT (τ)Φ̄(τ, t)T−1(t)dτ

= T (t)

(
1

δ

∫ t+δ

t

Φ̄(τ, t)>C>CΦ̄(τ, t)dτ

)
T−1(t) (C.12)

Note that the pair (Ā, C) is (Kalman) observable, i.e., rank[C,CĀ, · · · , CĀ6] = 6. There-
fore, from Lemma 2.10, there exist positive constants δ̄, µ̄ such that for all t ≥ 0 one has

W̄ (t, t + δ̄) = 1
δ̄

∫ t+δ̄
t

Φ̄(τ, t)>C>CΦ̄(τ, t)dτ ≥ µ̄I6. From (C.12), choosing δ ≥ δ̄ and

0 < µ ≤ δ̄
δ
µ̄, one obtains the the Observability Gramian as

WO(t, t+ δ) ≥ δ̄

δ
T (t)W̄ (t, t+ δ̄)T−1(t) ≥ δ̄

δ
I6 ≥ µI6,

for all t ≥ 0, which implies that (A(t), C) is uniformly observable. This completes the
proof.

C.4 Proof of Theorem 4.2

The proof of Theorem 4.2 is similar to the proof of Theorem 4.1. Consider the following
Lyapunov function candidate:

L(xc2) := LR(R̃) + εL̄p(x), (C.13)

with ε > 0, the real-valued function LR(R̃) = tr((I − R̃)M) defined in (C.1), and the
real-valued function L̄p : R6 → R+ defined as

L̄p(x) = x>P−1x (C.14)

It is easy to verify that 1
pM
‖x‖2 ≤ L̄p ≤ 1

pm
‖x‖2. Let |xc2|A2 ≥ 0 denote the distance to the

setA2 such that |xc2|2A2
:= infy=(X̄,I3,0,t̄)∈A2

(‖X̄−X̂‖2
F+|R̃|2I+‖x‖2+‖t̄−t‖2) = |R̃|2I+‖x‖2.

Recall (C.2), one has

α|xc2|2A2
≤ L(xc2) ≤ ᾱ|xc2|2A2

, (C.15)

where α := min{4λM̄m , ε
pM
}, ᾱ := max{4λM̄M , ε

pm
}. Using the fact that Ṗ−1 = −P−1ṖP−1,

the time-derivative of L̄p in the flows is given by

˙̄Lp = x>(P−1A+ A>P−1 − 2C>Q(t)C + Ṗ−1)x + 2x>P−1ν

≤ −x>P−1V (t)P−1x− x>C>Q(t)Cx + 2x>P−1ν

≤ − vm
p2
M

x>x +
4
√

2‖g‖
pm

‖x‖|R̃|I (C.16)
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where we made use of the facts −x>C>Q(t)Cx ≤ 0, pmI6 ≤ P ≤ pMI6 and ‖ν‖ ≤
‖I − R̃‖F‖g‖ = 2

√
2‖g‖|R̃|I . In view of (C.3) and (C.16), one has

L̇(xc2) ≤ −λR|R̃|2I −
εvm
p2
M

x>x +
4
√

2εg

pm
‖x‖|R̃|I

= −
[
|R̃|I ‖x‖

] [ λR −2
√

2εg
pm

−2
√

2εg
pm

εvm
p2
M

]
︸ ︷︷ ︸

P4

[
|R̃|I
‖x‖

]

≤ −λFL(xc2), xc2 ∈ F c2 , (C.17)

where P4 is positive definite by choosing ε < λRvmP
2
m/(8g

2p2
M), and λF := λP4

m /ᾱ with ᾱ
given in (C.15). Using the facts x+ = x and L̄p(x+) = L̄p(x), one can also show that

L(xc2
+)− L(xc2) = LR(R̃+)− LR(R̃) + εL̄p(x+)− εL̄p(x)

≤ −δ, xc2 ∈ J c
2 . (C.18)

Therefore, in view of (C.15), (C.17) and (C.18), the rest proof is completed using similar
steps as in the proof of Theorem 4.1.

C.5 Proof of Theorem 4.3

In view of (2.86), (4.10), (4.19), (4.22), (4.32)-(4.33), one has the following hybrid closed-
loop system:

Hc
3 :

{
ẋc3 = F3(xc3) xc3 ∈ F c3
xc3

+ = G3(xc3) xc3 ∈ J c
3

(C.19)

where the flow and jump sets are defined as F c3 := {(xc1, b̂ω, b̃ω) ∈ Sc3 : xc1 ∈ F c1} and
J c

3 := {(xc1, b̂ω, b̃ω) ∈ Sc3 : xc1 ∈ J c
1 }, and the flow and jump maps are given by

F3(xc3) =



f(X̂, ωy − b̂ω, a)−∆X̂

R̃((R̂b̃ω)× − kRPso(3)(MR̃))

−kpkcp̃e + ṽ − (R̃R̂b̃ω)×(p− pc − p̃e)
−kvkcp̃e − (R̃R̂b̃ω)×(v − ṽ) + (I3 − R̃)g

1

−kωR̂>ψso(3)(MR̃)

−kωR̂>ψso(3)(MR̃)


, G3(xc3) =



X−1
q X̂

R̃Rq

ṽ
p̃e
t

b̂ω
b̃ω


,

where the following facts have been used: p̃e = (p− pc)− R̃(p̂− pc), R̃(R̂b̃ω)×(p̂− pc) =
(Rb̃ω)×R̃(p̂− pc) = (Rb̃ω)×(p− pc − p̃e), R̃(R̂b̃ω)×v̂ = (Rb̃ω)×R̃v̂ = (Rb̃ω)×(v − ṽ). Note
that the sets F c3 ,J c

3 are closed, and F c3 ∪J c
3 = Sc3. Note also that the closed-loop system

(C.19) satisfies the hybrid basic conditions given in Section 2.5.1 and is autonomous by
taking ωy, a, p, v as functions of time.
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Consider the real-valued function VR = tr((I3−R̃)M)+ 1
kω
b̃>ω b̃ω, whose time-derivative

in the flows is given by

V̇R = tr(−R̃((R̂b̃ω)× − kRPso(3)(MR̃))M)− 2b̃>ω R̂
>ψso(3)(MR̃)

= −kR‖Pso(3)(MR̃)‖2
F ≤ 0 (C.20)

where we made use of the facts tr(−MR̃(R̂b̃ω)×) = 〈〈(R̂b̃ω)×,MR̃〉〉 = 2ψso(3)(MR̃)>R̂b̃ω
and tr(MR̃Pso(3)(MR̃)) = −〈〈Pso(3)(MR̃),MR̃〉〉 = −〈〈Pso(3)(MR̃),Pso(3)(MR̃)〉〉. Then,
one concludes that VR is non-increasing in the flows. By virtue of Proposition 4.2, for
each jump one has

V+
R − VR ≤ −δ. (C.21)

Therefore, for any xc3(0, 0) ∈ Sc3, there exists cbω > 0 such that cbω := sup(t,j)�(0,0) ‖b̃ω(t, j)‖
for all (t, j) ∈ domxc3. Note that ‖b̃ω(t, j)‖2 ≤ VR(t, j) ≤ VR(0, 0), which implies that cbω
is bounded by the initial conditions.

Let us modify the real-valued function L̄R : SO(3)× R3 → R+ as follows:

L̄R(R̃, b̃ω) = LR(R̃) +
1

kω
b̃>ω b̃ω − µ̄ψso(3)(R̃)>R̂b̃ω, (C.22)

where µ̄ > 0. Let e1 = [|R̃|I , ‖b̃ω‖]>. Following similar steps as in the proof of [Berkane
et al., 2017b, Theorem 1] and Theorem 3.3 in Chapter 3, there exists a constant µ̄∗ such
that for all µ̄ ≤ µ̄∗ one has

cR‖e1‖2 ≤ L̄R ≤ c̄R‖e1‖2, (C.23)

˙̄LR ≤ −λ̄R‖e1‖2 xc3 ∈ F c3 (C.24)

for some positive constants cR, c̄R and λ̄R. From [Berkane et al., 2017b, Theorem 1] and
Theorem 3.3 in Chapter 3, the constant λ̄R depends on cbω , which is associated to the
initial conditions.

On the other hand, we consider the real-valued functions Lp defined in (C.4). Defining
e2 := [‖p̃e‖ ‖ṽ‖]>, one verifies that e>2 P1e2 ≤ Lp ≤ e>2 P2e2 as shown in (C.5). From
Assumption 4.2, there exist two constants cp, cv such that cp := supt≥0 ‖p − pc‖, cv :=
supt≥0 ‖v‖. Then, in the flows of (C.19) one has

d

dt
‖p̃e‖2 = 2p̃>e (−kckpp̃e + ṽ − (Rb̃ω)×(p− pc − p̃e))

≤ −2kckp‖p̃e‖2 + 2cp‖p̃e‖‖b̃ω‖+ 2p̃>e ṽ

d

dt
‖ṽ‖2 = 2ṽ>(−kckvp̃e − (Rb̃ω)×(v − ṽ) + (I − R̃)g)

≤ 2(cv‖b̃ω‖+ 2
√

2g|R̃|I)‖ṽ‖ − 2kckvṽ
>p̃e

− d

dt
p̃>e ṽ = (kckpp̃e − ṽ + (Rb̃ω)×(p− pc − p̃e))>ṽ

+ p̃>e (kckvp̃e + (Rb̃ω)×(v − ṽ)− (I3 − R̃)g)
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≤ −‖ṽ‖2 + kckp‖p̃e‖ṽ‖+ cp‖ṽ‖‖b̃ω‖
+ kckv‖p̃e‖2 + cv‖b̃ω‖‖p̃e‖+ 2

√
2g|R̃|I‖p̃e‖

where we made use of the facts: ‖I3−R̃‖F = 2
√

2|R̃|I , ((Rb̃ω)×)> = −(Rb̃ω)×, x>(Rb̃ω)×x =
0,∀x ∈ R3. Let c2 := max{cp + µcv,

cv
kckv

+ µcp}, c3 := 2
√

2gmax{ 1
kckv

, µ} and c4 :=
max{c2, c3}. Then, the time-derivative of Lp in the flows of (C.19) satisfies

L̇p ≤ −(kp − µkv)kc‖p̃e‖2 − µ‖ṽ‖2 + µkckp‖p̃e‖‖ṽ‖
+ c2(‖p̃e‖+ ‖ṽ‖)‖b̃ω‖+ c3(‖ṽ‖+ ‖p̃e‖)|R̃|I
≤ −e>2 P3e2 + 2c4‖e1‖‖e2‖, (C.25)

where P3 is given in (C.6), and the following facts have been used: |R̃|I +‖b̃ω‖ ≤
√

2‖e1‖
and ‖ṽ‖+ ‖p̃e‖ ≤

√
2‖e2‖. Pick

0 < µ < min

{
1√
kckv

,
4kp

4kv + kck2
p

}
such that the matrices P1, P2 and P3 are positive definite.

Consider the following Lyapunov function candidate:

L(xc3) := L̄R(R̃, b̃ω) + εLp(p̃e, ṽ), (C.26)

where ε > 0. From (C.23) and (C.4), one has

α‖xc3‖2
A3
≤ L(xc3) ≤ ᾱ‖xc3‖2

A3
, (C.27)

where α := min{cR, ελP1
m }, ᾱ := max{c̄R, ελP2

M }. From (C.24) and (C.25), for any xc3 ∈ F c3
one has

L̇(xc3) ≤ −λ̄R‖e1‖2 − ελP3
m ‖e2‖2 + 2εc4‖e1‖‖e2‖

= −
[
‖e1‖ ‖e2‖

] [ λ̄R −εc4

−εc4 ελP3
m

]
︸ ︷︷ ︸

P4

[
‖e1‖
‖e2‖

]

≤ −λFL(xc3), (C.28)

where P4 is positive definite by choosing ε < λ̄Rλ
P3
m /c

2
4, and λF := λP4

m /ᾱ. In view of
(4.16)-(4.18), (C.4), (C.19) and (C.22) , for any xc3 ∈ J c

3 one has

L(xc3
+)− L(xc3)

= L̄R(R̃+, b̃+
ω )− L̄R(R̃, b̃ω) + εLp(p̃+

e , ṽ
+)− εLp(p̃e, ṽ)

= −δ − µ̄ψso(3)(R̃)>R̂b̃ω + µ̄ψso(3)(R̃Rq)
>R>q R̂b̃ω

≤ −δ + 4µ̄cbω

where we made use of the results from (C.10), and the fact ‖ψso(3)(R̃)‖ ≤ 1 from

‖ψso(3)(R̃)‖2 = 4|R̃|2I |(1 − |R̃|2I) ≤ 1,∀|R̃|2I ∈ [0, 1]. Choosing µ̄ < min{ū∗, δ/2cbω},
one has

L(xc3
+)− L(xc3) ≤ −δ∗, xc3 ∈ J c

3 , (C.29)
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where δ∗ := −δ + 2µ̄cbω > 0. In view of (C.28) and (C.29), one has 0 ≤ L(xc3(t, j)) ≤
L(xc3(0, 0)) − jδ∗, which leads to j ≤ J := dL(xc3(0, 0))/δ∗e. This implies that the
number of jumps is finite. Moreover, one has L(xc3(t, j)) ≤ exp(−λF t)L(xc3(0, 0)) ≤
exp(λFJ) exp(−λF (t + j))L(xc3(0, 0)). Substituting (C.27), one concludes that for each
(t, j) ∈ domxc3,

|xc3(t, j)|2A3
≤ κ exp (−λF (t+ j)) |xc3(0, 0)|2A3

,

where κ := exp(λFJ)ᾱ/α. This completes the proof.

C.6 Proof of Theorem 4.4

The proof of Theorem 4.4 is similar to the proof of Theorem 4.2 and Theorem 4.3. In view
of (4.19), (4.22), (4.35)–(4.38) and (2.116), one obtains the following hybrid closed-loop
system:

Hc
4 :

{
ẋc4 = F4(xc4) xc4 ∈ F c4
xc4

+ = G4(xc4) xc4 ∈ J c
4

(C.30)

where the flow and jump sets are defined as F c4 := {(xc2, b̂ω, b̃ω) ∈ Sc4 : xc2 ∈ F c2} and
J c

4 := {(xc2, b̂ω, b̃ω) ∈ Sc4 : xc2 ∈ J c
2 } with F c2 ,J c

2 given in (4.31), and the flow and jump
maps are given by

F4(xc4) =



f(X̂, ωy − b̂ω, a)−∆X̂

R̃(−kRPso(3)(MR̃))
Ax−KCx + ν

1

−kωR̂>ψso(3)(MR̃)

−kωR̂>ψso(3)(MR̃)


, G4(xc4) =



X−1
q X̂

R̃Rq

x
t

b̂ω
b̃ω


.

Note that the sets F c4 ,J c
4 are closed, and F c4 ∪ J c

4 = Sc4. Note also that the closed-
loop system (4.31) satisfies the hybrid basic conditions given in Section 2.5.1 and is
autonomous by taking ωy, a, A and K as functions of t. Consider the following Lyapunov
function candidate:

L(xc4) := L̄R(R̃, b̃ω) + εL̄p(x), (C.31)

where ε > 0, the real-valued function L̄R is defined in (C.22) and the real-valued function
L̄p is defined in (C.14). It is easy to verify that 1

pM
‖x‖2 ≤ L̄p ≤ 1

pm
‖x‖2. Using the fact

1
pM
‖x‖2 ≤ L̄p ≤ 1

pm
‖x‖2 and property (C.23), one has

α|xc4|2A4
≤ L(xc4) ≤ ᾱ|xc4|2A4

, (C.32)

where α := min{cR, ε
pM
}, ᾱ := max{c̄R, ε

pm
}. Using the facts cp := supt≥0 ‖p − pc‖,

cv := supt≥0 ‖v‖ and ‖e1‖2 = |R̃|2I + ‖b̃ω‖2, one can show that ‖ν‖2 ≤ (cp + cv)‖b̃ω‖2 +

8‖g‖2|R̃|2I ≤ c2
5‖e1‖2 with c5 := max{√cp + cv, 2

√
2‖g‖}. Then, the time-derivative of L̄p

in the flows is given by

˙̄Lp = x>(P−1A+ A>P−1 − 2C>Q(t)C + Ṗ−1)x + 2x>P−1ν
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≤ −x>P−1V (t)P−1x− x>C>Q(t)Cx + 2x>P−1ν

≤ − vm
p2
M

x>x +
2c5

pm
‖x‖‖e1‖ (C.33)

where we made use of the facts −x>C>Q(t)Cx ≤ 0 and ‖ν‖ ≤ c5‖e1‖. From (C.24) and
(C.33), one obtains

L̇(xc4) ≤ −λ̄R‖e1‖2 − εvm
p2
M

x>x +
2εc5

pm
‖e1‖‖x‖

= −
[
‖e1‖ ‖x‖

] [ λ̄R − εc5
pm

− εc5
pm

εvm
p2
M

]
︸ ︷︷ ︸

P4

[
‖e1‖
‖x‖

]

≤ −λFL(xc4), xc4 ∈ F c4 , (C.34)

where P4 is positive definite by choosing ε < λ̄Rvmp
2
m/(c

2
5p

2
M), and λF := λP4

m /ᾱ with ᾱ
given in (C.32). In view of (4.16)-(4.18), (C.14), (C.22) and (C.30), for any xc4 ∈ J c

4 one
has

L(xc4
+)− L(xc4)

= L̄R(R̃+, b̃+
ω )− L̄R(R̃, b̃ω) + εL̄p(x+)− εL̄p(x)

= −δ − µ̄ψso(3)(R̃)>R̂b̃ω + µ̄ψso(3)(R̃Rq)
>R>q R̂b̃ω

≤ −δ + 2µ̄cbω

where we made use of the results from (C.10), and the fact ‖ψso(3)(R̃)‖ ≤ 1. Choosing
µ̄ < min{ū∗, δ/2cbω}, one has

L(xc4
+)− L(xc4) ≤ −δ∗, xc4 ∈ J c

4 , (C.35)

where δ∗ := −δ + 2µ̄cbω > 0. In view of (C.32), (C.34) and (C.35), the rest of the proof
can be completed by using similar steps as in the proof of Theorem 4.3.

C.7 Proof of Lemma 4.3

For the sake of simplicity, let $ := ωy − b̂ω = ω − b̃ω. From (4.43) and (C.20)-(C.21),

one shows that b̃ω and ˙̃bω are bounded. Moreover, from Assumption 4.2 and Assumption
4.3, one obtains that ω and ω̇ are uniformly bounded. Hence, one can show that the
time-derivatives of $ and A are well-defined and bounded for all t ≥ 0. Define N0 = C,
N1 = N0A and N2 = N1A+ Ṅ1. From Lemma (2.8), condition (2.111) is satisfied if there
exist a (strictly) positive constant µ̄ such that

O(τ)>O(τ) ≥ µ̄I9, ∀t ≥ 0 (C.36)

where

O =

N0

N1

N2

 =

 I3 03×3 03×3

−$× I3 03×3

($×)2 − $̇× −2$× I3


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It is easy to verify that matrix O is well-defined and has full rank (i.e., det(O) = 1) for all
t ≥ 0. This implies that there exists a constant µ̄ > 0 such that O(t)>O(t) ≥ µ̄I9,∀t ≥ 0.
Therefore, applying Lemma (2.8) one can conclude that condition (2.111) is satisfied. It
follows that the pair (A(t), C) is uniformly observable. This completes the proof.



Appendix D

Proofs of Chapter 5

D.1 Solving the infinite-dimensional problem

In this subsection, we provide a procedure motivated by [Sferlazza et al., 2019] to solve the
infinite-dimensional problem ΞP (τ) < 0, for all τ ∈ [Tm, TM ]. First, let (λi(τ), vi(τ)) ∈
R × Sn−1 be the i-th pair of eigenvalue and eigenvector of the matrix ΞP (τ) such that
λi(τ)vi(τ) = ΞP (τ)vi(τ). This implies that λi(τ) = v>i (τ)ΞP (τ)vi(τ) is a continuous
function of τ . Taking partial derivative with respect to τ on both sides of λi(τ) =
v>i (τ)ΞP (τ)vi(τ), one has

∂λi(τ)

∂τ
= v>i (τ)

∂ΞP (τ)

∂τ
vi(τ) + 2v>i (τ)ΞP (τ)

∂vi(τ)

∂τ

= v>i (τ)
∂ΞP (τ)

∂τ
vi(τ) + 2λi(τ)v>i (τ)

∂vi(τ)

∂τ

= v>i (τ)
∂ΞP (τ)

∂τ
vi(τ)

where we made use of the facts ‖vi(τ)‖ = 1, v>i (τ)∂vi(τ)
∂τ

= 0 and λi(τ)vi(τ) = ΞP (τ)vi(τ)

for all τ . Using the definition of ΞP in (5.8) and the fact that ∂Φ̂(τ)/∂τ = eAτA = AeAτ ,
the first-order derivatives of λi(τ) with respect to τ is given as∣∣∣∣∂λi(τ)

∂τ

∣∣∣∣ =

∣∣∣∣v>i (τ)
∂ΞP (τ)

∂τ
vi(τ)

∣∣∣∣
= v>i (τ)(I −KC)>eA

>τ (A>P + PA)eAτ (I −KC)vi(τ)

≤ 2‖P‖‖A‖‖eAτ‖2‖I −KC‖2 := δ∗P .

Then, according to [Sferlazza et al., 2019, Lemma 4], there exist a constant µ > 0 and
a value τ̄ ∈ [Tm, TM ] such that ΞP (τ̄) < −2µI, then the maximum eigenvalue of ΞP (τ)
cannot be greater than −µ as long as τ ∈ [τ̄ − µ

δ∗P
, τ̄ + µ

δ∗P
].

The following procedure adapted from [Sferlazza et al., 2019, Algorithm 1] is presented
to solve the infinite-dimensional problem in a finite number of steps:

Step 1: Obtain an exponential bound on eAτ , ∀τ ∈ [Tm, TM ] by finding a solution
Π = Π> > 0 and β > 0 satisfying

(−A+ βI)>Π + Π(−A+ βI) > 0 (D.1)
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From [Sferlazza et al., 2019, Lemma 3], one can show that ‖eAτ‖ ≤ γeβτ ≤ γeβTM :=
cA,∀τ ∈ [Tm, TM ] with γ :=

√
λM(Π)/λm(Π).

Step 2: Solve the finite-dimensional optimization problem with a constant µ > 0
and a discrete set T ⊂ [Tm, TM ] (initially T = {Tm, TM})

(P ∗, p̄∗) = arg min
P=P>,p̄

p̄, subject to

ΞP (τ) < −2µI, τ ∈ T
I ≤ P ≤ p̄I (D.2)

Step 3: Let δ∗T := µ(2p̄∗c2
A‖A‖‖I − CK‖2)−1, and define a finite discrete set

Td = [Tm : 2δ∗T : TM ]. Check the eigenvalue conditions

ΞP ∗(τ) < −µI, ∀τ ∈ Td (D.3)

If these steps are successful, the solution P ∗ from Step 2 is a solution of the infinite-
dimensional problem ΞP (τ) < 0 for all τ ∈ [Tm, TM ] and the algorithm stops.
Otherwise, add a worst-case value τ = arg maxτ∈Td(λM(ΞP ∗(τ))) to the discrete set
T and restarts from Step 2 again.

Note that if the infinite-dimensional problem ΞP (τ) < 0,∀τ ∈ [Tm, TM ] is not feasible,
one has to redesign the gain matrix K such that this optimization problem is feasible.
The finite-dimensional optimization problem (D.2) and (D.1) can be solved by a convex
optimization solver like CVX [Grant et al., 2009].

D.2 Proof of Lemma 5.1

From the definition of yi given in (5.4), one has

N∑
i=1

ki(pi − p̄− R̄yi) =
N∑
i=1

ki(pi − p̄− R̄R>(pi − p))

= kc(pc − p̄− R̄R>(pc − p)), (D.4)

where we made use of kc =
∑N

i=1 ki and kcpc =
∑N

i=1 kipi. This implies (5.7).
On the other hand, one can show that

N∑
i=1

ki(pi − pc)×(pi − p̄− R̄yi) =
N∑
i=1

ki(pi − pc)×(pi − p̄− R̄R>(pi − p))

=
N∑
i=1

ki(pi − pc)×(I − R̄R>)pi

=
N∑
i=1

ki(pi − pc)×(I − R̄R>)(pi − pc), (D.5)
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where we made use of
∑N

i=1 kipi =
∑N

i=1 kipc, (i.e.,
∑N

i=1 ki(pi− pc) = 0). From the facts
(pi− pc)×(pi− pc) = 0 and −(pi− pc)×R̄R>(pi− pc) = (R̄R>(pi− pc))×(pi− pc), one can
further show that

N∑
i=1

ki(pi − pc)×(pi − p̄− R̄yi) =
N∑
i=1

ki(R̄R
>(pi − pc))×(pi − pc). (D.6)

Applying the property (2.46) in Lemma 2.2 and the definition of M , one obtains that

N∑
i=1

ki(pi − pc)×(pi − p̄− R̄yi) = 2ψso(3)(MRR̄>), (D.7)

which gives (5.6). This completes the proof.

D.3 Proof of Theorem 5.1

First, we are going to show that |R̃(t)|I < 1,∀t ≥ 0 for any |R̃(0)|I <
√
ςM and some

kR > 0. This step guarantees that the innovation term σR = kRψso(3)(MR̃) vanishes only

at R̃ = I3 excluding the undesired critical points R̃ = Ra(π, v ∈ E(M)). It is clear that
for any |R̃(0)|I <

√
ςM , there exists a constant 0 ≤ ε∗ < 1 such that |R̃(0)|2I = ε∗ςM .

Consider the following real-valued function on f× [0, TM ]:

W =
1

2
tr((I − R̃)M)− τη>ψso(3)(MR̃) + µeτη>η (D.8)

with some µ > 0 . Let ζ := [|R̃|I , ‖η‖]> such that ‖ζ‖2 = |R̃|2I + ‖η‖2. Using the
properties (2.37) and (2.38), one has ‖ψso(3)(MR̃)‖2 ≤ tr((I − R̃)W ) ≤ 4λW̄M |R̃|2I with
W̄ = 1

2
(tr(W )I −W ). For all τ ≥ 0, one obtains the following inequalities:

λP1
m ‖ζ‖2 ≤ W ≤ λP2

M ‖ζ‖2, (D.9)

where the matrices P1 and P2 are given by

P1 =

 2λM̄m −
√
λW̄MTM

−
√
λW̄MTM µ

 , P2 =

 2λM̄M

√
λW̄MTM√

λW̄MTM µeTM

 .
To guarantee that matrices P1 and P2 are positive definite, it is sufficient to choose
µ > 1

2
λW̄MT

2
M/λ

M̄
m . The minimum eigenvalue of P1 is explicitly given by

λP1
m = λM̄m +

µ

2
− 1

2

√
(2λM̄m + µ)2 − 4(2λM̄mµ− λW̄MT 2

M)

= λM̄m +
µ

2
− 1

2

√
(2λM̄m − µ)2 + 4λW̄MT

2
M

It is easy to verify that λP1
m < min{2λM̄m , µ} ≤ 2λM̄m , ∂λP1

m /∂µ > 0 for all µ > 0, and
λP1
m → 2λM̄m as µ → +∞. Hence, given a constant 0 ≤ ε∗ < 1, it is always possible to
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find a constant µε∗ >
1
2
λW̄MT

2
M/λ

M̄
m (depending on ε∗) such that, for any µ ≥ µε∗ , one has

λP1
m ≥ 2ε∗λM̄m = 2ε∗ςMλ

M̄
M . Then, the time-derivative of W along the flows of (5.16) is

given by

Ẇ =
1

2
tr(MR̃η×) + η>ψso(3)(MR̃) + τη>E(MR̃)η> − µeτη>η

≤ TM‖M‖Fη>η> − µη>η,

where we made use of the properties (2.44) and (2.42), and the facts: eτ ≥ 1 for all τ ≥ 0
and tr(MR̃η×) = −〈〈MR̃, η×〉〉 = −2η>ψso(3)(MR̃). Choosing µ > max{µε∗ , TM‖M‖F},
one obtains

Ẇ ≤ (TM‖M‖F − µ) η>η ≤ 0, (D.10)

which implies that Ẇ is negative semidefinite and W is non-increasing in the flows.
Let W+ be the value of W after each jump at τ = 0. Then, one can show that

W+ −W =
1

2
tr((I − R̃+)M)− 1

2
tr((I − R̃)M)

− ν(η+)>ψso(3)(MR̃+) + τη>ψso(3)(MR̃) + µeν‖η+‖2 − µeτ‖η‖2

≤ −kR
(
Tm − µeTMkR

)
‖ψso(3)(MR̃)‖2 − µ‖η‖2

where ν := τ+ ∈ [Tm, TM ], and we made use of the facts R̃+ = R̃ and η+ = kRψso(3)(MR̃).

Let k∗R := 1
µ
Tme

−TM , which is dependent on ε∗ and then |R̃(0)|I . Choosing kR < k∗R, one

has %∗ := Tm − µeTMkR > 0. Therefore, one can further show that

W+ −W ≤ −kR%∗‖ψso(3)(MR̃)‖2 − µ‖η‖2, (D.11)

which implies that W is non-increasing after each jump. From (D.9) and (D.11), one
can show that W(t) ≤ W(0) for all t ≥ 0. From the initial conditions ‖η(0)‖ = 0 and
|R̃(0)|2I < ε∗ςM , one can show that

|R̃|2I ≤
1

λP1
m

W(0) ≤ 1

ε∗ςM
|R̃(0)|2I < 1, ∀t ≥ 0, (D.12)

where we made use of the facts ‖η(0)‖ = 0, W ≥ λP1
m (|R̃|2I + ‖η‖2) ≥ λP1

m |R̃|2I , W(0) ≤
2λM̄M |R̃(0)|2I , and λP1

m ≥ 2ε∗ςMλ
M̄
M .

Now, we are going to show exponential stability of the set A. Since |R̃|I < 1,∀t ≥ 0,
there exists a constant 0 < ε < 1 such that |R̃|2I ≤ 1 − ε for all t ≥ 0. Then, it follows
that ‖ψso(3)(MR̃)‖2 ≥ 2(1 − |R̃|2I)λW̄m |R̃|2I ≥ ελW̄m |R̃|2I . From (D.9) and (D.11), it follows
that

W+ ≤ W − kR%∗λW̄m ε|R̃|2I − µ‖η‖2

≤
(

1− c1

λP2
M

)
W = e−c2W (D.13)
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with c1 := min{kR%∗λW̄m ε, µ} and c2 := − ln(1 − c1/λ
P2
M ). Since W+ ≥ 0, one can show

that 0 < 1− c1/λ
P2
M < 1 and then c2 > 0. Consider the following real-valued function on

SO(3)× R3 × [0, TM ]:

V1(R̃, η, τ) = eλ
F
1 τW (D.14)

with 0 < λF1 < c2/TM . In view of (D.9), (D.10) and (D.13), one can show that

α1‖ζ‖2 ≤ V1 ≤ ᾱ1‖ζ‖2 (D.15)

V̇1 ≤ −λF1 V1 (D.16)

V+
1 ≤ e−λ

J
1V1 (D.17)

where α1 := λP1
m , ᾱ1 := e(λF1 TM )λP2

M , λ
J
1 := c2 − λF1 TM > 0, and we made use of the facts:

V+
1 = eλ

F
1 τ

+W+ ≤ e(λF1 TM−c2)W and W ≤ V1.
Next, let us consider the following real-valued function:

V2(x) = eλ
F
2 τx>Φ̂>(τ)P Φ̂(τ)x. (D.18)

One can easily verify that there exist two positive constants α2, ᾱ2 such that

α2‖x‖2 ≤ V2(x, τ) ≤ ᾱ2‖x‖2 (D.19)

with

α2 := min
τ∈[0,TM ]

eλ
F
2 τλ

(Φ̂>(τ)P Φ̂(τ))
m , ᾱ2 := max

τ∈[0,TM ]
eλ

F
2 τλ

(Φ̂>(τ)P Φ̂(τ))
M .

The time-derivative of V2 along the flows of (5.16) is given by

V̇2 = −λF2 V2 + eλ
F
2 τx>Φ̂>(τ)(A>P + PA)Φ̂(τ)x

+ eλ
F
2 τx>(

˙̂
Φ>(τ)P Φ̂(τ) + Φ̂>(τ)P

˙̂
Φ(τ))x

≤ −λF2 V2 (D.20)

where we made use of the facts AΦ̂(τ) = Φ̂(τ)A and
˙̂
Φ(τ) = −AΦ̂(τ). Since ΞP (ν) <

0,∀ν ∈ [Tm, TM ], there exists a positive small enough scalar cq < pM := λPM such that
ΞP (ν) ≤ −cqI,∀ν ∈ [Tm, TM ]. Then, after each jump one has

V2(x+) = x>(eλ
F
2 ν(I −KC)>Φ̂(ν)>P Φ̂(ν)(I −KC))x

= eλ
F
2 νx>ΞP (ν)x + eλ

F
2 νx>P x

≤ −eλF2 νcqx>x + eλ
F
2 νpMx>x

= (pM − cq) eλ
F
2 ν‖x‖2

≤ pM − cq
ᾱ2

eλ
F
2 TMV2

where ν := τ+ ∈ [Tm, TM ]. Pick λF2 < 1
TM

ln( ᾱ2

pM−cq
) such that pM−cq

ᾱ2
eλ

F
2 TM < 1 holds.

Letting λJ2 := − ln(pM−cq
ᾱ2

eλ
F
2 TM ), one has

V2(x+) ≤ e−λ
J
2V2(x). (D.21)
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Let |x1|A ≥ 0 be the distance of x1 with respect to the set A such that |x1|2A :=
inf(R̄,η̄,x̄1,τ̄)∈A(|R̃R̄>|2I +‖η− η̄‖2 +‖x− x̄1‖2 +‖τ− τ̄‖2) = |R̃|2I +‖η‖2 +‖x‖2 = ‖ζ‖2 +‖x‖2.
Consider the Lyapunov function candidate V(x1) = V1 + V2. From (D.15)-(D.17) and
(D.19)-(D.21), one can show that

α|x1|2A ≤ V(x1) ≤ ᾱ|x1|2A (D.22)

V̇ ≤ −λFV , x1 ∈ F1 (D.23)

V+ ≤ e−λJV , x1 ∈ J1 (D.24)

where α := min{α1, α2}, ᾱ := max{ᾱ1, ᾱ2}, λF := min{λF1 , λF2 } and λJ := min{λJ1 , λJ2}.
Let λc := min{λF , λJ}. In view of (D.23) and (D.24), one has V(x1(t, j)) ≤ e−λc(t+j)V(x0,0).
Then, from (D.22) one can conclude that, for all (t, j) ∈ domx1,

|x1(t, j)|A ≤
√
ᾱ

α
e−

1
2
λc(t+j)|x1(0, 0)|A, (D.25)

which shows that the set A is exponentially stable. This completes the proof.

D.4 Proof of Theorem 5.2

Following the same steps as the first part of the proof of Theorem 5.1, one can guarantee
that |R̃|I < 1,∀t ≥ 0 with the initial conditions |R̃(0)|I <

√
ςM and ‖η(0)‖ = 0. More-

over, considering the real-valued function V1 defined in (D.14), inequalities (D.15)-(D.17)
hold.

On the other hand, let us consider the following real-valued function:

V2 = e−γτx>P−1x (D.26)

with some γ > 0. From Lemma 2.12, one has

α′2‖x‖2 ≤ V2 ≤ ᾱ′2‖x‖2 (D.27)

where α′2 := 1
pM
e−γTM and ᾱ′2 := 1

pm
. The time-derivative of V2 along the flows of (5.25)

is given by

V̇2 = γV2 + e−γτx>(A>t P
−1 + P−1A+ Ṗ−1)x

= γV2 − e−γτx>P−1V P−1x

≤
(
γ − e−γTM vmpm

p2
M

)
V2

= −λF2 V2 (D.28)

where λF2 := −γ+e−γTM vmpm
p2
M

and vm := inft≥0 λ
V
m. Let $(γ) = −γ+e−γTM vmpm

p2
M

. In view

of the facts $(0) > 0, $(vmpm
p2
M

) < 0, and ∂$/∂γ = −1− e−γTM vmpmTM
p2
M

< 0 for all γ > 0,

there exists a constant γ∗ ∈ (0, vm
pM

) such that $(γ∗) = 0. Therefore, one can always pick
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a small enough positive constant γ, i.e., γ < γ∗ such that λF2 > 0. Since the solution of P
is well defined for all (t, j) ∈ domx2 and (P+)−1 = P−1+C>QC, one verifies that I−KtC
has full rank and (P+)−1 can be rewritten as (P+)−1 = P−1(I −KC)−1. Therefore, for
each jump at τ = 0, one has

V+
2 = e−γν(x+)>(P+)−1x+

= e−γνx>(I −KC)>(P+)−1(I −KtC)x

= e−γνx>(I −KC)>P−1x

= e−γνx>P−1x− e−γνx>C>(CPC> +Q)−1CPP−1x

≤ e−λ
J
2V2 (D.29)

where λJ2 := γTm, ν = τ+ ∈ [Tm, TM ], and we made use of the fact that C>(CPC> +
Q)−1C is positive semidefinite.

Let |x2|A ≥ 0 be the distance of x1 with respect to set A such that |x2|2A :=
inf(R̄,η̄,x̄2,τ̄)∈A(|R̃R̄>|2I + ‖η − η̄‖2 + ‖x − x̄2‖2 + ‖τ − τ̄‖2) = ‖ζ‖2 + ‖x‖2. Consider the
Lyapunov function candidate V(x2) = V1 + V2. From (D.15)-(D.17) and (D.27)-(D.29),
one can show that

α|x2|2A ≤ V(x2) ≤ ᾱ|x2|2A (D.30)

V̇ ≤ −λFV , x2 ∈ F2 (D.31)

V+ ≤ e−λJV , x2 ∈ J2 (D.32)

where α := min{α1, α2}, ᾱ := max{ᾱ1, ᾱ2}, λF := min{λF1 , λF2 } and λJ := min{λJ1 , λJ2}.
Let λc := min{λF , λJ}. In view of (D.31) and (D.32), one has

V(x2(t, j)) ≤ e−λc(t+j)V(x2(0, 0)).

Then, from (D.30) one can conclude that, for all (t, j) ∈ domx2,

|x2(t, j)|A ≤
√
ᾱ

α
e−

1
2
λc(t+j)|x2(0, 0)|A, (D.33)

which shows that the set A is exponentially stable. This completes the proof.

D.5 Proof of Lemma 5.2

In view of (5.31) and (5.33), one obtains

εV̇1 + V̇2 = −ελ1V1 − λ2V2 + β‖ζ‖‖x‖

≤ −ελ1V1 − λ2V2 +
ελ1α1

2
‖ζ‖2 +

β2

2ελ1α1

‖x‖2

where we made use of the inequality β‖ζ‖‖x‖ ≤ ελ1α1

2
‖ζ‖2 + β2

2ελ1α1
‖x‖2. From (5.30) and

(5.32), one can further show that

εV̇1 + V̇2 ≤ −ελ1V1 − λ2V2 +
ελ1

2
V1 +

β2

2ελ1α1α2

V2
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= −ελ1

2
V1 −

(
λ2 −

β2

2ελ1α1α2

)
V2

From the fact ε > β2

2λ1λ2α1α2
, one has λ2 − β2

2ελ1α1α2
> 0, and applying the definition of λ,

one obtains (5.34).

D.6 Proof of Theorem 5.3

Following the same steps as the first part of the proof of Theorem 5.1, one can guarantee
that |R̃|I < 1,∀t ≥ 0 with the initial conditions |R̃(0)|I <

√
ςM and ‖η(0)‖ = 0. More-

over, considering the real-valued function V1 defined in (D.14), inequalities (D.15)-(D.17)
hold.

On the other hand, consider the real-valued function V2 = eλ
F
2 τx>Φ̂>(τ)P Φ̂(τ)x as

(D.18), whose upper and lower bounds are given by (D.19). The time-derivative of V2

along the flows of (5.39) is given as

V̇2 = −λF2 V2 + eλ
F
2 τx>Φ̂>(τ)(A>P + PA)Φ̂(τ)x + 2eλ

F
2 τx>Φ̂>(τ)P Φ̂(τ)δg

+ eλ
F
2 τx>(

˙̂
Φ>(τ)P Φ̂(τ) + Φ̂>(τ)P

˙̂
Φ(τ))x

≤ −λF2 V2 + 2ᾱ2‖x‖‖δg‖
≤ −λF2 V2 + β‖x‖‖ζ‖ (D.34)

where β := 4
√

2cgᾱ2, and we made use of the facts ‖δg‖ ≤ cg‖I − R̃‖F = 2
√

2cg|R̃|I ≤
2
√

2cg‖ζ‖, AΦ̂(τ) = Φ̂(τ)A, and
˙̂
Φ(τ) = −AΦ̂(τ). Similar to the V2 defined in (D.18),

one can verify that V2 satisfies (D.21) after each jump.
Let |x3|Ā ≥ 0 be the distance of x3 with respect to the set Ā such that |x3|2Ā :=

inf(R̄,η̄,x̄3,τ̄)∈Ā(|R̃R̄>|2I + ‖η − η̄‖2 + ‖x − x̄3‖2 + ‖τ − τ̄‖2) = ‖ζ‖2 + ‖x‖2. Consider the
Lyapunov function candidate V = εV1 + V2, with some ε > 0. From (D.15) and (D.19),
one can show that

α|x3|2Ā ≤ V(x3) ≤ ᾱ|x3|2Ā (D.35)

where α := min{α1, α2} and ᾱ := max{ᾱ1, ᾱ2}. In view of (D.14)-(D.16), (D.18)-(D.19)
and (D.34), applying Lemma 5.2, one has

V̇ = −λFV , x3 ∈ F3 (D.36)

with ε > β2

2λF1 λ
F
2 α1α2

and λF = min{λF1
2
, (λF2 − β2

2ελF1 α1α2
)}. From (D.17) and (D.21), one

obtains
V+ ≤ εe−λ

J
1V1 + e−λ

J
2V2 ≤ e−λJV , x3 ∈ J3 (D.37)

where λJ := min{λJ1 , λJ2}. Let λc := min{λF , λJ}. In view of (D.36) and (D.37), one
has V(x3(t, j)) ≤ e−λc(t+j)V(x3(0, 0)). Then, from (D.35) one can conclude that, for all
(t, j) ∈ domx3,

|x3(t, j)|Ā ≤
√
ᾱ

α
e−

1
2
λc(t+j)|x3(0, 0)|Ā, (D.38)

which shows that the set Ā is exponentially stable. This completes the proof.
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D.7 Proof of Theorem 5.4

Following the same steps as the first part of the proof of Theorem 5.1, one can guarantee
that |R̃|I < 1,∀t ≥ 0 with the initial conditions |R̃(0)|I <

√
ςM and ‖η(0)‖ = 0. More-

over, considering the real-valued function V1 defined in (D.14), inequalities (D.15)-(D.17)
hold.

Consider the real-valued function V2 = e−γτx>P−1x as (D.26), whose upper and lower
bounds are given by (D.27). The time-derivative of V2 along the flows of (5.47) is given
as

V̇2 = γV2 + e−γτx>(A>P−1 + P−1A+ Ṗ−1)x + 2e−γτx>P−1δ̄g

≤
(
γ − e−γTM vm

pM

)
V2 +

2

pm
‖x‖‖δ̄g‖

= −λF2 V2 + β‖x‖‖ζ‖ (D.39)

where λF2 := −γ+ e−γTM vmpm
p2
M

> 0 with γ small enough, vm := inft≥0 λ
V
m, β := 4

√
2cg/pm,

and we made use of the facts ‖δ̄g‖ ≤ cg‖I − R̃‖F ≤ 2
√

2cg‖ζ‖. Similar to the V2 defined
in (D.26), one can verify that V2 satisfies (D.29) after each jump.

Let |x4|Ā ≥ 0 be the distance of x4 with respect to the set Ā such that |x4|2Ā :=

inf(R̄,η̄,x̄4,τ̄)∈Ā(|R̃R̄>|2I + ‖η − η̄‖2 + ‖x − x̄4‖2 + ‖τ − τ̄‖2) = ‖ζ‖2 + ‖x‖2. Consider the
Laypunov function candidate V = εV1 + V2, with some ε > 0. In view of (D.15) and
(D.27), one has

α|x4|2Ā ≤ V(x4) ≤ ᾱ|x4|2Ā (D.40)

where α := min{α1, α
′
2} and ᾱ := max{ᾱ1, ᾱ

′
2}. In view of (D.14)-(D.16), (D.26)-(D.27)

and (D.39), applying Lemma 5.2, one has

V̇ = −λFV , x4 ∈ F4 (D.41)

with ε > β2pM

2λF1 λ
F
2 λ

P1
m e−γTM

and λF = min{λF1
2
, (λF2 − β2pM

2ελF1 λ
P1
m

)}. From (D.17) and (D.29), one

obtains
V+ ≤ εe−λ

J
1V1 + e−λ

J
2V2 ≤ e−2λJV , x4 ∈ J4 (D.42)

where λJ := 1
2

min{λJ1 , λJ2}. Let λc := min{λF , λJ}. In view of (D.41) and (D.42), one
has V(x4(t, j)) ≤ e−λc(t+j)V(x4(0, 0)). Then, from (D.40) one can conclude that, for all
(t, j) ∈ domx4,

|x4(t, j)|Ā ≤
√
ᾱ

α
e−

1
2
λc(t+j)|x4(0, 0)|Ā, (D.43)

which shows that the set Ā is exponentially stable. This completes the proof.



Appendix E

Proofs of Chapter 6

E.1 Proof of Theorem 6.1

From the assumption that the pair (A,C) in (6.3) is uniformly observable, as per Lemma
2.10, there exist positive constants 0 < pm ≤ pM <∞ such that the solution of the CRE
(2.116) satisfies pmIn ≤ P (t) ≤ pMIn. Consider the following real-valued function:

LP (x) = x>P−1x. (E.1)

One can show that 1
pM
‖x‖2 ≤ LP (x) ≤ 1

pm
‖x‖2. In view of (6.3) and (2.116), the time-

derivative of LP is given by

L̇P = x>(P−1A+ A>P−1 − 2C>QC + Ṗ−1)x

= −x>C>QCx− x>P−1V P−1x

≤ − vm
p2
M

‖x‖2 ≤ −λLP , (E.2)

where λ = vmpm/p
2
M , vm := inft≥0 λ

V (t)
min , and we made use of the facts −C>QC ≤

0, Ṗ−1 = −P−1ṖP−1 = −P−1A − A>P−1 + 2C>QC − P−1V P−1. Hence, one has
‖x(t)‖ ≤

√
pM/pme

−λ
2
t‖x(0)‖, which implies that x, ẋ are bounded, and x converges to

zero exponentially. Note that the convergence of x is independent from the dynamics of
the rotation. Then, from (6.3)-(6.4) and Assumption 6.2, one can easily show that the
set of equilibria of the system is given by Ψ = {(R̃, x) ∈ SO(3) × Rn : ψso(3)(MR̃) =

0, x = 0}. From ψso(3)(MR̃) = 0 and using the facts ψso(3)(MR̃) = vec ◦ Pso(3)(MR̃) and

Pso(3)(MR̃) = (MR̃ − R̃>M)/2, one has MR̃ = R̃>M . From Lemma 2.3, it follows that

R̃ ∈ {R̃ ∈ SO(3) : R̃ = Rα(π, v), v ∈ E(M)}, which proves item (i).
On the other hand, consider the following real-valued function

LM = tr((I − R̃)M), (E.3)

whose time-derivative is given by

L̇M = kRtr(−MR̃(−ψso(3)(MR̃) + φ(x, t))×)

≤ −2kR‖ψR‖2 + 2kRcφ‖x‖‖ψR‖, (E.4)
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where ψR := ψso(3)(MR̃), and we made use of the Assumption 6.2 and the facts tr(−Ax×) =
〈〈A, x×〉〉 = 2x>ψso(3)(A) for all A ∈ R3×3. Consider the following Lyapunov function
candidate:

L(R̃, x) = LM(R̃) + κLP (x), (E.5)

From (E.2) and (E.4), the time-derivative of L is given by

L̇(R̃, x) ≤ −2kR‖ψR‖2 + 2kRcφ‖x‖‖ψR‖ − κ
vm
p2
M

‖x‖2

= −ζ>Hζ, H :=

[
2kR −kRcφ
−kRcφ κ vm

p2
M

]
(E.6)

where ζ := [‖ψR‖, ‖x‖]>. Choosing κ >
kRc

2
φp

2
M

2vm
, one can show that the matrix H is

positive definite and L̇ ≤ 0. From (2.37) and (2.38) given in Lemma 2.1, one has ‖ψR‖2 ≤
tr(M(I−R)) ≤ 4λWmax|R̃|2I ≤ 4λWmax with W := 1

2
(tr(M)I3−M), which implies that ψR is

bounded. From (6.3), (6.4) and (2.44), one has ψ̇R = E(MR̃)(−kRψR + kRφ(x, t)) with
E(MR̃) := 1

2
(tr(MR̃)I3 − R̃>M). Using the fact that x is bounded, ‖E(MR̃)‖ ≤ ‖M̄‖F

in (2.42), and ‖φ(x, t)‖ ≤ cφ‖x‖, one can verify that ψ̇R is bounded. Thus, from the
fact that x, ẋ and ψR, ψ̇R are bounded, it follows that L̈ is bounded. Therefore, from
Barbalat’s lemma, one has L̇ → 0 as t → ∞, and in turn, ζ → 0 as t → ∞, i.e.,
(‖ψR‖, ‖x‖) → (0, 0) as t → ∞. This implies that the solution (R̃, x) to (6.3)-(6.4)
converges to the set Ψ.

Next, we need to show that the undesired equilibria Ψ/(I3, 0) are unstable. For each
v ∈ E(M), let us define R∗v = Rα(π, v) and the open set U δ

v := {(R̃, x) ∈ SO(3) × Rn :
R̃ = R∗v exp(δu×), u ∈ S2, x = 0} with δ sufficiently small. For any (R̃, x) ∈ U δ

v , pick a
sufficiently small ε such that (R∗v)

>R̃ := exp(ε×) ≈ I3 + ε×. Consequently, from the first
equation of (6.3) one obtains the dynamics of ε as follows:

ε̇ = −ψso(3)(kRMR∗v(I3 + ε×)) = −kRWvε (E.7)

where Wv = tr(MR∗v)I3 − (MR∗v)
> = (2v>Mv − tr(M))I3 − (2vv>M − M), and we

made use of the facts ψso(3)(MR∗v) = 0, ψso(3)(MR∗vε
×) = vec ◦Pa(MR∗vε

×) and MR∗vε
×+

ε×(MR∗v)
> = (Wvε)

×. Using the fact that M is positive semi-definite with three distinct
eigenvalues, one verifies that −v>Wvv = −v>Mv + tr(M) > 0, which implies that for
each v ∈ E(M), the matrix −Wv has at least one positive eigenvalue. It follows that the
undesired equilibrium (R∗v, 0) ∈ Ψ/(I3, 0) is unstable, and hence, the desired equilibrium
(I3, 0) is almost globally asymptotically stable. This completes the proof of item (ii).

Now, let us prove the local exponential stability result in item (iii). From (E.6) with

κ >
kRc

2
φp

2
M

2vm
, one has LM(R̃(t)) ≤ L(R̃(t), x(t)) ≤ L(R̃(0), x(0)) ≤ εR, for all t ≥ 0.

Hence, one verifies that |R̃(t)|I < 1 for all t ≥ 0. Moreover, one has %|R̃|2I ≤ ‖ψR‖2 ≤
4λWmax|R̃|2I with % := minLM (R̃)≤εR(1 − |R̃|2I cos〈u, M̄u〉)4λWmin > 0 and R̃ = Ra(θ, u). Let

ζ̄ := [|R̃|I , ‖x‖]>. In view of (2.37), (E.1) and (E.3), one obtains

α‖ζ̄‖2 ≤ L ≤ ᾱ‖ζ̄‖2, (E.8)
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where α := min{4λM̄min,
κ
pM
} and ᾱ := max{4λM̄max,

κ
pm
}. Substituting %|R̃|2I ≤ ‖ψR‖2 ≤

4λWmax|R̃|2I into (E.6), one has

L̇ ≤ −2kR%|R̃|2I + 4kRcW cφ‖x‖|R̃|I − κ
vm
p2
M

‖x‖2

≤ −ζ̄>H̄ζ̄, H̄ :=

[
2kR% −2kRcW cφ

−2kRcW cφ κvm/p
2
M

]
. (E.9)

where cW :=
√
λWmax. Choosing κ∗ :=

2kRλ
W
maxc

2
φp

2
M

%vm
, for any κ ≥ κ∗ both matrices H and

H̄ are positive definite since % ≤ 4λWmax. In view of (E.8) and (E.9), one concludes

‖ζ̄(t)‖ ≤
√
ᾱ/αe−

1
2
λH̄mint‖ζ̄(0)‖, (E.10)

for all t ≥ 0, which implies that (R̃, x) converges to (I3, 0) exponentially. This completes
the proof.

E.2 Proof of Lemma 6.2

Let us define a 3N -by-3N block diagonal matrix Θ(t) := blkdiag(Π1,Π2, · · · ,ΠN) ∈
R(3N×3N). Then, one verifies that C(t) = ΘC̄ with constant matrix C̄ given as

C̄ =


I3 03×3 · · · 03×3 03×3 03×3

I3 −I3 · · · 03×3 03×3 03×3
...

...
. . .

...
...

...
I3 03×3 · · · −I3 03×3 03×3

 . (E.11)

Let Σ(t) := Θ>(t)Θ(t) ∈ R(3N×3N). Since Πi is positive definite for all i = 1, 2, · · · , N ,
there exists a positive constant εi for each i = 1, 2, · · · , N such that Πi(t) ≥ εiI3 for all
t ≥ 0. It follows that Σ(τ) ≥ ε̄2I3N with ε̄ := min{ε1, · · · , εN}. From Definition 2.11, the
Observability Gramian WO(t, t+ δ) defined in (2.111) is given by

WO(t, t+ δ) =
1

δ

∫ t+δ

t

Φ(τ, t)>C̄>Θ>(τ)Θ(τ)C̄Φ(τ, t)dτ

=
1

δ

∫ t+δ

t

Φ>(τ, t)C̄>Σ(τ)C̄Φ(τ, t)dτ

≥ ε̄2

δ

∫ t+δ

t

Φ>(τ, t)C̄>C̄Φ(τ, t)dτ (E.12)

Suppose that there exist constants δ′, µ′ > 0 such that

W ′
O(t, t+ δ′) :=

1

δ′

∫ t+δ′

t

Φ>(τ, t)C̄>C̄Φ(τ, t)dτ > µ′I

for all t ≥ 0. Choosing δ ≥ δ′, one can show that WO(t, t + δ) ≥ ε̄2δ′

δ
W ′
O(t, t + δ′) ≥

ε̄2δ′

δ
µ′I := µI. From Definition 2.11, one concludes that the pair (A(t), C(t)) is uniformly

observable.
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Next, we are going to show that there exist constant δ′, µ′ such that W ′
O(t, t + δ′) >

µ′I for all t ≥ 0. Consider a time-varying rotation matrix R̄(t) with ˙̄R(t) = (−ω×)R̄
and R̄(0) ∈ SO(3). It is clear that R̄(t) ∈ SO(3) for all t ≥ 0. Let us introduce
two block diagonal matrices T (t) = blkdiag(R̄, R̄, · · · , R̄) ∈ R(9+3N)×(9+3N) and S(t) =
blkdiag(−ω×,−ω×, · · · ,−ω×) ∈ R(9+3N)×(9+3N) and a constant matrix Ā = A(t)− S(t).
One can verify that Ṫ (t) = S(t)T (t), T−1(t) = T>(t) and T (t)Ā = ĀT (t). From Lemma
2.7, the state transition matrix Φ(t, τ) associated to A(t) can be expressed as

Φ(t, τ) = T (t)Φ̄(t, τ)T−1(τ). (E.13)

with Φ̄(t, τ) = exp(Ā(t− τ)) denoting the state transition matrix associated to Ā.
Define the block matrix T̄ (τ) := blkdiag(R̄, R̄, · · · , R̄) ∈ R(3N×3N) such that T̄>(τ)T̄ (τ) =

I3N and C̄T (τ) = T̄ (τ)C̄. Therefore, making use the fact Φ(τ, t) = T (τ)Φ̄(τ, t)T>(t), one

can show that W ′
O(t, t + δ′) = T (t)( 1

δ′

∫ t+δ′
t

Φ̄>(τ, t)C̄>C̄Φ̄(τ, t)dτ)T>(t). One can easily
verify that the pair (Ā, C̄) is uniformly observable, and there exist constants δ′′, µ′′ > 0

such that 1
δ′′

∫ t+δ′′
t

Φ̄>(τ, t)C̄>C̄Φ̄(τ, t)dτ ≥ µ′′I for all t ≥ 0. Choosing δ′ ≥ δ′′, one shows
that

1

δ′

∫ t+δ′

t

Φ̄>(τ, t)C̄>C̄Φ̄(τ, t)dτ

≥ δ′′

δ′

(
1

δ′′

∫ t+δ′′

t

Φ̄>(τ, t)C̄>C̄Φ̄(τ, t)dτ

)
≥ δ′′µ′′

δ′
I.

Applying the fact that T (t)T>(t) = I, one obtains W ′
O(t, t + δ′) ≥ δ′′µ′′

δ′
I := µ′I. This

completes the proof.

E.3 Proof of Lemma 6.3

Let us define a 3N -by-3N block diagonal matrix Θ(t) := blkdiag(Π1,Π2, · · · ,ΠN) ∈
R(3N×3N). Then, one verifies that C(t) = ΘC̄ with constant matrix C̄ given as

C̄ =


I3 −p11I3 −p12I3 −p13I3 03×3 03×3

I3 −p21I3 −p22I3 −p23I3 03×3 03×3
...

...
...

...
...

...
I3 −pN1I3 −pN2I3 −pN3I3 03×3 03×3

 . (E.14)

Since Σ(t) = Θ>(t)Θ(t) > ε̄I with some constant ε̄ > 0, one can obtains (E.12) as in the
proof of Lemma 6.2. Similar to the proof of Lemma 6.2, define a time-varying rotation ma-

trix R̄(t) with ˙̄R = (−ω×)R̄ and R̄(0) ∈ SO(3). Let us introduce two block diagonal ma-
trices T (t) = blkdiag(R̄, R̄, · · · , R̄) ∈ R18×18 and S(t) = blkdiag(−ω×,−ω×, · · · ,−ω×) ∈
R18×18 and a constant matrix Ā = A(t) − S(t). Then, one has T (t)Ā = ĀT (t) and
Ṫ (t) = S(t)T (t). From Lemma 2.7, the state transition matrix Φ(t, τ) associated to A(t)
can be expressed as

Φ(t, τ) = T (t)Φ̄(t, τ)T−1(τ). (E.15)
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with Φ̄(t, τ) = exp(Ā(t− τ)) denoting the state transition matrix associated to Ā.
Define T̄ (τ) := blkdiag(R̄, R̄, · · · , R̄) ∈ R(3N×3N) such that T̄>(τ)T̄ (τ) = I3N and

C̄T (τ) = T̄ (τ)C̄. From (E.12) and (E.15), one shows

WO(t, t+ δ) ≥ ε̄2

δ

∫ t+δ

t

Φ>(τ, t)C̄>C̄Φ(τ, t)dτ

≥ ε̄2

δ
T (t)

(∫ t+δ

t

Φ̄>(τ, t)C̄>C̄Φ̄(τ, t)dτ

)
T>(t)

Suppose that there exist constants δ′′, µ′′ > 0 such that

W ′′
o (t, t+ δ′′) :=

1

δ′′

∫ t+δ′′

t

Φ̄>(τ, t)C̄>C̄Φ̄(τ, t)dτ ≥ µ′′I

for all t ≥ 0. Choosing δ ≥ δ′′, one can show that WO(t, t + δ) ≥ ε̄2δ′′

δ
T (t)W ′′

o (t, t +

δ′′)T>(t) ≥ ε̄2δ′

δ
µ′′I := µI, which implies that the pair (A(t), C(t)) is uniformly observable.

Next, we are going to show that there exist constants δ′′, µ′′ > 0 such that W ′′
o (t, t+

δ′) ≥ µ′′I for all t ≥ 0. For the sake of simplicity, we assume that the landmarks
i = 1, 2, 3, 4 are not coplanar. Define

Ξ :=


1 −p11 −p12 −p13

1 −p21 −p22 −p23

1 −p31 −p32 −p33

1 −p41 −p42 −p43

 , (E.16)

from which, one can verify that det(Ξ) 6= 0. Define N0 = C̄, N1 = N0A,N2 = N1A, and
N̄1, N̄2 as the first row of N1, N2, respectively. Let N̄0 be the first four rows of N0. The
matrix Ō = [N̄>0 , N̄

>
1 , N̄

>
2 ]> is given by

Ō =


I3 −p11I3 −p12I3 −p13I3 03×3 03×3

I3 −p21I3 −p22I3 −p23I3 03×3 03×3

I3 −p31I3 −p32I3 −p33I3 03×3 03×3

I3 −p41I3 −p42I3 −p43I3 03×3 03×3

03×3 03×3 03×3 03×3 I3 03×3

03×3 03×3 03×3 03×3 03×3 I3

 (E.17)

The determinate of matrix Ō is given by

det(Ō) = det



I3 −p11I3 −p12I3 −p13I3

I3 −p21I3 −p22I3 −p23I3

I3 −p31I3 −p32I3 −p33I3

I3 −p41I3 −p42I3 −p43I3




= det(I3)4det(Ξ)3 6= 0, (E.18)

where we made use of the fact that det(A ⊗ B) = det(A)mdet(B)n for any A ∈ Rn×n

and B ∈ Rm×m with ⊗ being the Kronecker product. Then, one can conclude that
the pair (Ā, C̄) is uniformly observable, and there exist constants δ′′, µ′′ > 0 such that
W ′′
o (t, t+ δ′) ≥ µ′′I for all t ≥ 0. This completes the proof.
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E.4 Proof of Lemma 6.4

Similar to the proof of Lemma 6.2, one can show that C(t) = ΘC̄ with constant matrix
C̄ given as

C̄ =


I3 03×3 · · · 03×3 03×3 03×3 03×3

I3 −I3 · · · 03×3 03×3 03×3 03×3
...

...
. . .

...
...

...
...

I3 03×3 03×3 −I3 03×3 03×3 03×3

 . (E.19)

Since Σ(t) = Θ>(t)Θ(t) > ε̄I with some constant ε̄ > 0, one can obtain (E.12) as in the
proof of Lemma 6.2.

Next, we are going to show that there exist constants δ′, µ′ > 0 such that

W ′
O(t, t+ δ′) :=

1

δ′

∫ t+δ′

t

Φ>(τ, t)C̄>C̄Φ(τ, t)dτ > µ′I

for all t ≥ 0. Define N0 = C̄, N1 = N0A + Ṅ0, · · · , N4 = N3A + Ṅ3, and N̄1, · · · , N̄4 as
the first row of N1, · · · , N4, respectively. We introduce the following matrix:

Ō := [N>0 , N̄
>
1 , N̄

>
2 , N̄

>
4 ]> =

[
Ō1 0
Ō2 Ō3

]
(E.20)

where

Ō1 =


I3 03×3 · · · 03×3

I3 −I3 · · · 03×3
...

...
. . .

...
I3 03×3 · · · −I3

 ∈ R3N×3N

Ō2 =

−ω× 03×3 · · · 03×3

$1 03×3 · · · 03×3

$2 03×3 · · · 03×3

 , Ō3 =

 I3 03×3 03×3

−2ω× I3 I3

$3 6$1 $4


with $1 = (ω×)2 − ω̇×, $2 = (ω×)4 − 6(ω×)2ω̇× + 4(ω×)ω̈× + 3(ω̇×)2 − ...

ω×, $3 =
12ω×ω̇× − 4(ω×)3 − 4ω̈× and $4 = 3(ω×)2 − 5ω̇×. The determinate of matrix Ō is given
by

det(Ō) = (−1)N−1det
(
Ō3

)
= (−1)N−1det

([
I3 I3

6$1 3(ω×)2 − 5ω̇×

])
= (−1)Ndet(3(ω×)2 − ω̇×), (E.21)

where we made use of the same property of the Kronecker product as in (E.18). Using
[Scandaroli, 2013, Eqn. A.15], one has det(3(ω×)2 − ω̇×) = −3‖ω × ω̇‖2. It follows
that det(Ō) = (−1)N+13‖ω × ω̇‖2. From assumption (6.26) and the fact det

(
Ō>Ō

)
=

det(Ō)2 = 9‖ω × ω̇‖4, one verifies condition (2.115) in Lemma 2.9, which implies that
there exist constants δ′, µ′ > 0 such that W ′

O(t, t + δ) > µ′I. From (E.12), one has
WO(t, t + δ) ≥ ε̄2δ′

δ
W ′
O(t, t + δ′) ≥ ε̄2δ′

δ
µ′I := µI, which implies that the pair (A(t), C(t))

is uniformly observable. This completes the proof.
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E.5 Proof of Lemma 6.5

Let us define a 3N -by-3N block diagonal matrix Θ(t) := blkdiag(Π1,Π2, · · · ,ΠN). Then,
one verifies that C(t) = Θ(t)C̄ with constant matrix C̄ given as

C̄ =


I3 −p11I3 −p12I3 −p13I3 03×3 03×3 03×3

I3 −p21I3 −p22I3 −p23I3 03×3 03×3 03×3
...

...
...

...
...

...
...

I3 −pN1I3 −pN2I3 −pN3I3 03×3 03×3 03×3

 . (E.22)

Similar to the proof of Lemma 6.2, one obtains (E.12) and we are going to show that
there exist constants δ′, µ′ > 0 such that

W ′
O(t, t+ δ′) :=

1

δ′

∫ t+δ′

t

Φ>(τ, t)C̄>C̄Φ(τ, t)dτ > µ′I

for all t ≥ 0. For the sake of simplicity, we assume that the landmarks i = 1, 2, 3, 4 are
not coplanar. Define N0 = C̄, N1 = N0A + Ṅ0, · · · , N4 = N3A + Ṅ3, and N̄1, · · · , N̄4 as
the first row of N1, · · · , N4, respectively. Let N̄0 be the first four rows of N0. The matrix
Ō is given by

Ō := [N̄>0 , N̄
>
1 , N̄

>
2 , N̄

>
4 ]> =

[
Ξ⊗ I3 0
Ō2 Ō3

]
(E.23)

with $1, $2, · · · , $4 and Ō3 defined in (E.20) and

Ō2 =

−ω× p11ω
× p12ω

× p13ω
×

$1 −p11$1 −p12$1 −p13$1

$2 −p11$2 −p12$2 −p13$2


The determinate of matrix Ō is given by

det(Ō) = det(I3)4det(Ξ)3det
(
Ō3

)
= det(Ξ)3det(3(ω×)2 − ω̇×)

= −3det(Ξ)3‖ω × ω̇‖2, (E.24)

where we made use of the same property of the Kronecker product as in (E.18). The rest
of proof is obtained using similar steps as in the proof of Lemma 6.3.

E.6 Proof of Theorem 6.2

Consider the following real-valued function:

LP (x) = x>P−1x. (E.25)

One can show that 1
pM
‖x‖2 ≤ LP (x) ≤ 1

pm
‖x‖2. Define cg := ‖g‖ and cp, cv > 0 such that

‖p(t)‖ ≤ cp, ‖v(t)‖ ≤ cv for all t ≥ 0. In view of (6.32) and (2.116), the time-derivative
of LP is given by

L̇P = x>(P−1A+ A>P−1 − 2C>QC + Ṗ−1)x
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+ 2x>P−1ϕ(R̃, b̃ω, t)

= −x>P−1V P−1x− x>C>QCx+ 2x>P−1ϕ(R̃, b̃ω, t)

≤ − vm
p2
M

‖x‖2 +
2‖ϕ(R̃, b̃ω, t)‖

pm
‖x‖, (E.26)

where vm = inft≥0 λ
V (t)
min . Making use of the fact ‖ϕ(R̃, b̃ω, t)‖ ≤ (‖p‖+‖v‖+∑3

i=1 1)‖b̃ω‖+
‖I − R̃‖F‖g‖ ≤ (cp + cv + 3)(2cb + δ) + 2

√
2‖g‖ := cϕ, one has

L̇P ≤ −
vm

2p2
M

‖x‖2 +
2p2

M

vm

(
4cϕp

2
M

pmvm
− ‖x‖

)
‖x‖

≤ −vmpm
2p2

M

LP (x), ∀‖x‖ ≥ 4cϕp
2
M

pmvm
. (E.27)

For each cx > 0, let vm ≥ 4cϕp2
M

pmcx
such that

‖x(t)‖2 ≤ pmLP (x(t)) ≤ pm exp(−vmpm
2p2

M

t)LP (x(0))

as long as ‖x(t)‖ ≥ cx ≥ 4cϕp2
M

pmvm
. This implies that, for any x(0), there exists a finite time

T =
2p2

M

vmpm
ln

(
pmLP (x(0))

c2
x

)
(E.28)

such that ‖x(t)‖ ≤ cx for all t ≥ T .
On the other hand, in view of the first equation of (6.32), the time-derivative of

|R̃|2I = 1
4
tr(I3 − R̃) is given by

d

dt
|R̃|2I =

1

2
ψso(3)(R̃)>

(
R̂b̃ω + σR

)
≤ c̄b + cσR

2
(E.29)

where cσR := ρ0‖mI‖2 +
∑3

i=1 ρice, ‖b̃ω‖ ≤ δ + 2cb := c̄b, and we made use of the fact
‖ψso(3)(R̃)‖2 = 4(1 − |R̃|2I)|R̃|2I ≤ 1. For any R̃(0) ∈ f(εR), the minimum necessary

time for the state to leave the set f(εR) satisfies TεR := 2(ε2
R − |R̃(0)|2I)/(c̄b + cσR). Let

cx := min{2λM̄minεR(1 − εR)/cφ, ce − 1}, and then choose V (t) and Q(t) for (2.116) such
that

vm ≥ max

{
4cϕp

2
M

pmcx
,

2p2
M

TεRpm
ln

(
pmLP (x(0))

c2
x

)}
:= v̄m.

Then, one can verify that T ≤ TεR and ‖x‖ ≤ cx = min{2λM̄minεR(1− εR)/cφ, ce − 1} for
all t ≥ T . It follows that σR = −ψso(3)(MR̃) +φ(x, t) since ‖êi‖ ≤ ‖ẽi‖+ 1 ≤ cx + 1 ≤ ce,

and cφ‖x‖ ≤ λM̄minεR(1− εR) for all t ≥ T . Then, the time-derivative of |R̃|2I for all t ≥ T
can be rewritten as

d

dt
|R̃|2I =

1

2
ψso(3)(R̃)>(R̂b̃ω − kRψso(3)(MR̃) + kRφ(x, t))

≤ −kR
2
ψso(3)(R̃)>M̄ψso(3)(R̃) +

1

2
(c̄b + kR‖φ(x, t)‖)



169

≤ −2kRλ
M̄
min‖ψso(3)(R̃)‖2 +

1

2
(c̄b + kRcφ‖x‖)

Choosing kR > c̄b/(2λ
M̄
minεR(1 − εR)) := k̄R, one shows that d

dt
|R̃|2I ≤ −kRλM̄minεR(1 −

εR) + c̄b
2
< 0 at |R̃|2I = εR. This implies, due to the continuity of the solution, that R̃

will never leave the set f(εR) for all t ≥ T as long as R̃(T ) ∈ f(εR). Therefore, one can
conclude that the set f(εR) is forward invariant for all t ≥ 0.

Now, we are going to show the exponential convergence of the estimation errors for
all t ≥ T . Consider the following real-valued function

L(R̃, b̃ω, x) = tr(I − R̃) +
kRµ

2kω
b̃>ω b̃ω − µX + LP (x), (E.30)

with some scalar µ > 0 and X := −b̃>ω R̂>ψso(3)(R̃). Using the fact ‖ψso(3)(R̃)‖ ≤ 2|R̃|I ,
one can show that L satisfies the quadratic inequality ς>H1ς ≤ L ≤ ς>H2ς, where the
matrices H1 and H2 are given by

H1 =

 4 −µ 0

−µ kRµ
2kω

0

0 0 1
pM

 , H2 =

4 µ 0

µ kRµ
2kω

0

0 0 1
pm

 .
Moreover, the time-derivative of X is given by

Ẋ = −b̃>ω R̂>E(R̃)(R̂b̃ω + kRσR) + b̃>ω (ω − b̃ω − kRR̂>σR)×R̂>ψso(3)(R̃)

− ψso(3)(R̃)>R̂Pε
δ(b̂ω, kωR̂

>σR)

≤ −‖b̃ω‖2 + b̃>ω R̂
>(I3 − E(R̃))R̂b̃ω − kRb̃>ω R̂>σR

+ kRb̃
>
ω R̂
>(I3 − E(R̃))σR + 2cω‖b̃ω‖|R̃|I + 2(kRc̄b + kω)‖σR‖|R̃|I

≤ −‖b̃ω‖2 + 2c1|R̃|I‖b̃ω‖ − µkRb̃>ω R̂>σR
+ 2(c2kR + c3)|R̃|2I + 2(c4kR + c5)|R̃|I‖x‖ (E.31)

where c1 := c̄b + cω, c2 := (4 +
√

2)c̄b
√
λWmax, c3 := 2kω

√
λWmax, c4 := (2 +

√
2/2)c̄bcφ, c5 :=

kωcφ, and we have made use of the facts ‖ψso(3)(MR̃)‖2 ≤ 4λWmax|R̃|2I , b̃>ω R̂>(I3−E(R̃))R̂b̃ω ≤
2|R̃|2I‖b̃ω‖2 ≤ 2c̄b|R̃|I‖b̃ω‖ in (2.40), b̃>ω R̂

>(I3 − E(R̃))σR ≤ 1
2
tr(I − R̃)b̃>ωσR + 1

2
‖I −

R̃‖F‖b̃ω‖‖σR‖ ≤ (2 +
√

2)c̄b|R̃|I‖σR‖ in (2.41) and ‖σR‖ ≤ 2
√
λWmax|R̃|I + cφ‖x‖. In view

of (E.26) and (E.31), the time-derivative of L for all t ≥ T is given by

L̇ = tr(−R̃(R̂b̃ω − kRψso(3)(MR̃) + kRφ(x, t))×) +
µkR
kω

b̃>ωPε
δ(b̂ω, kωR̂

>σR) + µẊ + L̇P

≤ −2kRψso(3)(R̃)>ψso(3)(MR̃) + 2‖ψso(3)(R̃)‖‖b̃ω‖
+ 2kRcφ‖ψso(3)(R̃)‖‖x‖+ µkRb̃

>
ω R̂
>σR + µẊ + L̇P

≤ −2kR%|R̃|2I + 4|R̃|I‖b̃ω‖+ 4kRcφ|R̃|I‖x‖ − µ‖b̃ω‖2 + 2µc1|R̃|I‖b̃ω‖
+ 2µ(c2kR + c3)|R̃|2I + 2µ(c4kR + c5)|R̃|I‖x‖ −

vm
p2
M

‖x‖2
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+
2

pm
((cp + cv + 3)‖b̃ω‖+ 2

√
2‖g‖|R̃|I)‖x‖

≤ −2(kR%− µ(c2kR + c3))|R̃|2I + 2(2 + µc1)|R̃|I‖b̃ω‖
− µ‖b̃ω‖2 + 2(µ(c4kR + µc5) + c6)|R̃|I‖x‖ − vmp−2

M ‖x‖2 + 2c7‖b̃ω‖‖x‖

where c6 := 2kRcφ + 2
√

2‖g‖/pm, c7 := (cp + cv + 3)/pm, and we have made use of the
facts ψso(3)(R̃)>ψso(3)(MR̃) = ψso(3)(R̃)>M̄ψso(3)(R̃) ≥ %|R̃|2I with % := 2(1− εR)λM̄min > 0
and tr(−Ax×) = 2x>ψso(3)(A) for all A ∈ R3×3. Moreover, the time-derivative of L can
be rewritten as

L̇ = −ς>12H12ς12 − ς>13H13ς13 − ς>23H23ς23 (E.32)

where ςij = [ςi, ςj]
> and the matrices Hij are given by

H12 =

[
kR(%− 2µc2)− 2µc3 −(2 + µc1)
−(2 + µc1) µ

2

]
H13 =

[
kR% −(µ(c4kR + µc5) + c6)

−(µ(c4kR + µc5) + c6) vm
2p2
M

]
H23 =

[ µ
2
−c7

−c7
vm

2p2
M

]
To guarantee that matrices H1, H2, H12, H13 and H23 are positive definite, let us choose

µ <
ρ

2c2

kR > max

{
k̄R,

µkω
2
,
2µ2c3 + 2(2 + µc1)2

µ(%− 2µc2)

}
vm > max

{
v̄m,

4c2
7p

2
M

µ
,
2(µ(c4kR + µc5) + c6)2p2

M

kRρ

}
Then, one obtains

L̇(R̃, b̃ω, x) ≤ −2λL(R̃, b̃ω, x), ∀t ≥ T,

with λ := 1
2

min{λH12
min , λ

H23
min , λ

H14
min}/λH2

max. Therefore, one can conclude (6.35) with κ :=

(λH2
max/λ

H1
min)

1
2 . This completes the proof.
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