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Abstract

This thesis presents a general framework for hybrid attitude control and estimation de-

sign on the Special Orthogonal group SO(3). First, the attitude stabilization problem

on SO(3) is considered. It is shown that, using a min-switch hybrid control strategy de-

signed from a family of potential functions on SO(3), global exponential stabilization on

SO(3) can be achieved when this family of potential functions satisfies certain properties.

Then, a systematic methodology to construct these potential functions is developed. The

proposed hybrid control technique is applied to the attitude tracking problem for rigid

body systems. A smoothing mechanism is proposed to filter out the discrete behaviour

of the hybrid switching mechanism leading to control torques that are continuous.

Next, the problem of attitude estimation from continuous body-frame vector mea-

surements of known inertial directions is considered. Two hybrid attitude and gyro bias

observers designed directly on SO(3) × R3 are proposed. The first observer uses a set

of innovation terms and a switching mechanism that selects the appropriate innovation

term. The second observer uses a fixed innovation term and allows the attitude state to

be reset (experience discrete transition or jump) to an adequately chosen value on SO(3).

Both hybrid observers guarantee global exponential stability of the zero estimation errors.

Finally, in the case where the body-frame vector measurements are intermittent, an

event-triggered attitude estimation scheme on SO(3) is proposed. The observer consists

in integrating the continuous angular velocity during the interval of time where the vector

measurements are not available, and updating the attitude state upon the arrival of the

vector measurements. Both cases of synchronous and asynchronous vector measurements

with possible irregular sampling periods are considered. Moreover, some modifications

to the intermittent observer are developed to handle different practical issues such as

discrete-time implementation, noise filtering and gyro bias compensation.
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List of Symbols

• N and N>0 denote the natural and strictly positive natural numbers, respectively.

• R, R≥0 and R>0 denote the real, nonnegative and positive real numbers, respec-

tively.

• Rn is the n-dimensional Euclidean space .

• Rn×m is the set of real-valued n×m matrices.

• Given A ∈ Rn×m, A> denotes its transpose.

• Given A ∈ Rn×n, det(A) denotes its determinant.

• Given A ∈ Rn×n, tr(A) denotes the sum of its diagonal entries (trace).

• GivenA,B ∈ Rn×m, their Euclidean inner product is defined as 〈〈A,B〉〉 = tr(A>B).

• Given A ∈ Rn×m, its Frobenius norm is ‖A‖F =
√
〈〈A,A〉〉.

• Given x ∈ Rn, its Euclidean norm (2-norm) is given by ‖x‖ =
√
x>x.

• Sn = {x ∈ Rn+1 : ‖x‖ = 1} is the unit n-sphere embedded in Rn+1.

• B = {x ∈ Rn : ‖x‖ ≤ 1} is the closed unit ball in Euclidean space.

• SO(3) = {R ∈ R3×3 : det(R) = 1, RR> = R>R = I} is the Special Orthogonal

group of order 3 where I denotes the three-dimensional identity matrix.

• so(3) = {Ω ∈ R3×3 : Ω> = −Ω} is the set of all skew-symmetric 3× 3 matrices and

defines also the Lie algebra of SO(3).

• Q = {(η, ε) ∈ R× R3 : η2 + ε>ε = 1} is the set of unit quaternions.

• Given a rotation matrix R ∈ SO(3), let us define |R|I = ‖I −R‖/
√

8.

• The map E : R3×3 → R3×3 is defined as E(M) = 1
2
(tr(M)I −M>).

• The map Ra : R × S2 → SO(3) is defined as Ra(θ, u) = I + sin(θ)[u]× + (1 −
cos(θ))[u]2×.

• The map Ru : Q→ SO(3) is defined as Ru(η, ε) = I + 2[ε]2× + 2η[ε]×.
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• The map Rr : R3 → SO(3) is defined as Rr(z) = 1
1+‖z‖2

(
(1− ‖z‖2)I + 2zz> + 2[z]×

)
.

• The map PSO(3) : R3×3 → SO(3) is defined as the projection of X ∈ R3×3 on SO(3)

(i.e. closest rotation matrix to X).

• The map Pso(3) : R3×3 → so(3) is defined as Pso(3)(M) = (M −M>)/2.

• The map [·]× : R3 → so(3) is defined as [x]×y = x × y for all x, y ∈ R3 where ×
denotes the cross product on R3.

• The map vex : so(3)→ R3 is the inverse map of [·]×.

• The map ψ : R3×3 → R3 is defined as ψ = vex ◦Pso(3) where the symbol ◦ is used

to denote function composition.

• The set ΠSO(3) = {R ∈ SO(3) : tr(R) 6= −1} is the set of all rotations with an angle

different than 180◦. In other words, ΠSO(3) = SO(3) \Ra(π,S2).

• The set ΠQ = {(η, ε) ∈ Q : η 6= 0} is the double cover of ΠSO(3) in Q.

• The map Pc : R3×R3 → R3, for a given c ∈ R≥0, defines the parameter projection

function which is given in (2.3).

• Given a set S, cl(S) denotes its closure (S together with all of its limit points).

• A set-valued map F :M⇒ N assigns to every x ∈M a set of values F(x) ⊆ N .

• Let F : M ⇒ N be a set-valued function. The domain of F is defined as the set

domF = {x ∈M : F(x) 6= ∅} where ∅ denotes the empty set.

• Cn(M,N ) is the set of all functions f : M → N such that the first n ∈ N
derivatives of each function f ∈ Cn(M,N ) exist and are continuous.
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Chapter 1

Introduction

1.1 General Introduction

Many mechanical systems can be modelled as a rigid body or an interconnection of

multiple rigid bodies. For instance, most aerospace and marine vehicles such as Un-

manned Aerial Vehicles (UAVs), Spacecraft, Satellite and Autonomous Underwater Ve-

hicles (AUVs) can be considered as rigid body systems. Robotic arms composed of

multiple rigid links and joints, also known as robot manipulators, are an example of

rigid multi-body systems which are used in various applications including welding au-

tomation, manufacturing, robotically-assisted surgery and space stations robotic arms.

The assumption of rigidity, which means non-deformation under the action of applied

forces, for these class of mechanical systems is very important to simplify the analysis

and controller design. In fact, the configuration of a rigid body can be fully described by

translation and rotation of a reference frame attached to the body. This is in contrast

to bodies that display fluid, elastic, and plastic behavior which require more parameters

to describe their configuration [Terzopoulos et al., 1987, Davatzikos, 1997, Elger and

Roberson, 2013].

The design of efficient attitude control algorithms is of great importance for success-

ful applications involving accurate positioning of rigid body systems such as satellites

and spacecraft. These control schemes are (roughly speaking) of proportional-derivative

type, where the proportional action is in terms of the orientation (attitude) and the

derivative action (generating the necessary damping) is in terms of the angular velocity.

In contrast to the angular velocity which can be directly measured using gyroscopes,

there are no sensors that directly measure the orientation. This fact calls for the de-

velopment of suitable attitude estimation algorithms that reconstruct the attitude using

appropriate sensors such as inertial measurement units (IMUs) that provide measure-

1



2 Chapter 1. Introduction

ments in the body-attached frame of some known inertial vectors. Consequently, the

attitude estimation and control problems have been the focus of many researchers from

the aerospace and control communities, which led to a large body of work since 1960’s.

These fundamental problems come with many theoretical and practical challenges related

to the topology of the motion space SO(3). Among, these challenges, the non-existence

of global continuous time-invariant attitude estimation and control schemes on compact

manifolds [Koditschek, 1988, Sanjay P. Bhat, 2000], which motivated the development

of new alternatives such as the hybrid techniques that will be the focus of this thesis.

This thesis proposes a general framework for the design of hybrid attitude control

and estimation algorithms. Within this framework, the global (singularity-free) attitude

representation as a rotation matrix on SO(3) is used. Using this coordinate-free rep-

resentation of the attitude, all the pitfalls of other attitude representations such as the

Euler angles, Rodrigues parameters and the unit quaternions are avoided.

1.2 Attitude Control

The rigid body attitude control problem has received a growing interest during the last

decades, with various applications in aerospace, marine engineering, and robotics see, for

instance, [Kreutz and Wen, 1988, Joshi et al., 1995, Pettersen and Egeland, 1999, Hughes,

1986, Tayebi and McGilvray, 2006]. Attitude control schemes can be categorized by the

choice of the attitude parametrization, such as Euler-angles, unit quaternion, Rodrigues

parameters and rotation matrices. The natural (intrinsic) representation of the attitude

is done using rotation matrices on SO(3) (9 parameters). Early works on attitude con-

trol have focused on the use of less number of parameters to represent the attitude. This

is motivated mainly by the need to save computational power and reduce the analy-

sis complexity. The minimum number of parameters to represent the attitude is three.

Examples of these 3-dimensional parametrizations are the Euler angles, the exponential

coordinates and the Rodrigues parameters. However, as shown in [Stuelpnagel, 1964],

it is topologically impossible to represent the attitude globally without singular points

using only 3 parameters. For instance, the angular velocity cannot be extracted (glob-

ally) from the Euler angles rates due to the singularity of transformation matrix relating

the time derivatives of the Euler angles to the angular velocity. This is a mathemat-

ical kinematic singularity which is often referred to as the gimbal lock [Hoag, 1963].

The Rodrigues parameters representation is also a three-parameters attitude represen-

tation, which allows to represent all attitudes except those of 180◦. This geometric

singularity implies that continuous control laws which use this representation are not
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globally defined. The unit-quaternion representation is a four-parameters attitude rep-

resentation which describes the attitude globally (singularity-free) compared to other

three-parameters representations. This has motivated their wide use in many practi-

cal applications to represent the rigid-body attitude. For example, quaternion feedback

has been used in spacecraft control [Wie et al., 1989, Wie and Barba, 1985], manip-

ulators control [Yuan, 1988], robot writs [Salcudean, 1988] and aerial vehicles [Tayebi

and McGilvray, 2006]. A comprehensive study of unit quaternion feedback control ap-

pears in [Wen and Kreutz-Delgado, 1991] where different quaternion-based control laws

have been investigated and compared. The controllers share the common structure of

a proportional-derivative feedback plus some feedforward Coriolis torque compensation

and/or adaptive compensation. Different robust [Joshi et al., 1995], adaptive [Egeland

and Godhavn, 1994], velocity-free [Lizarralde and Wen, 1996, Tayebi, 2008] quaternion

feedbacks have been also developed in the past decades. The main drawback of using

the unit-quaternion representation is the fact that every attitude can be represented,

equivalently, by two different quaternions. This nonuniqueness in representing the atti-

tude, if not taken carefully, might result in quaternion-based controllers with undesirable

phenomena such as the so-called unwinding phenomenon 1 [Sanjay P. Bhat, 2000]. There

have been some attempts to design quaternion-based attitude control systems that do

not suffer from the unwinding phenomena by introducing discontinuities, see for instance

[Thienel and Sanner, 2003]. However, these discontinuous attitude control systems suffer

from non-robustness to arbitrary small measurement disturbances as discussed in [May-

hew and Teel, 2011a]. In [Mayhew, 2010, Mayhew et al., 2011], hybrid controllers have

been proposed to ensure robust global asymptotic stabilization via quaternion feedback.

Also, other hybrid techniques where used in [Mayhew, 2010] to remove the ambiguity in

selecting the best quaternion to represent an attitude measurement on SO(3).

With the advance of computational ressources and the fact that all existing parame-

terizations fail to represent the attitude of a rigid body both globally and uniquely, which

results in control schemes that are either singular or exhibit some undesirable behavior,

recent trends in attitude control have focused on the use of rotation matrices on SO(3)

[Koditschek, 1988, Sanyal et al., 2009, Chaturvedi et al., 2011, Lee, 2012, Bayadi and

Banavar, 2014]. The group SO(3) has the distinct feature of being a boundaryless com-

pact manifold with a Lie group structure that allows the design and analysis of attitude

control systems within the well established framework of geometric control [Bullo, 2005].

The group SO(3) is not diffeomorphic to any Euclidean space and hence there does not

1The unwinding phenomenon refer to the situation where the rigid body may start arbitrary close to
the desired orientation yet rotates through large angles before converging to the desired attitude.
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exist any continuous time-invariant feedback on SO(3) that achieves global asymptotic

stability [Sanjay P. Bhat, 2000]. In [Koditschek, 1988], for instance, a continuous time-

invariant control scheme has been shown to asymptotically track any smooth reference

attitude trajectory starting from arbitrary initial conditions except from a set of Lebesgue

measure zero. This is referred to as almost global asymptotic stability, and is mainly

due to the appearance of undesired critical points (equilibria) when using the gradient

of a smooth potential function in the feedback. In fact, any smooth potential function

on SO(3) is guaranteed to have at least four critical points where its gradient vanishes

[Morse, 1934].

In [Mayhew and Teel, 2011b], a hybrid feedback scheme has been proposed to over-

come the topological obstruction to global asymptotic stability on SO(3) and, at the

same time, ensure some robustness to measurement noise. The main idea in the latter

paper is to design a hybrid algorithm based on a family of smooth potential functions

and a hysteresis-based switching mechanism that selects the appropriate control action

corresponding to the minimal potential function. It was shown that a sufficient condi-

tion to avoid the undesired critical points, and ensure global asymptotic stability, is the

“synergism” property of the smooth potential functions. A family of potential functions

on SO(3) is said to be synergistic if at each critical point (other than the desired one) of

a potential function in the family, there exists another potential function in the family

that has a lower value. Moreover, if all the potential functions in the family share the

identity element I3×3 as a critical point then it is called a centrally synergistic family.

Thanks to the hysteresis gap, this type of hybrid controllers guarantee robustness to

small measurement noise. Despite the originality of the proposed hybrid control frame-

work, unfortunately, the search for families of potential functions on SO(3) enjoying the

synergism property is not a straightforward task.

The angular warping technique has been used in [Mayhew and Teel, 2011d] to con-

struct a central synergistic family of potential functions on SO(3) where the synergistic

property is verified by computation only. Although in [Casau et al., 2015b], necessary

and sufficient conditions for this family of potential functions to be synergistic were de-

rived, the major drawback of the angular warping approach is related to the difficulty

of determining the synergistic gap which is required for the implementation of the hy-

brid controller. In an attempt to solve this problem the authors in [Mayhew and Teel,

2013a] tried to relax the centrality assumption by considering scaled, biased and trans-

lated modified trace functions. However, the sufficient synergism conditions provided

therein were conservative, difficult to satisfy and only hand tuning of the parameters was

proposed. Another form of non-central synergistic potential functions appeared in [Lee,



1.3. Attitude Estimation 5

2015], by comparing the actual and desired directions, leading to a simple expression of

the synergistic gap. It is important to mention here that, in contrast to the non-central

approach, the control algorithm derived from each potential function in the central syn-

ergistic family guarantees (independently) almost global asymptotic stability results. It

is also worth pointing out that non-central and central synergistic potential functions

have been considered in [Mayhew and Teel, 2013b] and [Casau et al., 2015a] to ensure,

respectively, global asymptotic and global exponential stabilization on the n-dimensional

sphere. However, the extension of these approaches to the full attitude control problem

on SO(3) is not straightforward.

1.3 Attitude Estimation

It is unfortunate that there is no sensor that can provide direct measurements of a

rigid body’s attitude. Nevertheless, there exist many sensors (depending on the appli-

cation at hand) that provide partial information about the rigid body’ orientation. For

instance the attitude of a rigid body can be recovered (reconstructed) using available

body-frame measurements of known inertial directions. Small size UAVs are usually

equipped with IMUs that typically include accelerometers and magnetometers, which

provide body-referenced coordinates of the gravity vector and the Earth’s magnetic field,

respectively. For satellites, sun sensors and star trackers are usually used to provide

body-frame measurements of known inertial directions. The problem of determining the

attitude of a rigid body from vector measurements has been addressed, initially, as an

optimization problem, also known as Wahba’s problem [Wahba, 1965]. A great deal of

research work has been devoted to solving Wahba’s problem, see for instance [Shuster

and Oh, 1981, Markley, 1988]. However, these static attitude reconstruction techniques

are hampered by their inability to handle measurement noise. To overcome this problem,

researchers looked for dynamic estimators where other measurements (such as angular

velocity measurements) are used along with body-frame vector measurements to recover

the attitude while filtering measurement noise. The gist of the idea is that the angu-

lar velocity can be integrated to estimate the attitude in the short-term, and then make

long-term corrections using vector measurements. This leads to an attitude estimate that

is less vulnerable to vibrations (because gyroscopes are accurate at high frequencies) and

immune to long-term drift (because vector measurements are more reliable at low fre-

quencies). Dynamic estimators can be, roughly speaking, classified into two categories:

stochastic estimators (based on Kalman filtering techniques) and nonlinear estimators

(based on nonlinear observer design techniques).



6 Chapter 1. Introduction

Stochastic estimators are usually variants of the Extended Kalman Filter and can be

found in many references such as [Markley, 2003, Crassidis et al., 2007, Choukroun, 2009])

for quaternion-based filtering and [Markley, 2006, Barrau and Bonnabel, 2015, Mueller

et al., 2016, Barrau and Bonnabel, 2017] for rotation matrix-based filtering. Unfortu-

nately, the available stochastic attitude estimators have only locally proven stability and

performance properties (see for instance [Barrau and Bonnabel, 2017]). Recently, a new

class of dynamic nonlinear attitude estimators (observers) has emerged [Mahony et al.,

2008], and proved its ability in handling large rotational motions and measurement noise.

This approach, coined nonlinear complementary filtering, was inspired from the linear at-

titude complementary filters, e.g., [Tayebi and McGilvray, 2006], used to recover (locally)

the attitude using gyro measurements and body-frame measurements of known inertial

vectors. The smooth nonlinear complementary filters, such as those proposed in [Mahony

et al., 2008], are directly designed on SO(3) and are proved to guarantee almost global

asymptotic stability (AGAS), which is as strong as the SO(3) space topology could per-

mit. These smooth nonlinear observers ensure the convergence of the estimated attitude

to the actual one from almost all initial conditions except from a set of critical points

of zero Lebesgue measure. It has been noted, for instance in [Lee, 2012, Tse-Huai Wu

and Lee, 2015, Zlotnik and Forbes, 2017], that starting from a configuration close to

the undesired critical points, results in a slow convergence to the actual attitude. This

observation has been formally proven in our recent work [Berkane and Tayebi, 2017a].

Further performance and robustness improvements for the complementary filtering ap-

proach have also been proposed recently in [Zlotnik and Forbes, 2016, Zlotnik and Forbes,

2017] and in [Berkane and Tayebi, 2017a]. On the other hand, a class of (SO(3) non-

preserving) attitude observers has been proposed in [Batista et al., 2012a, Batista et al.,

2012b] leading to global stability results. Theses observers provide an attitude estimate

that is not confined to live in SO(3) but tends to it as time goes to infinity. A non-central

hybrid attitude observer on SO(3) has been proposed in [Tse-Huai Wu and Lee, 2015]

with global asymptotic stability. The term non-central means that individual observers

(from the family of observers used in the hybrid scheme) do not, in general, guarantee

(on their own) any estimation stability results (even locally). The design of globally

exponentially stable observers on SO(3) is an open problem that has been solved in this

thesis using hybrid techniques.

In the field of attitude estimation, most existing research developments consider either

continuous measurements or regular synchronous discrete measurements. The attitude

is not directly measurable, it is obtained from the fusion of different measurements from

sensors with (possibly) different bandwidths and subject to packet dropouts. For in-
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stance, landmark measurements using vision systems are obtained at much lower rates

than the vector measurements obtained from an IMU. Also, GPS readings are often used

in attitude estimation algorithms when linear accelerations are not negligible, such as in

[Hua, 2010, Roberts and Tayebi, 2011, Martin and Salaün, 2008]. These readings are

obtained at much lower rates compared to onboard IMU measurements. Therefore, it is

interesting to design attitude estimation algorithms that take into account these practi-

cal constraints. State estimation using intermittent observations dates back to the early

work that appeared in [Nahi, 1969, Hadidi and Schwartz, 1979]. Different versions of the

Kalman filter for linear systems with intermittent measurements have been discussed in

recent papers, see for instance [Smith and Seiler, 2003, Sinopoli et al., 2004, Plarre and

Bullo, 2009]. This problem is relevant when fusing sensors with multiple bandwidths

and/or observing a system over a sensor network in which the sensor and controller are

communicating over an unreliable link or a network subject to packets loss. In a deter-

ministic setting, observer design for state estimation of linear time-invariant systems and

some special classes of nonlinear systems with Lipschitz nonlinearities in the presence of

sporadically available measurements have been recently proposed in [Raff and Allgöwer,

2007, Andrieu et al., 2013, Ferrante et al., 2016]. In the context of attitude estima-

tion, the authors in [Barrau and Bonnabel, 2015] proposed an intrinsic attitude filter on

SO(3) with (synchronous) discrete-time measurements of two vector observations. The

proposed discrete invariant observer is shown to be almost globally convergent. In [Khos-

ravian et al., 2015], by exploiting the symmetry of the group SO(3), a predictor has been

proposed to continuously predict the intermittent vector measurements using forward

integration on SO(3) of the continuous angular velocity measurements. The measure-

ments are allowed to be asynchronous (multirate) and subject to known constant delays.

The proposed predictor can be, independently, combined with any asymptotically stable

attitude/filter such as the explicit complementary filter [Mahony et al., 2008].

1.4 Thesis Contributions

For general hybrid systems such as those modelled in the framework of [Goebel et al.,

2009, Goebel et al., 2012], new Lyapunov-based sufficient conditions for exponential sta-

bility are proposed. The derived conditions relax the conditions presented in [Teel et al.,

2013, Theorem 1] in the sense that the Lyapunov function is allowed to increase during

either the flow or the jump. This relaxation comes at the cost of imposing some condi-

tions on the hybrid time domain where solutions exist. The newly proposed sufficient

conditions are later used to prove some of the results presented in this thesis.
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A new framework for global exponential stabilization on SO(3) is proposed. Our

framework can be seen as an extension to the work of [Mayhew, 2010, Mayhew and

Teel, 2011b, Mayhew and Teel, 2011d] on synergistic feedback on SO(3). In the former

work, synergistic potential functions are shown to be sufficient for the design of hybrid

controllers guaranteeing global asymptotic stability. In this work, a new class of poten-

tial functions, coined exp-synergistic, is proposed and shown to be sufficient for global

exponential stabilization on SO(3). Moreover, a systematic methodology for the construc-

tion of these exp-synergistic potential functions is provided [Berkane and Tayebi, 2017e].

Note that in [Mayhew and Teel, 2011d] only existence results are reported for synergistic

potential functions. Moreover, exp-synergism allows for non-everywhere differentiable

potential functions to be used which presents an andvantage over the synergism concept.

In fact, controllers derived from non-smooth potential functions have been shown to en-

sure better performance compared to those derived from traditional smooth potential

functions, see for instance [Lee, 2012, Zlotnik and Forbes, 2017] where nonsmooth poten-

tial functions on SO(3) have been used to improve the performance of existing attitude

control and estimation schemes. Using these hybrid tools, a hybrid control algorithm

that ensures global exponential tracking of any attitude trajectory is derived [Berkane

et al., 2017b]. To the best of our knowledge, global exponential tracking on SO(3) has

never been achieved before. Moreover, since discontinuities in the control might be un-

desirable in practical applications, a smoothing mechanism that moves the discontinuity

in the control one integrator behind is proposed. In other words, the jumps in the hybrid

controller are filtered and do not appear in the control torque. This smoothing approach

is simpler than the one proposed in [Mayhew and Teel, 2013a] and can be implemented

using only a first order low pass filter.

In the field of attitude estimation from continuous measurements, two hybrid estima-

tion schemes guaranteeing both global exponential stability of the attitude and gyro-bias

estimation errors are proposed [Berkane et al., 2017a, Berkane and Tayebi, 2017b]. Both

observers have a general structure of a nonlinear complementary filter on SO(3) × R3

where the attitude estimate evolves on SO(3) and the gyro-bias vector evolves on R3.

The first observer approach uses a synergistic-based technique to generate a family of

observer innovation terms among which the appropriate term is selected according to

the evolution of the estimates. Each innovation (correction) term is nothing but a gra-

dient of some cost function. A switching mechanism allows to jump to the innovation

term that generates the minimum cost function while avoiding the undesired critical and

singular points. An adequate choice of the cost function allows to express this hybrid

observer using directly body-frame vector measurements of known constant inertial di-
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rections without the need for attitude reconstruction. The second observer approach uses

a fixed innovation term but allows for the attitude state to jump (reset) to an adequately

selected value whenever the difference between the current cost function and the post

cost function (value of the cost function after a possible reset) exceeds certain threshold.

This threshold is selected in a way such that all undesired critical and singular points

of the cost function lie in the set where the observer states are reset. The proposed

reset-based hybrid observer can be directly expressed using body-frame measurements of

know, possibly time-varying, inertial vectors.

The problem of attitude estimation from intermittent measurements have been for-

mulated and tackled using measurement-triggered observers [Berkane and Tayebi, 2017d,

Berkane and Tayebi, 2017c]. First, in the case where the body-frame measurements

are collected synchronously at the same instants of time, an attitude observer on SO(3)

is proposed which consists of a forward integration of the continuous angular velocity

(propagation), and a jump equation (update) that uses the collected measurements to

reset the rotation estimate to a value guaranteeing a smaller estimation error. This es-

timation scheme has a similar structure as the one proposed in [Barrau and Bonnabel,

2015] but with the use of the Rodrigues map instead of the exponential map to simplify

the design. In the case where the measurements are collected asynchronously (not arriv-

ing at the same time) the update equation is executed at each instant of time where a

new measurement arrives. Although this problem can also be tackled using the predictor

based approach of [Khosravian et al., 2015], our approach is a predictor-free solution that

uses only a single vector measurement at a time to correct the attitude estimate, thus

saving memory and computation. To analyze the behaviour of the proposed attitude

estimation schemes, the closed-loop systems are extended with virtual timers which are

reset to zero at the arrival time of a new measurement. Each timer is allowed to flow

linearly when the corresponding measurement is not available. The extended closed-loop

system is modelled as an autonomous hybrid system and almost global exponential, re-

spectively asymptotic, stability is proved for the synchronous, respectively asynchronous,

measurement-triggered observers. Some practical issues related to the implementation of

the proposed estimation schemes are discussed which resulted in different extensions and

modifications to the original algorithms. The first tackled issue is the discrete time imple-

mentation of the proposed estimation schemes. The observers are discretized using first

order Euler-Lie method [Celledoni et al., 2014]. Interestingly, the interconnection of the

discrete version of the observer with a discrete approximation of the kinematic attitude

equation yields an almost globally convergent estimator. This property is strong and

does not hold, in general, for most existing continuous attitude estimators on SO(3) such
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as [Mahony et al., 2008]. Secondly, for both observers (synchronous and asychronous) the

attitude estimate is further refined (filtered) through an averaging procedure on SO(3) us-

ing a shift register (containing the previous attitude estimates). A similar averaging idea

was proposed in [Brodtkorb et al., 2015] for a system evolving on the Euclidean space R6

where recursive states were introduced to filter out the noise in the intermittent position

and velocity measurements used as input to an observer for marine vessels. In the case

where the measurements are updated at very low frequencies, the discrete transitions in

the attitude state might become undesirable. In this case, the estimation scheme can

be smooth out by combing the intermittent observer with a smoother on SO(3) without

affecting the stability properties. Finally, the practical problem of biased angular velocity

measurements is considered. In this case the intermittent attitude observer is extended

with a measurement-triggered bias estimation scheme. In the case where the measure-

ments are synchronously available with a regular sampling, local exponential stability of

the overall closed-loop system is shown.
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1.6 Thesis Outline

This thesis is organized as follows:

Chapter 2 introduces the mathematical background and preliminary results that are

used throughout the thesis. Section 2.1 provides the general notations used in this thesis.

Section 2.2 describes the rigid body attitude, attitude parametrizations, attitude metrics,

attitude visualization and useful identities and lemmas, some of which are newly derived

in this work. Section 2.3 presents the hybrid systems framework used in this work and

gives new relaxed conditions for exponential stability in hybrid systems. Finally, Section

2.4 presents some tools for numerical integration and simulation both on the Euclidean

and the rotation group and for hybrid systems as well.

Chapter 3 presents a framework for global exponential stabilization on the rotation

group SO(3) via hybrid feedback. After an introduction, Section 3.2 explains the topolog-

ical obstruction for global asymptotic stabilization on compact manifolds by considering

the simple example of the unit circle S1. This example also motivates the hybrid feedback

tools used in this work. Section 3.3 discusses the drawbacks of smooth stabilization on

SO(3) and introduces the concept of exp-synergism as well as the main structure of a hy-

brid synergistic feedback that achieves global exponential stability on SO(3). Systematic

methodologies for the construction of exp-synergistic potential functions from existing

smooth and nonsmooth potential functions on SO(3) are presented. Section 3.4 applies

the concept of hybrid synergistic feedback to the attitude tracking problem and simula-

tion results are provided to illustrate the effectiveness of the proposed control algorithms.

Chapter 4 is devoted to the attitude estimation problem on SO(3) using continu-

ous/intermittent measurements. Section 4.2 presents two techniques for the design of

globally exponentially stable attitude and gyro-bias observers on SO(3). The first tech-
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nique uses exp-synergistic potential functions to derive different innovation terms for

the observer while the second technique is based on resetting the attitude matrix to an

adequate value if the current estimation error provides a “large” enough cost. Section

4.3 deals with the problem of attitude estimation from intermittent (sporadic) vector

observations. Both cases of synchronous and asynchronous measurements are treated.

Simulation results are provided in both sections to illustrate the effectiveness of the pro-

posed estimation algorithms.

Chapter 5 summarizes the findings of this thesis and presents some possible future

directions.

Appendices A, B and C give the detailed proofs for all the lemmas, propositions

and theorems, respectively, stated throughout the thesis.



Chapter 2

Background and Preliminaries

2.1 General Notations

For a general orthonormal basis V = {v1, · · · , vn} of Rn we use the notation x =

[x1, · · · , xn]>V if x =
∑n

i=1 xivi. In particular, the notation x = [x1, · · · , xn]> is used when

x is represented with respect to the canonical (standard) basis of Rn denoted by {ei}1≤i≤n.

The ordered standard basis {e1, · · · , en}, along with the origin point x = [0, · · · , 0]> ∈ Rn

defines the Cartesian coordinate system on Rn. For a given square matrix A ∈ Rn×n,

the set Eλ(A) denotes the set of all eigenvalues of A. Note that if A is symmetric, all

the eigenvalues of A are real and thus Eλ(A) ⊂ R. The set Ev(A) denotes the set of

unit eigenvectors of A and ERv (A) corresponds to the set of real unit eigenvectors of

A. For simplicity, when Eλ(A) ⊂ R, the set of eigenvalues of A is ordered such that

λA1 ≤ λA2 · · · ≤ λAn where λAi is the i-th eigenvalue of A. In this case, λAmin and λAmax will

denote the smallest and largest eigenvalues of A, respectively. Moreover, for v ∈ Ev(A),

λAv denotes the eigenvalue of A associated to the eigenvector v. If a = [a1, a2, a3]>V and

b = [b1, b2, b3]>V are vectors in R3 expressed in the orthonormal basis V = {v1, · · · , vn},
then their cross product can be written as [Arfken et al., 1999]

a× b =
∑
m,n,l

εmnlambnvl, (2.1)

where εmnl is the Levi-Cevita symbol defined by

εmnl =


0 for m = n,m = l or n = l

+1 for (m,n, l) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}
−1 for (m,n, l) ∈ {(1, 3, 2), (3, 2, 1), (2, 1, 3)}

. (2.2)

14
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Let φ ∈ Rn be a given unknown constant parameter such that ‖φ‖ ≤ cφ for some known

constant scalar cφ > 0. The projection function Pcφ : R3 × R3 → R3, obtained from

[Krstic et al., 1995], is defined as follows:

Pcφ(φ̂, µ) =

{
µ if ‖φ̂‖ < cφ or φ̂>µ ≤ 0(
I − θ(φ̂) φ̂φ̂

>

‖φ̂‖2

)
µ otherwise

. (2.3)

where θ(φ̂) = min(1, (‖φ̂‖ − cφ)/ε) for some ε > 0 used to obtain a smooth projection

function. Note that although the projection function depends on ε, this argument is

removed for compactness. The projection operator is locally Lipschitz in its arguments

and satisfies, along the trajectories of
˙̂
φ = Pcφ(φ̂, µ), ‖φ̂(0)‖ ≤ cφ + ε, the following

important properties

‖φ̂(t)‖ ≤ cφ + ε, ∀t ≥ 0, (2.4)

(φ̂− φ)>Pcφ(φ̂, µ) ≤ (φ̂− φ)>µ, (2.5)

‖Pcφ(φ̂, µ)‖ ≤ ‖µ‖. (2.6)

Given a manifold M, a tangent vector at x ∈ M is defined by γ′(0) := dγ(τ)/dτ |τ=0

for some smooth path γ : R≥0 → M such that γ(0) = x. The tangent space to M at

x is the set of all tangent vectors at x, denoted TxM. The disjoint union of all tangent

spaces forms the tangent bundle TM. Let M and N be two smooth manifolds and let

f : M → N be a differentiable map. The tangent map (differential) of f at a point

x ∈M is the map [Darryl D. Holm and Stoica, 2009]

dfx : TxM → Tf(x)N
ξ 7→ dfx(ξ) := (f ◦ γ)′ (0),

where γ(t) is a path in M such that γ(0) = x and γ′(0) = ξ. The inverse image of a

subset SN ⊆ N under the map f is the subset of M defined by f−1(SN ) = {x ∈ M |
f(x) ∈ SN}. Let f :M→ R be a differentiable real-valued function. A point x ∈ M is

called a critical point1 of f if the differential map dfx(ξ) is zero at x for all ξ ∈ TxM. The

set Cf ⊆M denotes the set of all critical points of f onM. Let 〈 , 〉x : TxM×TxM→ R
be a Riemannian metric on M. The gradient of f , denoted ∇f(x) ∈ TxM, relative to

the Riemannian metric 〈 , 〉x is uniquely defined by

dfx(ξ) = 〈∇f(x), ξ〉x for all ξ ∈ TxM. (2.7)

1For a reference, see Morse Theory 279 (VII.16), page 1049 of [Itô, 1993].



16 Chapter 2. Background and Preliminaries

2.2 Rigid Body Attitude

Consider an inertial reference frame, denoted I, attached to the origin on R3 and asso-

ciated to the Cartesian coordinate system. The pose of a rigid body in 3D space is fully

described by the position of its center of mass and the orientation of a body-attached

frame, denoted B, with respect to the inertial frame of reference, see Figure 2.1.

I
e1

x

e2

y
e3

z

B

e1b

e2b

e3b

Figure 2.1: Coordinate systems: I (inertial reference frame) and B (body-attached
frame).

The orientation of a rigid body is described by a rotation matrix, denoted R, that

describes the orientation of the inertial frame I with respect to the body-attached frame

B such that the body coordinate axes are defined by the unit vectors eib which are defined

as

eib = Rei, i ∈ {1, 2, 3}. (2.8)

It turns out that the rotation matrix R is an element of the Special Orthogonal group of

order three defined by

SO(3) := {R ∈ R3×3 : det(R) = 1, RR> = R>R = I}, (2.9)

where I denotes the three-dimensional identity matrix. SO(3) is a matrix Lie group

under the matrix multiplication operator. The Lie algebra of SO(3) is denoted by so(3)

and consists of all skew-symmetric 3 by 3 matrices

so(3) :=
{

Ω ∈ R3×3 : Ω> = −Ω
}
. (2.10)
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The Lie algebra so(3) is isomorphic to R3 through the map [·]× : R3 → so(3) defined by

ω 7→ [ω]× =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,
where ω = [ω1, ω2, ω3]> ∈ R3. The inverse isomorphism of the map [·]× is defined by

vex : so(3) → R3, such that vex([ω]×) = ω, for all ω ∈ R3 and [vex(Ω)]× = Ω, for all

Ω ∈ so(3). The composition map ψ := vex◦Pso(3) extends the definition of vex to R3×3,

where Pso(3) : R3×3 → so(3) is the projection map on the Lie algebra so(3) such that

Pso(3)(A) := (A− A>)/2. Accordingly, for a 3-by-3 matrix A := [aij]i,j=1,2,3, one has

ψ(A) := vex
(
Pso(3)(A)

)
=

1

2

 a32 − a23

a13 − a31

a21 − a12

 . (2.11)

Also, the map PSO(3) : R3×3 → SO(3) is defined as the projection of X ∈ R3×3 on

SO(3) (i.e. closest rotation matrix to X). This rotation matrix can be obtained using

the Singular Value Decomposition [Hartley et al., 2013]. Let X = UDV > be the SVD

decomposition of X such that the diagonal elements of D are arranged in descending

order. The closest orthogonal matrix to X is given by

PSO(3)(X) = Udiag(1, 1, d)V > (2.12)

where d = sign(det(UV >)) (+1 or −1). The group SO(3) has a compact manifold

structure where its tangent spaces are identified by TRSO(3) := {RΩ | Ω ∈ so(3)} for

any R ∈ SO(3). Note that the Lie algebra can be also identified as the tangent space

at the identity rotation I, i.e. TISO(3) ≡ so(3). The Euclidean inner product on R3×3,

when restricted to the Lie-algebra of skew symmetric matrices, defines the following

left-invariant Riemannian metric on SO(3)

〈RΩ1, RΩ2〉R := 〈〈Ω1,Ω2〉〉, (2.13)

for all R ∈ SO(3) and Ω1,Ω2 ∈ so(3). The kinematic relation between an attitude

trajectory R(t) ∈ SO(3) and the angular velocity vector can be obtained by differentiating
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the orthogonality condition RR> = I which gives

d

dt
(R>R) = R>Ṙ + (Ṙ)>R = 0. (2.14)

It follows thatR(t)>Ṙ(t) ∈ so(3) for all times t ≥ 0 or, equivalently, there exists ω(t) ∈ R3

such that R(t)>Ṙ(t) = [ω(t)]×. This leads to write

Ṙ(t) = R(t)[ω(t)]×, (2.15)

which represents the attitude kinematics where ω(t) is referred to as the angular velocity

vector. If R is a rotation matrix describing the orientation of a body frame with respect to

an inertial frame then ω(t) is the body-referenced (expressed in body frame coordinates)

angular velocity of the body frame with respect to the inertial frame.

2.2.1 Attitude Parametrizations

The natural nine parameters representation of the attitude as an element of SO(3) is

unique and nonsingular. However, due to the presence of the constraints R>R = RR> =

I and det(R) = 1, it is possible to represent an attitude R ∈ SO(3) with fewer param-

eters. In this subsection, low order attitude parametrizations such as the exponential

coordinates, the angle-axis, the unit quaternions and the Rodrigues vector representa-

tions are described. Although not covered here, some other attitude representations

are used in the litterature such as the Euler angles, the modified Rodrigues parameters

amongst others. For more details on attitude representations the reader is referred to

[Shuster, 1993], [Murray et al., 1994], and [Hughes, 1986].

2.2.1.1 Exponential Coordinates Representation

Since the vector space so(3) corresponds to the Lie algebra of SO(3), it allows to rep-

resent elements of SO(3) via the exponential map. Given a rotation vector x ∈ R3, the

corresponding rotation matrix is given by the exponential map exp([x]×) ∈ SO(3) which

is defined by the following compact formula on SO(3)

exp([x]×) =

{
I x = 0

I + sin(||x||)
||x|| [x]× + 1−cos(||x||)

||x||2 [x]2× x 6= 0
. (2.16)

Equation (2.16) is referred to as Rodrigues formula. For a given rotation matrix R ∈
SO(3) such that R = exp([x]×), the three-parameters vector x ∈ R3 is often referred to
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as the exponential coordinates of R. The exponential map is a diffeomorphism between

Πso(3) = {[x]× ∈ so(3) | x ∈ R3, ||x|| < π} and ΠSO(3) = {R ∈ SO(3) | tr(R) 6= −1}. The

inverse map log : ΠSO(3) → Πso(3) is given by

log(R) =

{
03×3 R = I,

θ(R)
2 sin(θ(R))

(R−RT ) R 6= I,
(2.17)

where θ : ΠSO(3) → [0, π) is the angle of rotation and is defined by

θ(R) = arccos

(
tr(R)− 1

2

)
. (2.18)

Let R(t) be a smooth curve on SO(3) evolving according to the kinematic equation (2.15)

such that tr(R(t)) 6= −1 for all t ≥ 0. Let x(t) = vex(log(R(t))) be the exponential

coordinates of R(t) then one has (see [Bullo and Murray, 1995])

ẋ(t) =

(
I +

1

2
[x(t)]× + α(‖x(t)‖)[x(t)]2×

)
ω(t) (2.19)

where α(y) := (1− (y/2) cot(y/2))/y2.

2.2.1.2 Angle-Axis Representation

Given a unit vector u ∈ S2 and an angle θ ∈ R, we define the following map

Ra(θ, u) := exp([θu]×) = I + sin(θ)[u]× + (1− cos(θ))[u]2×. (2.20)

The above parametrization of SO(3) is often known as the angle-axis parametrization.

For a given matrix R ∈ SO(3), this parametrization is not unique. In fact, for attitudes

of angle π, it is not difficult to show that Ra(π, u) = Ra(−π, u) for all u ∈ S2. The

following composition rule is recalled

Ra(θ1, u)Ra(θ2, u) = Ra(θ1 + θ2, u), ∀θ1, θ2 ∈ R, ∀u ∈ S2. (2.21)

Consider an attitude trajectory R(t) = Ra(θ(t), u(t)) satisfying the attitude kinematics

equation (2.15), then one has

θ̇(t) = u(t)>ω(t), (2.22)

u̇(t) =
1

2

(
[u(t)]× − cot(θ(t)/2)[u(t)]2×

)
ω(t). (2.23)
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2.2.1.3 Unit Quaternions Representation

A unit quaternion Q = (η, ε) ∈ Q, consists of a scalar part η and three-dimensional vector

ε, such that Q := {(η, ε) ∈ R× R3 : η2 + ε>ε = 1}. The relation between the quaternion

representation and the angle-axis representation is given by

η = cos (θ/2) , (2.24)

ε = sin (θ/2)u. (2.25)

Therefore, in view of (2.20), a unit quaternion represents a rotation matrix through the

map Ru : Q→ SO(3) defined as

Ru(η, ε) = I + 2[ε]2× + 2η[ε]×. (2.26)

The set Q forms a group with the quaternion product, denoted by �, being the group op-

eration and quaternion inverse defined by Q−1 = (η,−ε) as well as the identity-quaternion

Q = (1, 03×1), where 03×1 ∈ R3 is a column vector of zeros. Given Q1, Q2 ∈ Q where

Q1 = (η1, ε1) and Q2 = (η2, ε2) the quaternion product is defined by

Q1 �Q2 =
(
η1η2 − ε>1 ε2, η1ε2 + η2ε1 + [ε1]×ε2

)
, (2.27)

and satisfying

Ru(Q1)Ru(Q2) = Ru(Q1 �Q2). (2.28)

Unit quaternions, also known as versors, are simpler to compose compared to the ex-

ponential coordinates and more compact compared to rotation matrices. The quater-

nion map Ru represents a two-to-one map in the sense that the two quaternions (η, ε)

and (−η,−ε) corresponds to the same rotation matrix on SO(3) (same attitude). Let

R(t) = Ru(η(t), ε(t)) satisfying the attitude kinematic equation (2.15), then the corre-

sponding quaternion kinematics are given by

η̇(t) = −1

2
ε(t)>ω(t), (2.29)

ε̇(t) =
1

2
(η(t)I + [ε(t)]×)ω(t). (2.30)
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2.2.1.4 Rodrigues Vector Representation

Another useful attitude representation is the well known Rodrigues vector on R3 which

is also associated to the Cayley transform. Consider the map Rr : R3 → SO(3) such that

Rr(z) = (I − [z]×)(I + [z]×)−1 =
1

1 + ‖z‖2

(
(1− ‖z‖2)I + 2zz> + 2[z]×

)
. (2.31)

Note that since [z]× is skew-symmetric all its eigenvalues are pure imaginary. Thus, all

the eigenvalues of the matrix I + [z]× are non zero and therefore its inverse exists. The

map Rr is a diffeomorphism between R3 and ΠSO(3). The inverse map Z : ΠSO(3) → R3

is given by

Z(R) = vex
(
(I −R)(I +R)−1

)
=

2ψ(R)

1 + tr(R)
. (2.32)

It is not difficult to show that the following relations hold for all quaternions (η, ε) ∈ ΠQ

and all angle-axes (θ, u) ∈ R× S2, such that θ 6= kπ, k ∈ Z,

Z(Ru(η, ε)) =
ε

η
, (2.33)

Z(Ra(θ, u)) = tan(θ/2)u. (2.34)

The vector Z(R) ∈ R3 defines the vector of Rodrigues parameters. Note that the Ro-

drigues vector is sometimes defined using the unit quaternion or the angle-axis represen-

tation [Shuster, 1993]. It can be verified that the time derivative of the Rodrigues vector

Z(R) along the trajectories of (2.15) is given by

d

dt
Z(R) =

1

2

(
I + [Z(R)]× + Z(R)Z(R)>

)
ω. (2.35)

2.2.2 Metrics on SO(3)

Roughly speaking, a metric (or distance) tells us how two elements of a given manifold are

close to each other. More rigorously, a metric on SO(3) is a function d : SO(3)×SO(3)→
R≥0 that satisfies the following properties for all R1, R2, R3 ∈ SO(3):

• Non-negativity: d(R1, R2) ≥ 0.

• Identity of indiscernibles: d(R1, R2) = 0 if and only if R1 = R2.

• Symmetry: d(R1, R2) = d(R2, R1).

• Triangle inequality: d(R1, R3) ≤ d(R1, R2) + d(R2, R3).
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One possible way to measure the distance between two rotation matrices on SO(3) is to

use the Frobenious norm on the embedding Euclidean space R3×3 as follows:

dE(R1, R2) = ‖R1 −R2‖F , (2.36)

which defines the Euclidean (or Chordal) distance on SO(3). It can be verified that

dE(·, ·) satisfies the following property

dE(R1, R2) = dE(I, R1R
>
2 ) =

√
2tr(I −R1R>2 ) ≤

√
8, (2.37)

where the fact that R1R
>
2 ∈ SO(3), and hence tr(R1R2) ≥ −1, has been used to obtain

the upper bound of dE(·, ·). Throughout this work, the following normalized attitude

norm on SO(3) is used

|R|I =
dE(I, R)√

8
=
‖I −R‖F√

8
=

√
tr(I −R)√

4
. (2.38)

Another interesting attitude distance on SO(3) is what is known as the Geodesic or

SO(3)

•

so(3)

R2

R1

•

• log(R1R
>
2 )

Figure 2.2: Euclidean distance (red dashed) and Geodesic distance (green solid).

Riemannian metric (also known as the angular distance). It is defined as the length

of the shortest path on SO(3) between two rotation matrices. Formally, the geodesic

distance on SO(3) is defined as

dG(R1, R2) =
1√
2
‖ log(R1R

>
2 )‖F . (2.39)

Note that dG(R1, R2) measures the rotation angle between the two matrices R1 and R2

or, equivalently, the angle of the rotation error R1R
>
2 which lies in the interval [0, π].
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2.2.3 Attitude Visualization

Visualizing the orientation information of a rigid body in 3D space can be done in different

ways depending on the application at hand. One possible way consists in using the frame-

based description of the orientation as in Figure 2.1. In fact, assume a given trajectory

R(t) : R≥0 → SO(3) then three base vectors trajectories can be obtained as follows

eib(t) = R(t)ei, i ∈ {1, 2, 3}, (2.40)

where each vector eib describes a trajectory on the unit sphere S2. Therefore, the rotation

path R(t) is visualized by plotting three trajectories on S2 as demonstrated in Figure 2.3.

Alternatively, if plotting three trajectories on the same sphere is cumbersome, one can

draw three spheres (instead on one sphere) and plot each trajectory R(t)e1, R(t)e2 and

R(t)e3 on each of these spheres.

Figure 2.3: Visualization of 3D rotations using the body-frame unit axes R(t)e1, R(t)e2

and R(t)e3. The initial body frame is plotted in dashed and the final body frame is plotted
in bold. The trajectory is generated using the angular velocity ω(t) = [e−t, e−2t, e−3t]>

with R(0) = I and t ∈ [0, 20] seconds.

Another way to visualize rotations is to consider the exponential coordinates. The

rotation vector θu is plotted in x-y-z coordinates where the angle θ is between 0 and

π and u dictating the orientation (direction) of the vector in 3D space, see Figure 2.4.

Alternatively, the two quantities θ (angle of rotation) and u (axis of rotation) can be

plotted separately to allow clearer reading in applications where the variations of both
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Figure 2.4: Visualization of 3D rotations using the exponential coordinates. The trajec-
tory is generated using the angular velocity ω(t) = [− sin(t), 0, 0.3 cos(t)]> with R(0) = I
and t ∈ [0, 10] seconds.

quantities are needed to be analyzed separately, see Figure 2.5.
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Figure 2.5: Visualization of 3D rotations using the angle-axis representation. The trajec-
tory is generated using the angular velocity ω(t) = [− sin(t), 0, 0.3 cos(t)]> with R(0) = I
and t ∈ [0, 10] seconds.

2.2.4 Useful Identities and Lemmas

In this subsection, useful relations and lemmas, which will be used throughout the disser-

tation, are provided. Some of these relations are well known and need not to be proved.

Other relations, however, are newly derived in this work.

The matrix trace tr(·) and det(·) functions have many properties which can be found
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in linear algebra textbooks [Lang, 1987]. Here, some of these useful properties are re-

called. For any M,N ∈ R3×3, x, y ∈ R3 and α ∈ R one has

tr(M>) = tr(M), (2.41)

tr(M +N) = tr(M) + tr(N), (2.42)

tr(αM) = αtr(M), (2.43)

tr(MN) = tr(NM), (2.44)

tr(MN) = 0 (if M = M> and N = −N>) (2.45)

det(MN) = det(M)det(N) (2.46)

det(I + xy>) = 1 + x>y. (2.47)

Using these properties of the trace function, the following identities are easily derived in

a straightforward manner. For all x, y ∈ R3 and R,P ∈ SO(3) one has

tr(xy>) = x>y, (2.48)

tr(yx>(I −RP>)) =
1

2
‖R>x− P>y‖2 − 1

2
‖x− y‖2. (2.49)

The cross product map [·]× has many interesting properties and appeared in many ref-

erences dealing with rigid body attitude applications [Shuster, 1993]. For any x, y ∈ R3

one has

[x]×y = x× y, (2.50)

[x]×y = −[y]×x, (2.51)

[x]3× = −‖x‖2[x]×, (2.52)

[x]×[y]× = −(x>y)I + yx>, (2.53)

x× y = 2ψ(yx>), (2.54)

[x× y]× = yx> − xy>, (2.55)

〈〈[x]×, [y]×〉〉 = 2x>y, (2.56)
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Moreover, for any x, y ∈ R3, M ∈ R3×3 and R ∈ SO(3) the following relations hold

〈〈M, [x]×〉〉 = 〈〈Pso(3)(M), [x]×〉〉, (2.57)

[(Mx)× (My)]× = M [x× y]×M
>, (2.58)

M [x]× + [x]×M
> = [(tr(M)I −M>)x]×, (2.59)

ψ(MR) = R>ψ(RM), (2.60)

R[x]×R
> = [Rx]×. (2.61)

The matrix square of a rotation R ∈ SO(3) is also a rotation around the same axis and

with double angle. The rotation R2 can be obtained from R using the following relation

[Shuster, 1993]

R2 = R> + tr(R)R− tr(R)I. (2.62)

Using this relation, one obtains the following lemma whose proof is provided in Appendix

A.1.

Lemma 2.2.1 For any symmetric matrix M = M> ∈ R3×3 and R ∈ SO(3) one has

tr(M(I −R2)) = (1 + tr(R))tr(M(I −R)), (2.63)

Pso(3)(MR2) = tr(R)Pso(3)(MR) + Pso(3)(MR>) (2.64)

〈〈Pso(3)(R),Pso(3)(MR)〉〉 =
1

2
tr(M(I −R2)). (2.65)

It turns out that, in the field of attitude control and estimation, the following mapping

E : R3×3 → R3×3 defined by

E(M) =
1

2

(
tr(M)I −M>) (2.66)

is important and its properties are very handy when deriving the control laws and the

proofs of stability. The following lemmas are needed throughout the thesis and are proved

in Appendix A.

Lemma 2.2.2 Consider the map E : R3×3 → R3×3 defined in (2.66). Let M ∈ R3×3 and

let v be an eigenvector of M> associated to the eigenvalue λM
>

v . Then, the following hold

i) E−1(M) = tr(M)I − 2M>.

ii) v is an eigenvector of E(M), respectively E−1(M), associated to the eigenvalue

λ
E(M)
v = 1

2

(
tr(M)− λM>v

)
, respectively λ

E−1(M)
v = tr(M)− 2λM

>
v .
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Lemma 2.2.3 Consider the map E : R3×3 → R3×3 defined in (2.66). Then, for any

symmetric matrix M ∈ R3×3, any rotation matrix R ∈ SO(3) and any vector x ∈ R3 one

has

x>[λ
E(M)
min − E(MR)]x ≤ 1

2
tr(M(I −R))‖x‖2, (2.67)

x>[E(M)− E(MR)]y ≤ 1

2
tr(M(I −R))x>y +

1

2
‖M(I −R)‖F‖x‖‖y‖, (2.68)

2λMmin − tr(M) ≤ tr(MR) ≤ max
(
tr(M), 2λMmax − tr(M)

)
, (2.69)

E(M) ≥ 0⇒ ‖E(MR)‖F ≤ ‖E(M)‖F . (2.70)

Lemma 2.2.4 Consider the trajectories of Ṙ(t) = R(t)[ω(t)]× with R(0) ∈ SO(3) and

ω(t) ∈ R3 for all t ≥ 0. Then, for all M ∈ R3×3

∇tr(M(I −R)) = RPso(3)(MR), (2.71)

d

dt
tr(M(I −R(t))) = 2ψ(MR(t))>ω(t), (2.72)

d

dt
ψ(MR(t)) = E(MR(t))ω(t). (2.73)

Lemma 2.2.5 Let M ∈ R3×3 be a symmetric matrix. Then, for all θ ∈ R, u ∈ S1, (η, ε) ∈
Q and z ∈ R3, one has

tr(M(I −Ra(θ, u))) = 2(1− cos(θ))u>E(M)u, (2.74)

tr(M(I −Ru(η, ε))) = 4ε>E(M)ε, (2.75)

tr(M(I −Rr(z))) = 4[1 + ‖z‖2]−1z>E(M)z. (2.76)

Moreover, one has

ψ(MRa(θ, u)) = (sin(θ)I − (1− cos(θ))[u]×)E(M)u, (2.77)

ψ(MRu(η, ε)) = 2(ηI − [ε]×)E(M)ε, (2.78)

ψ(MRr(z)) = 2[1 + ‖z‖2]−1(I − [z]×)E(M)z. (2.79)

Lemma 2.2.6 Let M ∈ R3×3 be a symmetric matrix and R ∈ SO(3) be a rotation
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matrix. Then the following relations hold:

4λ
E(M)
min |R|2I ≤ tr(M(I −R)) ≤ 4λE(M)

max |R|2I , (2.80)

‖ψ(MR)‖2 = α(M,R)tr(E−1(E(M)2)(I −R)), (2.81)

(1− |R|2I) ≤ α(M,R) ≤ (1− ξ2|R|2I) if E(M) ≥ 0, (2.82)

ψ(R)>ψ(MR) = ψ(R)>E(M)ψ(R), (2.83)

where α(M,R) = (1 − |R|2I cos2(u,E(M)u)), ξ = λ
E(M)
min /λ

E(M)
max and u ∈ S2 is the axis of

rotation R. Moreover, the following upper bound holds

‖ψ(MR)‖2 ≤ (λE(M)
max )2ψ̄(ξ2), if E(M) ≥ 0, (2.84)

where ψ̄(·) is defined as ψ̄(ξ2) = 1/ξ2 if ξ2 ≥ 1/2 and ψ̄(ξ2) = 4(1− ξ2) otherwise.

Lemma 2.2.7 Let M =
∑n

i=1 ρixix
>
i with n ≥ 1, ρi ∈ R and xi ∈ R3, i = 1, . . . , n.

Then, the following holds for any rotation matrices R,P ∈ SO(3):

tr(M(I −RP>)) =
1

2

n∑
i=1

ρi‖R>xi − P>xi‖2, (2.85)

ψ(MRP>) =
1

2
P

n∑
i=1

ρi(R
>xi × P>xi) (2.86)

Lemma 2.2.8 Let M be a symmetric matrix. For all (θ, u) ∈ R × S2 and v ∈ ERv (M),

the following holds

tr(M(I −Ra(π, v)Ra(θ, u))) = 4λE(M)
v − 4 sin2(θ/2)∆(v, u), (2.87)

where ∆(v, u) is given by

∆(v, u) = v> (E(M) + [u]×E(M)[u]×) v. (2.88)

2.3 Hybrid Systems Framework

A hybrid system is a dynamical system that allows both continuous flows and discrete

jumps (transitions) of the state. In this thesis, the framework of hybrid systems developed

in [Goebel and Teel, 2006, Goebel et al., 2009, Goebel et al., 2012] is considered. Let

M be a given manifold embedded in Rn. A general model of a hybrid system takes the
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form: {
ẋ ∈ F(x), x ∈ F ,
x+ ∈ J(x), x ∈ J ,

(2.89)

where the flow map, F :M⇒ TM (⇒ denotes a set-valued mapping) governs the con-

tinuous flow of x on the manifoldM, the flow set F ⊆M dictates where the continuous

flow could occur. The jump map, J : M ⇒M, governs discrete jumps of the state x,

and the jump set J ⊆M defines where the discrete jumps are permitted.

Solutions to hybrid systems are parametrized by the amount of time spent in the flow

set t ∈ R≥0 and by the number of jumps of the state j ∈ N. Solutions to hybrid systems

are therefore defined on a hybrid time domain. A subset H ⊂ R≥0 × N is a hybrid time

domain, if it is a union of finitely or infinitely many intervals of the form [tj, tj+1]× {j}
where 0 = t0 ≤ t1 ≤ t2 ≤ ..., with the last interval, if existent, being possibly of the

form [tj, T ) × {j} with T finite or T = +∞. The ordering of points on each hybrid

time domain is such that (t, j) � (t′, j′) if t ≤ t′ and j ≤ j′. A hybrid arc is a function

x : dom x → M, where the domain of the function x (i.e. dom x) is a hybrid time

domain and, for each fixed j, t 7→ x(t, j) is a locally absolutely continuous function on

the interval Tj = {t : (t, j) ∈ dom x}. A hybrid arc x is called complete if dom x is

unbounded and Zeno if it is complete and the projection of dom x on R≥0 is bounded.

The hybrid arc x is a solution to the hybrid system (2.89) if x(0, 0) ∈ F ∪J and the

following conditions are satisfied:

• Flow condition: for each j ∈ N such that Tj has a nonempty interior,

ẋ(t, j) ∈ F(x(t, j)), for almost all t ∈ Tj, (2.90)

x(t, j) ∈ F , for all t ∈ [minTj, supTj). (2.91)

• Jump condition: for each (t, j) ∈ dom x such that (t, j + 1) ∈ dom x,

x(t, j + 1) ∈ J(x(t, j)), (2.92)

x(t, j) ∈ J . (2.93)

Consider a hybrid arc x that is not eventually discrete. Let j̄(t) = max{j : (t, j) ∈ dom x}
and let T = sup{t : (t, j) ∈ dom x, j ∈ N}. Then, the time projection of x is defined as
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the function x↓t : [0, T )→M such that

x↓t = x(t, j̄(t)). (2.94)

In the framework [Goebel et al., 2012], three Basic Conditions (or Assumptions) have

been introduced to guarantee the existence of solutions, the robustness of stability to

small perturbations and other useful properties. The hybrid system (2.89) is said to

satisfy the basic conditions if:

C1) F and J are closed sets in Rn.

C2) The set-valued function F is outer semicontinuous2 and locally bounded3 on F and,

for all x ∈ F , the set F(x) is nonempty and convex4

C3) The set-valued function J is outer semicontinuous and locally bounded on J and,

for all x ∈ J , the set J(x) is nonempty.

2.3.1 Exponential Stability for Hybrid Systems

Since most of the stability results, derived in this thesis, are exponential, only the defi-

nition of exponential stability for hybrid systems of the form (2.89) is recalled here. The

reader is referred to [Goebel et al., 2012] for other definitions of stability and asymptotic

stability for hybrid systems.

Definition 2.3.1 (Exponential stability [Teel et al., 2013]) A closed set A ⊂ M
is said to be (locally) exponentially stable for the hybrid system (2.89) if there exist strictly

positive real numbers k, λ, µ such that each solution x satisfying |x(0, 0)|A < µ also sat-

isfies, for all (t, j) ∈ dom x,

|x(t, j)|A ≤ k exp(−λ(t+ j))|x(0, 0)|A (2.95)

where |x|A denotes a distance function from x ∈ M to A. It is said to be globally

exponentially stable if one allows µ→ +∞.

Note that in the above definition of exponential stability, the exponential convergence

is indeed uniform since the scalars λ and k are independent from the initial conditions.

2The set-valued function F is outer semicontinuous if its graph {(x, y) : x ∈ M, y ∈ F(x)} ⊂ R2n is
closed. Equivalently, for all x0 ∈ F one has lim supx→x0

F(x) ⊆ F(x0).
3A set-valued function F is locally bounded on F if for every compact set K ⊂ F , F (K) is bounded.
4A convex set is a subset of an affine space that is closed under convex combinations. Roughly

speaking, given any two points in a convex set, each point on the line joining these two points is in the
set as well.
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Throughout the text, the adjective “uniform” is omitted for simplicity. Given µ > 0,

define the set A + µB := {x ∈ M : |x|A < µ}. The following theorem [Teel et al., 2013]

provides sufficient conditions for exponential stability.

Theorem 2.3.2 For system (2.89), the closed set A ⊂M is locally exponentially stable

if there exist positive real numbers α, ᾱ, λ1, λ2, µ, p and a function V : domV→ R where

F ∪ J ∪ J(J ) ⊂ domV, that is continuously differentiable on an open set containing

cl(F) and satisfies

α|x|pA ≤ V(x) ≤ ᾱ|x|pA, ∀x ∈ (F ∪ J ∪ J(J )) ∩ (A+ µB), (2.96)

〈∇V(x), f〉 ≤ −λ1V(x), ∀x ∈ F ∩ (A+ µB), f ∈ F(x), (2.97)

V(g) ≤ exp(−λ2)V(x), ∀x ∈ J ∩ (A+ µB), g ∈ J(x). (2.98)

If these bounds hold with µ =∞ then the set A is globally exponentially stable.

The sufficient conditions for exponential stability provided in Theorem 2.3.2 require that

all solutions guarantee exponential decrease of the function V during both the flows and

the jumps. It turns out that for hybrid systems of the form (2.89) this condition is quite

restrictive. In other words, under some mild conditions on the solutions, exponential

stability can still hold even in the case where some solutions do not ensure a decrease in

V during either the flow or the jump.

Theorem 2.3.3 For system (2.89), the closed set A ⊂M is locally exponentially stable

if there exist positive real numbers α, ᾱ, µ, p, real numbers λ1, λ2 and a function V :

domV→ R where F ∪J ∪J(J ) ⊂ domV, that is continuously differentiable on an open

set containing cl(F) and satisfies

α|x|pA ≤ V(x) ≤ ᾱ|x|pA, ∀x ∈ (F ∪ J ∪ J(J )) ∩ (A+ µB), (2.99)

〈∇V(x), f〉 ≤ −λ1V(x), ∀x ∈ F ∩ (A+ µB), f ∈ F(x), (2.100)

V(g) ≤ exp(−λ2)V(x), ∀x ∈ J ∩ (A+ µB), g ∈ J(x), (2.101)

such that one of these conditions hold:

i) λ1 and λ2 are strictly positive scalars.

ii) λ2 ≤ 0, λ1 > −λ2γ and, for all (t, j) ∈ dom x, j ≤ γt+ J where γ ≥ 0 and J ∈ N.

iii) λ1 ≤ 0, λ2 > −λ1γ and, for all (t, j) ∈ dom x, t ≤ γj + T where γ, T ≥ 0.

If these conditions hold with µ =∞ then the set A is globally exponentially stable.
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Proof See Appendix C.1.

Compared to Theorem 2.3.2, the conditions of Theorem 2.3.3 do not require that both λ1

and λ2 are positive. Instead, only one of the two scalars λ1, λ2 is required to be positive

and the other one can take arbitrary values in R. This allows for scenarios where we

have either an increase during the flows or an increase during the jumps. The price to

pay is that some conditions on the hybrid time domain are imposed. These conditions

are often referred to as persistent flow (respectively persistent jump) conditions and have

been exploited in [Goebel et al., 2012, Section 3.3] and [Prieur et al., 2014] to derive

sufficient conditions for global uniform asymptotic stability in the case where there is

no strict decrease across the jumps (respectively flows). Many classes of hybrid systems

satisfy these persistent flow/jump conditions. For instance, hybrid systems that exhibit

dwell-time solutions5 can be shown to satisfy the persistent flow condition in item ii) of

Theorem 2.3.3. Moreover, in a state estimation problem using intermittent measurements

(such as the one discussed in Chapter 4) there exists a maximum time T such that the

observer state is updated every T period of time. Therefore the flow time t is naturally

bounded by t ≤ T (j + 1) which allows to use item iii) of Theorem 2.3.3.

Remark 2.3.4 In Theorem 2.3.3, global exponential stability of the set A is stated when

the scalar µ = +∞. When the set A is locally exponentially stable and the set M\R,

where R ⊆ M is contained in the region of attraction, has Lebesgue measure zero, the

exponential stability is stated as almost global exponential stability.

2.4 Numerical Integration Tools

In this section, the numerical integration schemes used in this work are discussed. Most

mechanical systems are governed by differential equations whose solutions are known to

evolve on a given manifold embedded in Rn. There are two main techniques to numerically

solve differential equations on general manifolds: embedded and intrinsic. In the first

method, one embeds the given manifold in Rn and then employs classical integration

methods on the Euclidean manifold Rn such as the Runge-Kutta methods. The drawback

of these methods when applied to manifolds is that, in general, it is not possible to

guarantee that the solution will stay on the given manifold. On the other hand, intrinsic

methods are developed to guarantee that the update rule for the integration scheme keeps

5A solution to a hybrid system is called a “dwell-time solution” if there is a minimum elapsed time
between each two consecutive jumps. In other words, there is a dwell time τD > 0 such that jumps are
separated by at least τD amount of time.
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the state of the system on this manifold. The price to pay is that these methods might

be computationally expensive compared to the classical methods on Rn.

2.4.1 Numerical Integration on Rn

Consider the ordinary differential equation (ODE) on Rn

ẋ = f(t, x), x(0) = x0. (2.102)

The objective of numerical integration methods is to approximate the time solution for

the above ODE given knowledge of the function f and the initial data (0, x0). The

most basic and simplest method is to use the well known explicit Euler method which is

named after Leonhard Euler, who treated it in his book Institutionum calculi integralis

(published 1768-70). Choose a value h for the size of every step and set tn = nh. Then,

it is possible to iteratively compute the approximate of x at time tn, denoted xn ≈ x(tn),

using the first order update rule

xn+1 = xn + hf(tn, xn), n ∈ N0. (2.103)

Higher order integration schemes can be used to obtain better accuracy. The Runge-

Kutta methods provide a family of implicit and explicit integration schemes to approx-

imate the solutions of an ODE. These methods were developed around 1900 by the

German mathematicians C. Runge and M. W. Kutta. Here, some of the commonly used

Runge-Kutta methods are recalled. Euler method mentioned above is the first order

Runge-Kutta method. The following are some common Runge-Kutta methods:

• Heun’s method (explicit trapezoidal rule) is given by the formula

xn+1 = xn +
h

2
(f1 + f2) , (2.104)

where f1 = f(tn, xn), and f2 = f(tn + h, xn + hf1).

• A Runge-Kutta method (3rd order, 3 stages) is given by the formula

xn+1 = xn +
h

6
(f1 + 4f2 + f3) , (2.105)

where f1 = f(tn, xn), f2 = f(tn + h
2
, xn + h

2
f1), and f3 = f(tn + h, xn− hf1 + 2hf2).
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• Classical Runge-Kutta method (4-th order, 4 stages) is given by the formula

xn+1 = xn +
h

6
(f1 + 2f2 + 2f3 + f4) , (2.106)

where f1 = f(tn, xn), f2 = f(tn + h
2
, xn + h

2
f1), f3 = f(tn + h

2
, xn + h

2
f2), and

f4 = f(tn + h, xn + hf3).

2.4.2 Numerical Integration on SO(3)

During the last decades, numerical integration methods that preserve certain nice prop-

erties on differential manifolds have been widely discussed [Crouch and Grossman, 1993,

Munthe-Kaas, 1995]. Amongst these methods, Lie group integrators played an important

role in numerical methods for Hamiltonian problems. In a series of papers, Munthe-Kaas

[Munthe-Kaas, 1995, Munthe-Kaas, 1998, Munthe-Kaas, 1999] presented what are now

known as the Runge-Kutta-Munthe-Kaas (RK-MK) methods. Consider the following

initial value problem on SO(3)

Ṙ = R[ω(t, R)]×, R(0) ∈ SO(3). (2.107)

Using adapted results from [Munthe-Kaas, 1998] to the Lie group SO(3), it is possible

to iteratively approximate the solution R(t) of (2.107) at time tn, denoted R(tn) ≈ Rn,

using one of the following RK-MK methods on SO(3)

• RK-MK1 method (also known as Lie-Euler method) is given by the formula

Rn+1 = Rn exp(h[ω(tn, Rn)]×). (2.108)

The above formula can be easily derived by assuming that the angular velocity

ω(t, R) between tn and tn+1 and (exact) integrating the kinematic equation (2.107)

between tn and tn+1.

• RK-MK2 method is given by the formula

Rn+1 = Rn exp(h[ω1 + ω2]×/2), (2.109)

where ω1 = ω(tn, Rn) and ω2 = ω(tn + h,Rn exp(hω1)).
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• RK-MK3 method is given by the formula

Rn+1 = Rn exp([ω̃]×), (2.110)

ω̃ =
h

6
(ω1 + 4ω2 + ω3) +

h2

36
(4ω1 × ω2 + ω1 × ω3), (2.111)

where ω1 = ω(tn, Rn), ω2 = ω(tn + h/2, Rn exp(h[ω1]×/2)) and ω3 = ω(tn +

h,Rn exp(h[−ω1 + 2ω2]×)).

• RK-MK4 method is given by the formula

Rn+1 = Rn exp([ω̃]×), (2.112)

ω̃ =
h

6
(ω1 + 2ω2 + 2ω3 + ω4) +

h2

36

∑
i<j

ωi × ωj, (2.113)

where ω1 = ω(tn, Rn), ω2 = ω(tn+h/2, Rn exp(h[ω1]×/2)), ω3 = ω(tn+h/2, Rn exp(h[ω2]×/2)),

and ω4 = ω(tn + h,Rn exp(h[ω3]×)).

2.4.3 Numerical Integration of Hybrid Systems

The main objective when developing a numerical integration scheme is to approximate

with arbitrary precision, by adjusting the step size, the solutions of the mathematical

model under consideration. Moreover, when dealing with control systems it is desirable

that the simulated model preserves, for example, asymptotic stability even in a practical

sense. The theory of numerical simulation and integration for continuous time differen-

tial equations is well understood and developed and can be found in several textbooks.

However there is a little that has been done when the system under consideration is

a hybrid system; combining continuous and discrete dynamics. Under the framework

[Goebel et al., 2012], a hybrid simulator model for hybrid systems written in the form

(2.89) is introduced. The authors in [Sanfelice and Teel, 2006] established conditions on

the data of the hybrid simulator model such that the following properties hold:

• On compact hybrid time domains, every simulation to a hybrid system is arbitrarily

close to a solution of the hybrid system;

• Asymptotically stable compact sets for a hybrid system are semiglobally practically

asymptotically stable compact sets for the hybrid simulator;

• Asymptotically stable compact sets for the hybrid simulator are continuous in the

step size h.
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Given a step size h, a hybrid simulator for (2.89) is defined as follows{
x+ ∈ Fh(x), x ∈ Fh,
x+ ∈ Jh(x), x ∈ Jh,

(2.114)

where Fh :M ⇒M is the integration scheme for the flows of (2.89), Fh ⊂ M dictates

where the integration update rule is allowed, Jh : M ⇒ M is the jump mapping that

approximates the jump map J of the hybrid system (2.89), and Jh ⊂ M defines where

the jump mapping Jh is enabled. The map Fh is constructed from the flow map F using a

particular integration scheme (explicit Euler method, Runge-Kutta methods, etc). Note

that the flow and jump maps F and J are not necessarily the same as the maps Fh and

Jh (they consist in general of perturbations of F and J ). In some situations, however,

it can be reasonable to choose Jh ≡ J, Fh ≡ F and Jh ≡ J . Sufficient conditions for

these data to guarantee the above mentioned desirable properties as well as the existence

of solutions for arbitrary large simulation horizon are roughly summarized as follows:

• Closeness of the solutions of the integration scheme Fh to the true solutions of

ẋ ∈ F(x);

• The sets Fh and Jh converge to F and J when the step size h tends to zero;

• Fh is such that for each compact set K ⊂ M and for each x ∈ Fh ∩ K one has

Fh(x) ⊂ Fh ∪ Jh;

• Jh is such that Jh(Jh) ⊂ Fh ∪ Jh.

The first condition is verified by most well known methods such as Runge-Kutta methods

discussed earlier. Moreover, in situations where Fh ∪ Jh ≡ M, the last two conditions

above are naturally met and, in this case, it is sufficient to pick Jh ≡ J. Note that

the hybrid simulation model (2.114) is purely discrete and therefore it is resonable to

parametrize its solutions by two discrete variables j (number of jumps in Jh) and n

(number of integration steps) which define a discrete time domain [Sanfelice and Teel,

2006]. Note that in the work [Sanfelice and Teel, 2006], the trajectories of the hybrid

system are allowed to “enter” the jump set (referred to as enabling semantics) compared

to some other integration schemes where the jumps are forced when the trajectories hit

the boundary of the jump set (referred to as forcing or trigerring semantics), see [Sprinkle

et al., 2005].



Chapter 3

Hybrid Attitude Control on SO(3)

3.1 Introduction

This chapter presents a framework for global exponential stabilization on the rotation

group SO(3) by means of hybrid feedback. First, the concept of synergism proposed in

[Mayhew and Teel, 2011b, Mayhew and Teel, 2011d, Mayhew and Teel, 2013a], which is

shown to be sufficient for global asymptotic stability, is extended to a new concept that is

coined “exp-synergism” which is shown to be sufficient for global exponential stability on

SO(3). Exp-synergism imposes more restrictive conditions on the potential functions used

in the attitude control design but allows for a broader class of potential functions which

are not necessarily differentiable everywhere on SO(3). In fact, exp-synergistic families

of “smooth” potential functions on SO(3) is synergistic but the opposite does not hold

in general. A min-switch hybrid control strategy along with an exp-synergistic family

of potential functions on SO(3) can be employed to guarantee robust global exponential

stabilization for the kinematic system on SO(3).

Next, we proceed to the construction of such families of potential functions on SO(3)

satisfying the exp-synergism property. It is shown that some existing and well known

smooth and nonsmooth potential functions on SO(3) (such as the trace function and the

geodesic distance) can be used along with a newly proposed angular warping map on

SO(3) to generate exp-synergistic families of potential functions. In contrast to other ex-

isting central synergistic families of potential functions on SO(3), our proposed approach

for the construction of exp-synergistic potential functions on SO(3) allows for the explicit

determination of the synergistic gap and therefore facilitate the real-time implementation

of the proposed hybrid control schemes.

Finally, using the proposed hybrid control approach, the attitude tracking problem

for rigid body systems (Spacecraft, Unmanned Aerial Vehicles (UAVs), Autonomous

37
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Underwater Vehicles (AUVs),...,etc) is tackeled. This results in a control algorithm guar-

anteeing robust and global exponential tracking, which are shown to exceed most existing

and commercial attitude control algorithms. To the best of our knowledge, there is no

similar solution to the full attitude tracking control problem in the literature. More-

over, an alternative design ensuring a continuous control input torque without sacrificing

the global exponential stability result is derived. The proposed smoothing procedure is

much simpler than the backstepping procedure proposed in [Mayhew and Teel, 2013a].

The results presented in this chapter are based on our work in [Berkane and Tayebi,

2017e, Berkane et al., 2017b, Berkane and Tayebi, 2015a]

3.2 Motivation Using Planar Rotations on S1

In this section, the example of planar rotations is considered to motivate some of the

results of this chapter. Working with the simple example of the unit circle S1, which is

a submanifold of SO(3), helps the reader to better understand the problem addressed in

this chapter and the rational behind some of the introduced techniques. Nevertheless,

the control of planar rotations is in fact an interesting control problem in its own right.

It arises in many engineering applications in robotics (autonomous planar vehicles, pen-

dulum systems, gimbal pointing mechanism...etc ), see for instance [Rue, 1969, Repoulias

and Papadopoulos, 2007, Masten, 2008, Mayhew et al., 2008, Osborne et al., 2008].

Consider a point mass with coordinates x = (x1, x2) ∈ R2 restricted to evolve on

the unit circle S1 with angular velocity ω ∈ R. The task is to design a control law for

the control input ω in order to globally stabilize the point mass to the coordinate point

e1 = [1, 0]> as demonstrated in Figure 3.1. Although it looks simple, this problem is far

from being trivial. In fact, the unit circle S1 is a compact manifold and hence it is not

diffeomorphic to any Euclidean space which prevents the existence of continuous time-

invariant state feedback which globally asymptotically stablizes any equilibrium point.

This is a well known topological obstruction on compact manifolds [Sanjay P. Bhat,

2000]. To better understand this issue, consider the kinematic equation of x

ẋ =

[
−ωx2

ωx1

]
= ω

[
0 −1

1 0

]
x := ωSx. (3.1)

A routine for the design of controllers is to pick a suitable Lyapunov function (energy

function or potential function) and then design a controller such that the energy is de-
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S1

x1

x2

•

ω

e1
×

(x1, x2)

Figure 3.1: Control problem of planar rotations on S1.

caying to zero. A natural potential function on S1 is the following “height” function

ΦE(x) = 1− e>1 x =
1

2
‖x− e1‖2. (3.2)

Note that 2ΦE(x) represents the square of the chord connecting the point x and the point

e1, see Figure 3.2. Therefore ΦE(x) is related to the natural Euclidean distance on the

plan R2. The time derivative of ΦE along the trajectories of (3.1) satisfies

Φ̇E(x) = ∇ΦE(x)>ẋ = −e>1 ωSx = ωx2. (3.3)

A natural choice for the control input ω is the following

ω = −x2, (3.4)

which yields Φ̇E(x) = −x2
2 ≤ 0. Therefore, the closed-loop system has two equilibria

(critical points) at ±e1. Moreover the desired equilibrium e1 is stable and attractive

whereas the undesired equilibrium −e1 is unstable and repeller, see Figure 3.3. As stated

previously, due to the topological obstruction on S1 the appearance of the undesired

equilibrium is unavoidable when using continuous time-invariant feedback. Although

the undesired critical point −e1 is unstable and repeller, it introduces several other is-

sues. First, the vector field, as seen in Figure 3.3, is vanishing near the undesired critical
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S1

x1

x2

•
(x1, x2)

e1
×

‖x− e1‖

arccos(x1)

Figure 3.2: The Euclidean (Geodesic) distance between x and e1 plotted in dashed red
(solid green).

point −e1 which causes trajectories starting arbitrarily close to −e1 to converge arbitrary

slow to the desired equilibrium point e1. Moreover, since −e1 is a repeller and due to

the nature of manifold S1, the vector fields near −e1 have opposite directions. That is

to say, trajectories starting above −e1 will take the opposite path to e1 compared to

trajectories below −e1. Consequently, in the presence of measurement noise, a chatter-

ing phenomenon may occur causing the point mass to get stuck around the undesired

equilibrium.

A possible remedy for the problem of slow convergence near the undesired critical

point is to employ nonsmooth potential functions on S1. Consider the following potential

function on S1

ΦG(x) =
1

2
arccos(x1)2. (3.5)

Note also that 2ΦG(x) represents the square of the arc connecting the point x and the

point e1 (geodesic distance on S1), see Figure 3.2. The time derivative of ΦG along the

trajectories of (3.1) is given, for all x 6= ±e1, by

Φ̇G(x) = −arccos(x1)ẋ1√
1− x2

1

= ω
arccos(x1)x2√

1− x2
1

. (3.6)

Therefore, if one chooses the control law ω = −f(x1)x2 where f(x1) = arccos(x1)/
√

1− x2
1
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S1

x1

x2

e1−e1

Undesired
equilibrium

Desired
equilibrium

Figure 3.3: Vector fields on S1 with control input ω = −x2 (potential function ΦE(x)).
The desired critical point e1 is plotted in green and the undesired critical point −e1 is
plotted in red.

then Φ̇G(x) = −f(x1)2x2
2 ≤ 0. Note that the function f has the following properties

lim
x1→1

f(x1) = 1, (3.7)

lim
x1→−1

f(x1) = +∞, (3.8)

Therefore, for x close to e1, the applied control ω = −f(x1)x2 becomes equivalent to

the control law based on ΦE developed above. However, when x gets closer to −e1,

the function f(x1) grows unbounded causing a singularity in the control. Note that

although f(x1) is unbounded near 180◦, the product f(x1)x2 is bounded and therefore

the control input ω is bounded near 180◦. As shown in Figure 3.4, the vector field

near −e1 is not vanishing compared to the previous control law. Hence, it is expected

that convergence rates starting from large rotations will be improved. However, this

control law, in addition to being singular at 180◦, is vulnerable to noise which may cause

chattering near 180◦. Note that although the singularity at 180◦ can be removed by

applying a memoryless discontinuous control law, the vulnerability to noise can not be

avoided. In fact, the results in [Mayhew and Teel, 2011a] show that when a compact set

cannot be globally asymptotically stabilized by continuous feedback due to topological

obstructions, it cannot be robustly globally asymptotically stabilized by discontinuous

feedback either.
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S1

x1

x2

e1−e1

Singularity

Figure 3.4: Vector fields on S1 with control input ω = −f(x1)x2 (potential function
ΦG(x)). The desired critical point e1 is plotted in green and the singular point −e1 is
plotted in red.

One way to deal with the above mentioned topological obstruction to robust global

asymptotic stabilization on compact manifolds is to consider hybrid control laws employ-

ing hysteresis as done in [Mayhew and Teel, 2013b, Mayhew and Teel, 2010]. The idea

consists in designing two or more controllers which will be allowed to activate in different

overlapping compact subregions of the manifold S1. Each subregion where a given con-

troller is activated will not contain any singular and/or undesired critical points of the

controller. A hybrid switching mechanism is employed to switch between the controller

configurations allowing to avoid all the critical and singular points of each controller. To

illustrate this concept, consider a hybrid controller with two configurations κ1(x) and

κ2(x), see Figure 3.5. A synergistic hybrid controller combining both controllers takes

the following form with q ∈ {1, 2}

ω = κq(x), x ∈ cl(S1 \ Cq), (3.9)

q+ = 3− q, x ∈ Cq, (3.10)

where Cq is the region of S1 where the controller κq(x) is not allowed to operate (it may

contain undesired critical and/or singular points). A necessary condition to implement

this hybrid scheme is C1 ∩ C2 = ∅, otherwise the hybrid controller remains jumping

(without flowing) between the two controllers when x ∈ C1 ∩ C2.
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S1

x1

x2 Controller κ1(x)

Controller κ2(x)

e1

×
c1

×
c2

Figure 3.5: Hybrid control on the unit circle S1 with two modes of operation. The first
(second) controller is allowed to activate on the red (blue) region. The point c1 (c2)
represents an undesired critical or singular point of the first (second) controller.

In [Mayhew and Teel, 2010], the authors generate new potential functions by applying

a diffeomorphism to the smooth potential function ΦE(x) that stretches and compresses

the unit circle while leaving the desired equilibrium e1 unchanged. From each generated

potential function, a feedback law will be derived. Under some sufficient conditions on

the family of potential functions, using a min-switch mechanism, the critical points of

each potential function are avoided guaranteeing, therefore, robust global asymptotic

stability. The inconvenience of the technique in [Mayhew and Teel, 2010] is that the

sufficient conditions were only verified by computation. In the following, a remedy to the

drawbacks of [Mayhew and Teel, 2010] is explained by proposing a new diffeomorphism.

Let Q ⊂ N be a subset of finite indices. Consider the following map Γ : S1 ×Q → S1

Γ(x, q) = R(θ(x, q))x, (3.11)

where θ : S1 × Q → R is a real-valued function, q ∈ Q is a discrete variable and

R : R→ SO(2) represents a rotation map to the group of planar rotations SO(2) which
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is given by

R(θ) =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

]
. (3.12)

The idea is to design a suitable angle function θ such that the undesired critical points

of the composite functions ΦE(Γ(x, q)), q ∈ Q have different locations while the desired

critical point at e1 remains unchanged; hence one needs Γ(e1, q) = e1 for all q ∈ Q.

Furthermore, the function θ(·, ·) need not to be singular anywhere on S1 as this might

introduce further complications when differentiating the map Γ. For simplicity of dis-

cussion let us consider a hybrid controller with two configurations such that Q = {1, 2}.
Using the map Γ, one can design two potential functions on S1 as follows:

Φ1(x) = ΦE(Γ(x, 1)), (3.13)

Φ2(x) = ΦE(Γ(x, 2)). (3.14)

For a fixed q ∈ {1, 2} the time derivative of Φq along the trajectories of (3.1) can be

shown to satisfy

Φ̇q(x) = −e>1 Γ̇(x, q) = −ω
(
1 +∇θ(x, q)>Sx

)
e>1 SΓ(x, q) (3.15)

where ∇θ(x, q) is the gradient of θ with respect to the first argument x. Therefore, the

following controller is derived:

ω = κ(x, q) :=
(
1 +∇θ(x, q)>Sx

)
e>1 SΓ(x, q). (3.16)

Note that the above control input reduces to (3.4) when the map θ(x, q) ≡ 0 which

implies that Γ(x, q) ≡ x. The critical points can be obtained by vanishing the gradient

of Φq, which is equivalent of setting the above control input to zero. This leads to

Γ(x, q) = ±e1 (3.17)

and/or

1 +∇θ(x, q)>Sx = 0. (3.18)

Let us suppose for a moment that θ has been designed such that the condition (3.18) is

not met for all (x, q) ∈ S1 × Q. In this case, the critical points of Φq will be uniquely
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defined by condition (3.17). The following choice of the function θ(x, q) allows for explicit

computation of the solutions of (3.17)

θ(x, q) = 2 arcsin(kqΦE(x)), kq 6= 0. (3.19)

Proposition 3.2.1 Consider the map Γ given in (3.11) such that θ is defined by (3.19).

Assume that the scalar kq satisfies

|kq| <
√

3

4
. (3.20)

Then |∇θ(x, q)>Sx| < 1 for all (x, q) ∈ S1 × Q. Moreover, the critical points of the

potential function ΦE ◦ Γ(x, q) are defined by C = Cd ∪ Cu such that Cd = {e1} × Q and

Cu = ∪q∈Q(cq, q) where cq ∈ S1 is given explicitly by

cq =
1

4

[
1 + 4k2

q −
√

1 + 16k2
q

k2
q

,
(−1 +

√
1 + 16k2

q)
3
2

√
2kq|kq|

]>
. (3.21)

Proof See Appendix B.1.

Proposition 3.2.1 proposes a set of potential functions on S1, namely {ΦE ◦ Γ(x, q)}q∈Q,

which have a common desired critical point e1 and different undesired critical points

{cq}q∈Q. These undesired critical points are function of the scalars {kq}q∈Q. Now, it

remains to design a hybrid controller of the form (3.9) guaranteeing global exponential

stability of the equilibrium point e1.

The idea of synergism consists in showing that at a given undesired critical point cq

of a given potential function ΦE ◦ Γ(x, q) there exists another index p ∈ Q such that the

potential function ΦE ◦ Γ(x, p) has a lower value. If this synergism property is satisfied,

one can design a hybrid controller that switches to the minimum potential function’s con-

troller whenever the current potential function exceeds the minimum potential function

by a certain threshold.

Proposition 3.2.2 Consider the map Γ given in (3.11) such that θ is defined by (3.19)

with Q = {1, 2}. Assume that k2 = −k1 = k such that k satisfies condition 3.20. Then,

for all (x, q) ∈ Cu one has

ΦE ◦ Γ(x, q)− ΦE ◦ Γ(x, p) := δ∗ =

(
−1 +

√
16 k2 + 1

)3

16k4
, p 6= q. (3.22)
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Proof See Appendix B.2.
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Figure 3.6: Plot of the original potential function ΦE(x) (left) and the new composite
potential functions ΦE(Γ(x, 1)) and ΦE(Γ(x, 2)) (right) with k = 1/4. The synergistic
gap δ∗ between the two potential functions is equal to 16/9.

Consequently, it is shown in Proposition 3.2.2 that at any given undesired critical point

of ΦE(Γ(x, q)), the potential function ΦE(Γ(x, p)) with p 6= q has a lower value with a

gap δ∗ > 0 given explicitly function of the scalar k. Using this property, the following

hybrid controller immediately follows

ω = κ(x, q), (x, q) ∈ F , (3.23)

q+ = arg min
p∈Q

ΦE(Γ(x, p)), (x, q) ∈ J , (3.24)

where the flow set F and jump set J are defined as follows

F = {(x, q) : ΦE ◦ Γ(x, q)−min
p∈Q

ΦE ◦ Γ(x, p) ≤ δ}, (3.25)

J = {(x, q) : ΦE ◦ Γ(x, q)−min
p∈Q

ΦE ◦ Γ(x, p) ≥ δ}, (3.26)

where 0 < δ < δ∗ and the synergistic gap δ∗ is given in Proposition 3.2.2. The idea of

the proposed hybrid controller is to switch to the configuration with minimum potential

function ΦE ◦ Γ(x, q) whenever the gap between the current potential function and the

minimum one exceeds some threshold δ. If the potential function ΦE ◦ Γ(x, q) is taken

as a Lyapunov function candidate then the jump equation (3.24) allows to guarantee a

decrease in the Lyapunov function between jumps. The above proposed control scheme

can be shown to guarantee global exponential stability of the set {e1} × Q. It should

be mentioned also that it is possible to use the non-smooth (geodesic) potential function

ΦG(x), given in (3.5), to derive a hybrid controller that avoids the singular points of
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ΦG ◦ Γ(x, q) using a similar min-switch strategy. Since the objective of this thesis is the

control and estimation on SO(3), these discussions on the unit circle will not be pursued

further. The reader is referred to [Mayhew and Teel, 2013b, Casau et al., 2015a] for a

detailed treatment of hybrid control on the general unit sphere Sn. The ideas discussed

in this section for the hybrid control of planar rotations will inspire our proposed control

designs for the general group of 3D rotations, namely the Special Orthogonal group

SO(3) which will be the goal of the next sections.

3.3 Attitude Stabilization on SO(3)

In this section, an approach to design hybrid controllers for the attitude kinematics (first

order system) that achieves robust global exponential stability on SO(3) is proposed.

Discussions about stabilization and tracking for the full rigid body attitude dynamics

(second order system) will be detailed in the next section. First, the new concept of

exp-synergistic potential functions on SO(3) is introduced. Then, exp-synergistic poten-

tial functions are shown to be sufficient to design hybrid control algorithms guaranteeing

global exponential stability on SO(3). Lastly, a systematic methodology for the construc-

tion of such potential functions on SO(3) is provided.

3.3.1 Problem Formulation

Consider the following kinematics system on SO(3)

Ṙ = R[ω]×, (3.27)

where R ∈ SO(3) represents the attitude state and ω ∈ R3 is the control input. The

stabilization control problem for system (3.27) consists in designing an appropriate input

ω such that (R = I) is globally exponentially stable. Note that there is no loss of

generality in considering the stabilization problem of the identity rotation I. In fact,

assume that our problem is the tracking of the desired time varying trajectory Ṙd(t) =

Rd(t)[ωd(t)]× for some ωd(t) ∈ R3 and Rd(0) ∈ SO(3). Let R̃ = RR>d be the attitude

tracking error and let the control input ω = ωd + Rdω̄ for some virtual input ω̄ ∈ R3.

Therefore, it is not difficult to show that one has ˙̃R = R̃[ω̄]× which implies that the

original tracking problem is reduced to a stabilization problem for the attitude tracking

error R̃.
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3.3.2 Smooth Attitude Stabilization on SO(3)

A natural solution to tackle this problem is to consider a gradient-based control approach.

Consider for example the following weighted trace potential function used in many atti-

tude control problems [Koditschek, 1988, Bullo and Murray, 1999, Sanyal et al., 2009]

Ψ1,A(R) =
1

2
tr(A(I −R)), (3.28)

where A ∈ R3×3 is a symmetric matrix. Note that the condition for Ψ1,A(R) to be a

valid (positive definite with respect to I) potential function on SO(3) is that the matrix

E(A), with the map E(·) defined in (2.66), is symmetric positive definite. Intuitively, by

looking at the expression of Ψ1,A(R) in terms of quaternions (see (2.75)) it can be seen

that Ψ1,A(R) is positive definite with respect to the quaternion (±1, 0), which represents

the identity rotation, if and only if E(A) is symmetric positive definite. Consider the

following gradient-based controller

ω = −2kψ(R>∇Ψ1,A(R)), k > 0. (3.29)

Then, by using Ψ1,A(R) as the Lyapunov function candidate one obtains the following

time derivative of the Lyapunov function along the trajectories of (3.27)

Ψ̇1,A(R) = 〈∇Ψ1,A(R), Ṙ〉R = 〈〈∇Ψ1,A(R), R[ω]×〉〉 = −2k‖∇Ψ1,A(R)‖2
F ≤ 0. (3.30)

This shows that the equilibrium point R = I is stable. Moreover, using LaSalle’s in-

variance principle it can be concluded that all solutions must converge to the largest

invariant set where the gradient of Ψ1,A(R) vanishes (critical points). In view of (2.71)

the gradient of Ψ1,A(R) is given by ∇Ψ1,A(R) = 1
2
RPso(3)(AR) which implies that the

closed-loop system under the feedback (3.29) can be written as

Ṙ = −kR[ψ(AR)]× = −k
2
R(AR−R>A) = −k

2
(RAR− A). (3.31)

The equilibria of the above system which correspond to the critical points of Ψ1,A(R)

satisfy AR = R>A. This set of critical points is given by (see [Mayhew and Teel, 2013a,

Lemma 4])

CΨ1,A
= {I} ∪Ra(π, ERv (A)), (3.32)

which contains the identity rotation and all the rotations of 180◦ around an eigenvector

of A. An other interesting observation from (3.31) is that if R is symmetric then Ṙ is
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also symmetric and, therefore, the subset of SO(3) where R is symmetric is invariant

under the flows of (3.31). This set is identified by R = R> which implies that R2 = I.

It can be shown that the solutions of R2 = I are identified by the set {I} ∪Ra(π,S2).

Therefore starting inside the set Ra(π,S2) the trajectories of the system will eventually

converge to Ra(π, ERv (A)). Moreover during the flows of (3.31) one has

d

dt
tr(I −R) = −tr(Ṙ) = −k

2
tr(A−RAR) = −k

2
tr(A(I −R2)) ≤ 0. (3.33)

This implies that all trajectories starting outside Ra(π,S2) will converge to the desired

identity rotation R = I. In this case, the equilibrium R = I is said to be almost globally

asymptotically stable since from almost all initial conditions (specifically initial attitudes

with angle less than 180◦) the trajectories of the system converge to R = I. The set

Ra(π,S2) has a Lebegue measure of zero with respect to SO(3). Although the obtained

asymptotic stability result for the equilibrium R = I is strong the existence of the

undesired equilibria in Ra(π,S2) limits the performance of this control law as explained

hereafter.

First, let us derive the time-explicit solution of the differential equation (3.31) which

allows to study the trajectories of the system starting at different initial conditions outside

the set Ra(π,S2).

Theorem 3.3.1 Consider the dynamic system (3.31). Let R(0) ∈ ΠSO(3) then

R(t) = Rr(exp(−kE(A)t)Z(R(0))), t ≥ 0. (3.34)

Proof See Appendix C.2.

Theorem 3.3.1 provides a closed form solution for the attitude kinematics system (3.27)

under the gradient-based feedback (3.29) or, equivalently, the matrix differential equa-

tion (3.31) on SO(3). To the best of the author’s knowledge, there is no available work

providing such an explicit time solution. The obtained closed form solution is not only

appealing from a theoretical stand point but it is also beneficial to understand the be-

haviour of the trajectories of (3.31) without requiring complex analysis tools. From

(3.34) it can be noticed that the Rodrigues vector Z(R(t)) is exponentially decaying to

zero from all initial conditions. Note that this vector is only defined for rotations which

have an angle different from 180◦. It is worth pointing out that, although the Rodrigues

vector is converging exponentially, the attitude does not necessary converge exponentially

fast since there is a mapping Rr between the two quantities. The following Corollary
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provides an explicit expression of the attitude norm, which will be very useful in studying

the performance of the closed-loop system.

Corollary 3.3.2 Consider the dynamic system (3.31). Let R(0) ∈ ΠSO(3). Then, for all

t ≥ 0, one has

|R(t)|2I =
ψ(R(0))>e−2kE(A)tψ(R(0))

4(1− |R(0)|2I)2 + ψ(R(0))>e−2kE(A)tψ(R(0))
. (3.35)

Proof The result can be directly derived from Theorem 3.3.1 by noticing that

‖Z(R(t))‖2 = ‖e−kE(A)tZ(R(0))‖2 =
ψ(R(0))>e−2kE(A)tψ(R(0))

4(1− |R(0)|2I)2
, (3.36)

and from (2.76) |R(t)|2I = tr(I −R)/4 = ‖Z(R)‖2/(1 + ‖Z(R)‖2) which implies (3.35).

Corollary 3.3.2 provides an explicit expression showing the evolution of the Euclidean

distance |R(t)|I with respect to time. Note that it is not difficult to show that ψ(R) =

sin(θ)u where R = Ra(θ, u). Therefore, from (3.35), for the same initial attitude angle,

initial attitudes with rotation axis u(0) equals the eigenvector corresponding to the largest

eigenvalue of E(A) generates a larger attitude norm |R(t)|I compared to an initial attitude

with rotation axis u(0) equals the eigenvector corresponding to the smallest eigenvalue

of E(A). The following Corollary provides upper and lower bounds of |R(t)|I .

Corollary 3.3.3 Consider the dynamic system (3.31). Let R(0) ∈ ΠSO(3), then the

attitude norm is bounded as follows

β(|R(0)|I , t, kλE(A)
max ) ≤ |R(t)|I ≤ β(|R(0)|I , t, kλE(A)

min ), (3.37)

for all t ≥ 0, such that β(s, t, λ) = se−λt/
(
1− s2(1− e−2λt)

) 1
2 .

Proof Note that

ψ(R(0))>e−2kE(A)tψ(R(0)) ≤ e−2kλ
E(A)
min t‖ψ(R(0))‖2 = 4e−2kλ

E(A)
min t|R(0)|2I(1− |R(0)|2I)

which, in view of (3.35) and the fact that the map x → x/(x + a) is non-decreasing for

all a ≥ 0, implies that

|R(t)|2I ≤ e−2kλ
E(A)
min t|R(0)|2I/(1− |R(0)|2I + e−2kλ

E(A)
min t|R(0)|2I) =

(
β(|R(0)|I , t, kλE(A)

min )
)2
.

Following similar steps as above, the lower bound can be derived.
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According to the upper bound on the attitude distance given in Corollary 3.3.3, it is

clear that for small initial conditions, i.e., |R(0)|I � 1, the attitude satisfies |R(t)|I ≤
|R(0)|I exp(−kλE(A)

min t) which shows the local exponential stability of the equilibrium point

|R|I = 0. Moreover, the convergence rate of the attitude to R = I is given in the following

corollary

Corollary 3.3.4 Starting from any initial condition R(0) ∈ ΠSO(3), the time tB necessary

to enter the ball of radius |R(tB)|I = B satisfies

tB ≥
1

kλ
E(A)
max

ln

(
|R(0)|I(1−B2)

1
2

B(1− |R(0)|2I)
1
2

)
. (3.38)

Proof Using the lower bound of (3.37), the time tB needs to satisfy the constraint

β(|R(0)|I , tB, kλE(A)
max ) ≤ |R(tB)|I = B. Using straightforward algebraic manipulations,

this inequality reads e−kλ
E(A)
max tB ≤ B2(1−|R(0)|2I)

|R(0)|2I(1−B2)
, which leads to the result of the corollary

by taking the ln(·) function on both sides of the last inequality.

According to Corollary 3.3.4, it is clear that large initial conditions, i.e., |R(0)|I → 1, will

result in low convergence rates. Whenever the initial attitude is closer to the manifold

of all rotations of 180◦ the stabilization task will take longer time. This fact about the

transient-response performance degradation of smooth attitude controllers on SO(3) has

been numerically and experimentally observed in recent works such as [Lee, 2012, Tse-

Huai Wu and Lee, 2015, Zlotnik and Forbes, 2017]. Moreover, it is possible to show

that the above control scheme is not robust to a certain class of small bounded vanishing

disturbances, see [Berkane and Tayebi, 2017a].

3.3.3 Synergistic and Exp-Synergistic Potential Functions

As discussed in the previous section, smooth controllers derived from smooth potential

functions on SO(3) suffer from performance degradation (low convergence rates, reduced

robustness) when the initial attitude is large. On the other hand, controllers derived

from nonsmooth potential functions on SO(3) are susceptible to singularities thus not

very desirable in practice. To cope with these shortcomings, one can design different

controllers from a “family” of potential functions which will be then coordinated in a

hybrid fashion to yield the desirable robust global exponential stabilization on SO(3).

This collective behaviour that leads to an improvement in the performance of the control

scheme is referred to as “synergism”. In this subsection, the formal definition of syner-

gism is recalled and the new notion of exp-synergism for a family of potential functions
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on SO(3) is defined.

Given a finite index set Q ⊂ N, let C0 (SO(3)×Q,R≥0) denote the set of positive-

valued and continuous functions Φ : SO(3)×Q → R≥0. If, for each q ∈ Q, the map R 7→
Φ(R, q) is differentiable on the set Dq ⊆ SO(3) then the function Φ(R, q) is continuously

differentiable on D ⊆ SO(3) × Q, where D = ∪q∈QDq × {q}, in which case one denotes

Φ ∈ C1 (D,R≥0). Additionally, for all (R, q) ∈ D, ∇Φ(R, q) ∈ TRSO(3) denotes the

gradient of Φ, with respect to R, relative to the Riemannian metric (2.13).

Definition 3.3.5 (Potential Function) A function Φ is said to be a potential function

on D ⊆ SO(3)×Q with respect to the set IQ = {I} × Q ⊆ D if:

i) Φ is continuous, i.e. Φ ∈ C0 (SO(3)×Q,R≥0)

ii) Φ is continuously differentiable on D, i.e. Φ ∈ C1(D,R≥0)

iii) Φ is positive definite with respect to IQ, i.e. Φ(R, q) = 0 if (R, q) ∈ IQ and

Φ(R, q) > 0 otherwise

The set of all potential functions on D with respect to IQ is denoted as PD, where a

function Φ(R, q) ∈ PD can be seen as a family of potential functions on SO(3) encoded

into a single function indexed by q. When the finite index set Q reduces to a single

element, for example Q = {1}, then the argument q is omitted and D ⊆ SO(3). For a

given potential function Φ(R, q) ∈ PD, the set of critical points of Φ is defined as follows

CΦ = {(R, q) ∈ D : ∇Φ(R, q) = 0} . (3.39)

Note that if Φ(R, q) ∈ PD then the map R 7→ Φ(R, q) is positive definite on SO(3) with

respect to I for each q ∈ Q. Thus, the identity rotation I must be a critical point1 for

R 7→ Φ(R, q), ∀q ∈ Q and therefore the set IQ is included in the set of critical points of

Φ or, for short, IQ ⊆ CΦ.

Definition 3.3.6 (Synergism [Mayhew and Teel, 2013a]) For a given finite index

set Q ⊂ N, let Φ ∈ PSO(3)×Q. The potential function Φ is said to be centrally synergistic,

with gap exceeding δ > 0, if and only if the following condition holds

Φ(R, q)− min
m∈Q

Φ(R,m) > δ, ∀(R, q) ∈ CΦ \ IQ. (3.40)

1In fact, for any locally smooth function f :M→ R such that f is locally positive definite function
about x0, the point x0 is a critical point of f and the Hessian of f is positive semidefinite at x0.
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Condition (3.40) implies that at any given undesired critical point (R, q) ∈ CΦ \ IQ,

there exists another point (R,m) ∈ SO(3)×Q such that Φ(R,m) has a lower value than

Φ(R, q). The term “central” refers to the fact that all the potential functions R 7→ Φ(R, q)

share the identity element I as a critical point such that ∇Φ(I, q) = 0 for all q ∈ Q.

Definition 3.3.7 (Exp-Synergism) Consider a set of parameters T = (Φ,Q, δ) con-

taining a potential function Φ ∈ PD, D ⊆ SO(3) × Q, a finite index set Q ⊂ N and a

scalar δ > 0. Let the subset FT ⊆ SO(3)×Q be defined as:

FT = {(R, q) : Φ(R, q)− min
m∈Q

Φ(R,m) ≤ δ}. (3.41)

The potential function Φ is said to be exp-synergistic, with gap exceeding δ > 0, if and

only if there exist constants αi > 0, i = 1, . . . , 4, such that the following hold:

α1|R|2I ≤ Φ(R, q) ≤ α2|R|2I , ∀(R, q) ∈ SO(3)×Q, (3.42)

α3|R|2I ≤ ‖∇Φ(R, q)‖2
F ≤ α4|R|2I , ∀(R, q) ∈ FT , (3.43)

FT ⊆ D. (3.44)

Definition 3.3.7 considers a wider class of potential functions, compared to Definition

3.3.6, by allowing each potential function R 7→ Φ(R, q) to be nondifferentiable on some

region of the manifold SO(3). However, the exp-synergism definition imposes more re-

strictive conditions as compared to Definition 3.3.6 in the sense that the potential function

and its gradient are quadratically bounded by the attitude distance on SO(3). It can

be verified that if Φ ∈ PD with D = SO(3) ×Q is an exp-synergistic potential function

then it is synergistic as well. In fact, condition (3.43) implies that the gradient ∇Φ(R, q)

does not vanish expect at IQ which is equivalent to condition (3.40). The opposite

does not hold in general. The exp-synergism property, as will become clear in the next

subsection, plays an important role to ensure desirable exponential decay when using a

gradient-based feedback on SO(3).

3.3.4 Hybrid Attitude Stabilization on SO(3)

In this subsection, exp-synergistic potential functions are shown to be instrumental for

the global exponential stabilization on SO(3). Let Q ⊂ N be a finite index set, Φ ∈ PD
be a potential function on D ⊆ SO(3)×Q and δ > 0. Define T = (Φ,Q, δ) and consider

the following switching mechanism of the discrete state variable q, which dictates the



54 Chapter 3. Hybrid Attitude Control on SO(3)

current mode of operation of the hybrid control system,

HT

{
q̇ = 0, (R, q) ∈ FT ,
q+ ∈ JT (R), (R, q) ∈ JT ,

(3.45)

where JT (R) = arg minm∈Q Φ(R,m) is the jump map and the flow set FT and jump set

JT are defined as follows:

FT = {(R, q) : Φ(R, q)− min
m∈Q

Φ(R,m) ≤ δ}, (3.46)

JT = {(R, q) : Φ(R, q)− min
m∈Q

Φ(R,m) ≥ δ}. (3.47)

In this case the attitude matrix R ∈ SO(3) is considered as an input to the hybrid system

HT which is parametrized by the potential function Φ, the index set Q and the hysteresis

gap δ > 0. The output of this hybrid dynamical system is the index q ∈ Q and one can

write for short

q = HT (R). (3.48)

It is worthwhile mentioning that the above hybrid mechanism, inspired by [Mayhew

HT

q̇ = 0, (R, q) ∈ FT
q+ ∈ JT (R), (R, q) ∈ JT

R q

Figure 3.7: Synergistic hybrid switching mechanism.

and Teel, 2011b], uses a “min-switch” strategy to select a control law derived from the

minimal potential function among some family of potential functions on SO(3). Such a

control input for system (3.27) is given in the following theorem.

Theorem 3.3.8 Let Q ⊂ N be a finite index set and Φ ∈ PD be a potential function on

D ⊆ SO(3)×Q. Consider system (3.27) with the control input

ω = −ψ
(
R>∇Φ(R, q)

)
, (3.49)

where q = HT (R) with T = (Φ,Q, δ) for some δ > 0. If the potential function Φ is
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exp-synergistic with gap exceeding δ, then the set A1 = {I} ×Q is globally exponentially

stable.

Proof See Appendix C.3.

The result in Theorem 3.3.8 provides a systematic method for the design of hybrid at-

titude control algorithms for system (3.27) guaranteeing global exponential stability. It

is worth pointing out that, in addition to the structurally simple expression of the con-

troller proposed so far, the result in this subsection reduces the stabilisation problem of

systems (3.27) to the problem of finding appropriate exp-synergistic potential functions,

in the sense of Definition 3.3.7, with some synergistic gap that can be specified using the

control parameters. This will be the objective of the next subsection.

3.3.5 Construction of Exp-Synergistic Potential Functions

The focus of this subsection will be on the design of exp-synergistic potential functions on

the rotation group SO(3) which are shown to be sufficient for the design of global hybrid

attitude stabilization schemes. The first work dealing with the construction of syner-

gistic potential functions on SO(3) appeared in [Mayhew and Teel, 2011d]. It consists

of stretching and compressing SO(3) by applying diffeomorphic transformations, which

allow to relocate the critical points while leaving the identity element unchanged leading

to a synergistic family of potential functions. Despite the originality of this approach,

it was abandoned mainly due to the difficulty in finding an explicit expression of the

synergistic gap. In this section, we build up from the ideas in [Mayhew and Teel, 2011d]

towards more generic constructions of exp-synergistic potential functions on SO(3) via

“angular warping”, while providing a thorough analysis of the synergism properties.

Lemma 3.3.9 Let Q ⊂ N be a finite index set and {uq}q∈Q ⊂ S2 be a set of unit vectors.

Let us consider the map2 Γ : SO(3)×Q → SO(3) such that

Γ(R, q) := RRa(θq(R), uq), (3.50)

where θq : SO(3)→ R is a real-valued differentiable function. Then, the following hold:

1. The time derivative of Γ(R, q), as defined in (3.50), along the trajectories of Ṙ =

R[ω]× is given by
d

dt
Γ(R, q) = Γ(R, q)[Θ(R, q)ω]×, (3.51)

2The multiplication by the additional rotation Ra(θq(R), u) is done on the right of the original rotation
matrix R for our convenience. It is left to the reader to explore the other option.
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where Θ(R, q)> = Ra(θq(R), uq) + 2ψ(R>∇θq(R))u>q .

2. If det(Θ(R, q)) 6= 0 for all (R, q) ∈ SO(3) × Q, then for each q ∈ Q the map

R 7→ Γ(R, q) is everywhere a local diffeomorphism.

3. If det(Θ(R, q)) 6= 0 for all (R, q) ∈ SO(3) × Q and Γ−1({I}) = {I} × Q then for

any Ψ ∈ PDΨ
with DΨ ⊆ SO(3) one has Ψ ◦ Γ ∈ PΓ−1(DΨ) and the set of critical

points of Ψ ◦ Γ is given by CΨ◦Γ = Γ−1(CΨ).

Proof See Appendix A.8.

Lemma 3.3.9 shows that, under some conditions on the transformation Γ, one can

construct a new family of potential functions on SO(3) by considering the composition

of a basic potential function on SO(3) and the map Γ. What we will investigate next is

the search for a suitable basic function Ψ, a suitable angle function θq(·) and the set of

unit vectors {uq}q∈Q such that the composite function Ψ ◦ Γ(R, q) is an exp-synergistic

potential function.

Non-Weighted Potential Functions

Consider the following potential functions on SO(3):

Ψ1(R) =
1

2
tr(I −R), (3.52)

Ψ2(R) = 2−
√

1 + tr(R). (3.53)

The smooth potential function Ψ1(R) has been widely used in the literature for attitude

control problems [Koditschek, 1988, Bullo and Murray, 1999, Sanyal et al., 2009]. The

nonsmooth potential function Ψ2(R) is non differentiable at tr(R) = −1 which corre-

sponds to the set of all attitudes of angle π. The potential function Ψ2(R) has been

used in [Lee, 2012] for attitude tracking to obtain faster convergence for large attitude

manoeuvres and also appeared in [Saccon et al., 2010] as a solution to the kinematic

optimal control on SO(3). Note that there exists a similar nonsmooth potential function

Ψ3(R) = 2
π2‖ log(R)‖2

F which is related to the geodesic distance on SO(3) as defined

in (2.39) between the rotation matrix R and the identity rotation I. It has been used

for instance in [Bullo and Murray, 1995] for attitude stabilization and in [Berkane and

Tayebi, 2015b] for optimal kinematic attitude control on SO(3) and the results of this

section can be extended or modified to use Ψ3(R). It is interesting to see the expressions
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of Ψi, i = 1, 2 in terms of unit quaternions and angle axis representations. Let (η, ε) ∈ Q
and (θ, u) ∈ R× S2. Then, using (2.74)-(2.75) one can verify that

Ψ1(Ru(η, ε)) = 2(1− η2), Ψ1(Ra(θ, u)) = 1− cos(θ), (3.54)

Ψ2(Ru(η, ε)) = 2(1− |η|), Ψ2(Ra(θ, u)) = 2(1− | cos(θ/2))|) (3.55)

which corresponds to widely used potential functions [Fjellstad and Fossen, 1994, Thienel

and Sanner, 2003]. In view of (2.71), the gradients of the two potential functions are

given by

∇Ψ1(R) =
1

2
RPso(3)(R), (3.56)

∇Ψ2(R) =
RPso(3)(R)

2
√

1 + tr(R)
. (3.57)

Note that the gradient of Ψ2 is not defined on the set Ra(π,S2) which is the set of

all rotations of angle 180◦. Both gradients vanish at the desirable equilibrium R = I.

However, ∇Ψ1(R) vanishes as well at the undesired equilibria given by Ra(π,S2). Con-

sequently, when choosing any of the potential functions Ψ1 or Ψ2 one is faced with either

the problem of undesired critical points (for Ψ1) or the problem of singular points (for

Ψ2). The following proposition provides a construction of two exp-synergistic potential
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Figure 3.8: Plot of the attitude potential functions Ψ1 and Ψ2 with their corresponding
gradients norm for different values of the attitude angle (attitude axis is fixed). The
potential function Ψ1 has an undesired critical point at θ = π while the attitude potential
function Ψ2 is singular at θ = π.

functions from Ψ1 and Ψ2.

Proposition 3.3.10 Let Q = {1, 2, ..., 6} be a finite index set. Consider the transfor-
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mation Γ : SO(3)×Q → SO(3) defined as

Γ(R, q) = RRa(2 arcsin (k|R|2I) , uq), (3.58)

where 0 < k < 1/
√

2, um+3 = −um, m ∈ {1, 2, 3}, and {u1, u2, u3} is an orthonormal set

of vectors. Then, the following hold

• Ψ1 ◦ Γ ∈ PD, with D = SO(3) × Q, is exp-synergistic with a gap exceeding δ1 <

δ̄1 = [−1 +
√

1 + 4k2]3/12k4.

• Ψ2 ◦ Γ ∈ PD, with D = Γ−1(ΠSO(3)), is exp-synergistic with a gap exceeding δ2 <

δ̄2 = [−1 +
√

1 + 4k2]
3
2/
√

6k2.

Proof See Appendix B.3.

In Proposition 3.3.10, the transformation Γ(R, q) can be seen as a perturbation to R

about the unit vector uq by an angle 2 arcsin (k|R|2I). This allows to stretch/compress

the manifold SO(3) in order to move the critical/singular points of Ψi(R) to different

locations on SO(3). As per why the choice of 6 configurations, it can be intuitively

motivated by the example of the unit circle discussed in the previous section. For a unit

circle (single axis of rotation), one needs two configurations to avoid the undesired point

at π angle. Since any rotation axis in Ra(π,S2) can take arbitrary directions (3 degrees

of freedom) this resulted in 2× 3 = 6 configurations. Nevertheless, it is not claimed that

this is the minimum number of configurations to construct an exp-synergistic family of

potential functions from Ψ1 or Ψ2 by angular warping. It is left to the reader to explore

more options.

Remark 3.3.11 The angular warping transformation defined in (3.58) can be written

using the quaternion map as follows

Γ(R, q) = RRu

(
[1− k2|R|4I ]

1
2 , k|R|2Iuq

)
, (3.59)

which is computationally less consuming (suitable for implementation) compared to the

map Ra which involves the use of sin and cos functions. Nevertheless, for illustrative

purposes, the map Ra is often used.

Figure 3.9 (respect. Figure 3.10) illustrates the value of each potential function Ψ1 ◦
Γ(R, q) (respect. Ψ2 ◦ Γ(R, q)) at different angles of rotations. It can be seen from these

figures that when the potential function Ψ1 ◦Γ(R, q) (respect. Ψ2 ◦Γ(R, q)) is at a given

critical (respect. singular) point it is guaranteed that the gap between the potential
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Figure 3.9: Plot of the function Ψ1 ◦Γ(R(θ), q) (solid blue) for different values of q along
the path R(θ) = Ra(θ, [1, 2, 3]>/

√
14) with θ ∈ [0, 2π], k = 0.7 and um = em,m = 1, 2, 3.

The gray filled area indicates when (R, q) ∈ JT and the white area indicates when
(R, q) ∈ FT . The sets FT and JT are defined in (3.46)-(3.47) with Φ = Ψ1 ◦ Γ and
δ = 0.12. Note that all critical points, marked with a circle, are contained in the jump
set JT . The downward arrows indicate that at a given critical point, q can be switched
to decrease the value of potential function Ψ1 ◦ Γ(R, q).

function and the minimum of the potential functions exceeds the threshold δ̄1 (respect.

δ̄2). A switch to the minimum potential function will guarantee a decrease in the current

potential function which is illustrated by the downwards arrows in the figures.

Weighted Potential Functions

The weighted version of the trace potential function Ψ1(R) defined in (3.52) is the poten-

tial function Ψ1,A given in (3.28) for some symmetric matrix A such that E(A) is positive

definite. It is interesting to propose a weighted version for the nondifferentiable potential

function Ψ2(R) defined in (3.53). Consider the following potential function

Ψ2,A(R) :=

√
4λ

E(A)
max −

√
4λ

E(A)
max − tr(A(I −R)), E(A) > 0. (3.60)

A similar function has also been used in [Zlotnik and Forbes, 2017] with λ
E(A)
min instead of

λ
E(A)
max in (3.60). Here, λ

E(A)
max is used to ensure that Ψ2,A(R) is well defined over the whole

manifold SO(3). In fact, in view of (2.75), the maximum value of tr(A(I−R)) on SO(3)

does not exceed 4λ
E(A)
max . The advantage of introducing this class of potential functions on
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Figure 3.10: Plot of the function Ψ2◦Γ(R(θ), q) (solid blue) for different values of q along
the path R(θ) = Ra(θ, [1, 2, 3]>/

√
14) with θ ∈ [0, 2π], k = 0.7 and um = em,m = 1, 2, 3.

The gray filled area indicates when (R, q) ∈ JT and the white area indicates when
(R, q) ∈ FT . The sets FT and JT are defined in (3.46)-(3.47) with Φ = Ψ2 ◦ Γ and
δ = 0.46. Note that all singular points, marked with a cross, are contained in the jump
set JT . The downward arrows indicate that at a given critical point, q can be switched
to decrease the value of potential function Ψ2 ◦ Γ(R, q).

SO(3) is to enhance the convergence rates when starting from large attitude errors. This

is a consequence of the additional state-dependent gain [4λEmax(A) − tr(A(I − R))]−
1
2 in

the gradient of Ψ2,A(R), compared to the gradient of Ψ1,A(R), introduced by the square

root function. Note that Ψ2,A(R) has a mixture of critical and singular points. The sets

of critical and singular points for Ψ2,A(R) are given by

CΨ2,A
= CΨ1,A

\ SΨ2,A
, (3.61)

SΨ2,A
=
{
R ∈ SO(3) : R = R(π, v), v ∈ ERv (A),E(A)v = λE(A)

max v
}
. (3.62)

Next, a construction, via angular warping, is given for two exp-synergistic potential

functions designed from the two weighted potential functions Ψ1,A(R) and Ψ2,A(R). For

this purpose, let us define the set of indices Q = {1, 2} and consider the transformation

Γ : SO(3)×Q → SO(3) defined as

Γ(R, q) = RRa(2 arcsin (ktr(A(I −R))) , uq), (3.63)

where u1 = −u2 = u ∈ S2.
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Lemma 3.3.12 Let u ∈ S2 be a unit vector and A = A> > 0 be a symmetric positive

definite matrix. Consider the transformation Γ defined in (3.63). If the the scalar gain

k satisfies the bound

0 < k <
1

4λ
E(A)
max

√
1 + ψ̄(ξ2)

, (3.64)

with ξ := λ
E(A)
min /λ

E(A)
max and ψ̄(·) defined in Lemma 2.2.6 then Γ−1({I}) = {I} × Q and

det(Θ(R, q)) 6= 0 for all (R, q) ∈ SO(3)×Q.

Proof See Appendix A.9.

In view of Lemma 3.3.12 and the result of Lemma 3.3.9, the condition on k in (3.64)

guarantees that the map Γ(R, q) in (3.63) is everywhere a local diffeomorphism and

that the map Γ(R, q) can be composed with existing potential functions on SO(3) to

yield valid families of potential functions on SO(3) × Q. Our next task is to use the

transformation Γ(R, q) defined in (3.63) to build exp-synergistic potential functions from

Ψ1,A and Ψ2,A. Since the set of critical points for Ψ1,A and the union set of the singular

and critical points for Ψ2,A coincide (note that CΨ1,A
= CΨ2,A

∪ SΨ2,A
), one needs to

guarantee that there exists a certain gap between Ψ1,A ◦ Γ(R, 1) and Ψ1,A ◦ Γ(R, 2) and

between Ψ2,A ◦ Γ(R, 1) and Ψ2,A ◦ Γ(R, 2) whenever (R, q) ∈ CΨ1,A◦Γ, q ∈ Q. To motivate

the following construction, the focus next will be on the potential function Ψ1,A ◦Γ(R, q)

and, later, the exp-synergism result is stated for Ψ2,A ◦ Γ(R, q) as well.

Lemma 3.3.13 Let u ∈ S2 be a unit vector and A be a symmetric positive definite

matrix with distinct eigenvalues. Consider the potential function Ψ1,A in (3.28) and the

transformation Γ defined in (3.63) where k satisfies (3.64). Then, Ψ1,A ◦ Γ is synergistic

if and only if the following condition holds

min
i∈{1,2,3}

∆(vi, u) > 0, (3.65)

where {v1, v2, v3} is the set of unit orthonormal eigenvectors of A and ∆(·, ·) is defined

in Lemma 2.2.8.

Proof See Appendix A.10.

Lemma 3.3.13 provides the necessary and sufficient condition for the composite function

Ψ1,A ◦ Γ to be synergistic. Now, one needs to characterize the feasible set where the

condition (3.65) is satisfied.
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Lemma 3.3.14 The feasible region where condition (3.65) holds is characterized by the

inequality

−%33(u>v1)2 + %23 < (u>v2)2 < −%32(u>v1)2 + %22, (3.66)

where %ij = (λAi + (−1)jλA1 )/(λA3 + λA2 ). This region is plotted in Figure 3.11.

Proof See Appendix A.11.

(u>v1)2

(u>v2)2

%22

%23

%22

%32

%23

%33
1

1

Figure 3.11: The feasible region of the synergy condition (3.65)
.

If one chooses the direction u ∈ S2 of the angular warping to lie inside the feasible

region of Lemma 3.3.14 then there exists a synergy gap between the configurations of the

composite function Ψ1,A ◦Γ. An example of a choice for u ∈ S2 that satisfies the feasible

region of Lemma 3.3.14 is the solution of the following max-min optimization

max
u∈S2

min
i∈{1,2,3}

∆(vi, u). (3.67)

Proposition 3.3.15 The unit vector u ∈ S2 solution to the optimization (3.67) is given

by  u>v1 = 0, (u>vi)
2 =

λAi
(λA2 +λA3 )

, i ∈ {2, 3}, if λA2 ≥
λA1 λ

A
3

λA3 −λA1

(u>vi)
2 = 1− 4

∏
j 6=i λ

A
j∑

`

∑
k 6=` λ

A
` λ

A
k
, i ∈ {1, 2, 3}, otherwise.

(3.68)



3.3. Attitude Stabilization on SO(3) 63

Proof See Appendix B.4.

Under the above derived conditions of synergism, it is shown in the next proposition that

Ψ1,A ◦ Γ and Ψ2,A ◦ Γ are both exp-synergistic potential functions with guaranteed gaps.

Proposition 3.3.16 Let A be symmetric positive definite. Consider the transformation

Γ defined in (3.63) with k satisfying (3.64) and u ∈ S2 satisfying (3.66). Then,

• Ψ1,A ◦ Γ ∈ PD, with D = SO(3) × Q, is exp-synergistic with a gap exceeding

0 < δ1 < δ̄1 such that δ̄1 = σ(k, λ
E(A)
min ,∆(u)), ∆(u) = mini∈{1,2,3}∆(vi, u) and

σ(·, ·, ·) is defined in (B.26)-(B.27).

• Ψ2,A ◦ Γ ∈ PD, with D = {(R, q) : Γ(R, q) /∈ SΨ2,A
}, is exp-synergistic with a gap

exceeding 0 < δ2 < δ̄2 such

δ̄2 = −
√

4λ
E(A)
max − 4λ

E(A)
min +

√
4λ

E(A)
max − 4λ

E(A)
min + 2σ(k, λ

E(A)
min ,∆(u)).

Proof See Appendix B.5.

In the construction of exp-synergistic potential functions given in Proposition 3.3.16,

one assumes that the weighting matrix A is symmetric positive definite with distinct

eigenvalues. Note that A > 0 is more restrictive than the condition E(A) > 0 which

is sufficient for Ψ1,A to be a valid potential function on SO(3). It is an open problem

to construct exp-synergistic potential functions via angular warping from Ψ1,A(R) or

Ψ2,A(R) in the case where A is only positive semidefinite and E(A) is positive definite.

When using these exp-synergistic potential functions in a hybrid controller such as (3.49),

it is required to compute their gradient with respect to the first argument R. It follows

from (B.24) and (A.15) that the gradient of Ψ1,A ◦ Γ is given by

∇(Ψ1,A ◦ Γ)(R, q) =
1

2
R[Θ(R, q)>ψ(AΓ(R, q))]×, (3.69)

Θ(R, q) = Ra(2 arcsin(ktr(A(I −R))), uq)
> +

4kuqψ(AR)>√
1− k2tr2(A(I −R))

. (3.70)

Moreover, in view of (3.28) and (3.60), the gradient of Ψ2,A ◦ Γ can be written as

∇(Ψ2,A ◦ Γ)(R, q) =
∇(Ψ1,A ◦ Γ)(R, q)√

4λ
E(A)
max − tr(A(I − Γ(R, q)))

. (3.71)
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3.3.6 Illustration of the Switching Mechanism

To shed some light on how the hybrid switching mechanism, introduced in (3.45)-(3.47),

allows to achieve global results and improve the convergence rates compared to non-

hybrid algorithms, the hybrid switching mechanism is implemented, separately, as follows.

Consider the weighting matrix A = diag(1, 2, 3), index set Q = {1, 2} and unit vectors

u1 = −u2 = u such that u = [0,
√

2/5,
√

3/5]> which is chosen to satisfy (3.68). Let the

parameter k = 4.45 × 10−2 which satisfies condition (3.64). The switching mechanism

(3.45)-(3.47) is implemented with the potential function Φ = Ψ2,A ◦ Γ and the hysteresis

gap δ = 0.95δ̄2 where δ̄2 is defined in Proposition 3.3.16. According to Appendix A.10,

for each q ∈ Q, the potential function Φ(R, q) admits three undesired critical/singular

points. In the case of q = 1, these undesired points, denoted {R̄1, R̄2, R̄3}, are explicitly

given by

R̄i = Ra(π, vi)Ra(2 arcsin(kΨ̄i), u1)>, (3.72)

Ψ̄i =
−1 +

√
1 + 64k2∆(vi, u)λ

E(A)
vi

8k2∆(vi, u)
, (3.73)

for i ∈ {1, 2, 3} where vi is the eigenvector associated to the eigenvalue λAi . Since A is

diagonal one has vi = ei for i = 1, 2, 3. Using (A.34) it can be verified that ∆(v1, u) = 0.7

and ∆(v2, u) = ∆(v3, u) = 0.5 which allows to compute the values

Ψ̄1 ' 9.59,

Ψ̄2 ' 7.81,

Ψ̄3 ' 5.89.

Therefore, making use of the composition of rotations, one can calculate the criti-

cal/singular points of Φ(R, 1) according to (3.72). One obtains R̄i = Ra(θi, wi) for

some angles θi ∈ R and unit vectors wi ∈ S2. More, precisely, the unit vectors are

w1 = [0.9063, 0.3274,−0.2673]>,

w2 = [−0.2741, 0.9617, 0]>,

w3 = [0.1685, 0, 0.9857]>.

Now let us generate three attitude trajectories as follows: Ri(θ) = Ra(θ, wi) where θ ∈
[0, 2π]. This guarantees that each trajectory Ri(θ) will pass through the singular/critical

point R̄i for some value of θ. For each trajectory Ri(θ), the values of the individual
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potential functions Φ(Ri(θ), 1) and Φ(Ri(θ), 2) as well as Φ(Ri(θ), q), where the index q

is initialized at q = 1 and evolves according to the hybrid dynamical system (3.45)-(3.47),

are calculated. The norm of the gradient of these potential function is also calculated and

the results are plotted in Figure (3.12). For instance, if one takes the second trajectory

(2nd column), Figure (3.12) illustrates how the switching mechanism allows, starting from

the initial configuration q = 1, to jump to the minimum potential function Φ(R, 2) when

the difference between the two configurations exceeds the threshold δ. Then, a second

switch happens when the difference between the current potential function, now Φ(R, 2),

and the minimum potential function, now Φ(R, 1), exceeds δ. It can be seen also that

the gradient of Φ(R, q) does not vanish, during the flows of the hybrid system, except at

the identity rotation. Similar discussions can be conducted for the other two trajectories

where one encounters a singular point (1st column) or a critical point (3rd column) for

Φ(R, 1). The hybrid switching mechanism allows to avoid the singularity and/or the

undesired critical point by switching between its two configurations. A similar discussion

can be derived using trajectories that pass through the singular/critical points for Φ(R, 2)

or when considering the potential function Φ = Ψ1,A ◦ Γ instead.
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Figure 3.12: Plot of the potential function Φ(R, q) (first row) and its gradient’s norm
(second row) along the trajectories Ri(θ), i = 1, 2, 3, which passes through the singu-
lar/critical points of Φ(R, 1).
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3.4 Attitude Tracking for Rigid Body Systems

3.4.1 Problem Formulation

The attitude dynamics of a rigid body are given by

Ṙ = R[ω]×, (3.74)

IBω̇ = [IBω]×ω + uτ , (3.75)

where R ∈ SO(3) denotes a rotation matrix from the body-attached frame B to the

inertial frame I, ω ∈ R3 is the angular velocity of the rigid body expressed in the body-

attached frame B, IB ∈ R3×3 is the constant symmetric positive-definite inertia matrix

of the rigid body with respect to the body-fixed frame and uτ ∈ R3 is the input torque

expressed in the body-fixed frame.

Assume that a good estimate of R can be obtained from the available measurements.

Although no available sensor can provide measurements of the full attitude matrix R,

body-frame vector measurements of known inertial directions can be used to reconstruct

or estimate the attitude. A detailed description and improved solutions for the attitude

estimation problem will be addressed in Chapter 4. Also, assume that the angular velocity

ω, which can be measured using a gyroscope, is available for feedback. Consider a time-

varying reference attitude trajectory Rd(t) ∈ SO(3), satisfying

Ṙd(t) = Rd(t)[ωd(t)]×, Rd(0) ∈ SO(3), (3.76)

for some desired angular velocity vector ωd(t) ∈ R3.

Assumption 3.4.1 The desired angular acceleration ω̇d(t) is uniformly bounded such

that there exists cω̇d > 0 and ‖ω̇d(t)‖ ≤ cω̇d for all t ≥ 0.

Note that, under the assumption of bounded ω̇d, the desired trajectory (3.76) can be

generated by the following autonomous differential inclusion

Ṙd = Rd[ωd]×

ω̇d ∈ cω̇dB

}
(Rd, ωd) ∈ SO(3)× R3. (3.77)

We may also need the following assumption on the boundedness of ωd.

Assumption 3.4.2 The desired angular velocity ωd(t) is uniformly bounded such that

there exists cωd > and ‖ωd(t)‖ ≤ cωd for all t ≥ 0.
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Our objective is to design a control law for the input uτ such that global tracking of

the reference attitude Rd(t) is achieved. To this end, the synergistic hybrid approach

developed in this chapter is adopted. Before this, let us discuss some of the existing

smooth attitude control schemes which our hybrid tracking controllers will be developed

upon.

3.4.2 Smooth Attitude Tracking on SO(3)

Using the SO(3) group operation, one defines the following “intrinsic” attitude tracking

errors

R̃ = RR>d , R̄ = R>d R. (3.78)

The attitude errors R̃ and R̄ are often called the left and right attitude errors, respectively.

In fact, the left (right) attitude error is invariant under left (right) matrix multiplication

in the sense that it preserves the Lie group invariance properties with respect to constant

rotations. Both attitude errors can be used as a measure of the error between the actual

attitude R and the desired attitude Rd. In fact it is easy to check that R̃ = I is equivalent

to R̄ = I thanks to the fact that R̃ = RdR̄R
>
d . However, physically speaking the right

attitude error R̄ is more meaningful than its counterpart R̃. The right attitude error

corresponds to the relative orientation generated by the difference of the actual angular

velocity and the desired angular velocity expressed in the body-attached frame. This fact

has motivated its wide use in attitude control problems, see [Meyer, 1971, Koditschek,

1988, Wen and Kreutz-Delgado, 1991, Egeland and Godhavn, 1994, Sanyal et al., 2009,

Lee, 2012, Mayhew and Teel, 2013a]. The left attitude error has appeared less frequently,

see for instance [Bullo and Murray, 1999, Forbes, 2013]. As will be discussed later, the

use of the left attitude error has several advantages compared to the right attitude error.

The corresponding left and right angular velocity errors can be obtained by differen-

tiating the left and right attitude errors which results in

˙̃R = R̃[Rdω̃]×, ω̃ = ω − ωd, (3.79)

˙̄R = R̄[ω̄]×, ω̄ = ω − R̄>ωd. (3.80)

The right angular velocity error ω̄ represents the error between the body-frame angular

velocity ω and the body-frame representation, namely R̄>ωd, of the desired angular

velocity ωd. Therefore both quantities are compared in the same body frame. The
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control laws discussed in this thesis have the following structure

uτ = PD-like feedback + Feedforward compensation (3.81)

The proportional feedback is a function of the attitude error (left or right) and the

derivative feedback is in terms of the corresponding angular velocity error (left or right).

The PD action guarantees stability, error tracking and disturbance rejection while the

feedforward term is used to enhance the tracking performance by compensating for the

system dynamics.

The first smooth control law uses the left (attitude and angular velocity) tracking

errors and is given by (see [Bullo and Murray, 1999])

uτ = −R>d ψ(K1R̃)−K2ω̃ + [ωd]×IBω + IBω̇d, (3.82)

where K2 is a positive definite matrix and K1 is a symmetric matrix such that E(K1) is

positive definite. The second control law uses the right tracking errors and is given by

(see [Tayebi, 2008, Lee, 2012])

uτ = −ψ(K1R̄)−K2ω̄ + [R̄>ωd]×IBR̄
>ωd + IBR̄

>ω̇d. (3.83)

Both controllers can be shown to guarantee almost global asymptotic tracking and local

exponential tracking, see [Bullo and Murray, 1999, Lemma 9]. Interestingly, one can

further simplify the feedforward term of the control law (3.82) as demonstrated in the

following proposition.

Proposition 3.4.3 Consider the desired reference trajectory (3.76) under Assumption

(3.4.2). Consider the attitude dynamics (3.74)-(3.75) under the control law

uτ = −R>d ψ(K1R̃)−K2ω̃ + [ωd]×IBωd + IBω̇d, (3.84)

where K1 is a symmetric matrix such that E(K1) is positive definite and K2 is a positive

definite matrix satisfying

λK2
min > λIBmaxcωd . (3.85)

Then the equilibrium point (R̃, ω̃) = (I, 0) is exponentially stable from all initial condi-
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tions such that

tr(K1(I − R̃(0))) + ω̃(0)IBω̃(0) < 4λ
E(K1)
min .

Proof See Appendix B.6.

The control law (3.84) has a simpler feedforward term compared to the previously pro-

posed control laws (3.82) and (3.82). In fact, the feedforward term [ωd]×IBωd + IBω̇d

is state-independent and can be computed offline given the desired trajectory of the

rigid body’s attitude. This simplification in the control law comes at the cost of a gain

condition in (3.85).

3.4.3 Hybrid Attitude Tracking on SO(3)

As discussed in Section 3.3.2, smooth stabilization or tracking on SO(3) can not achieve

global results which might lead to performance degradation when considering large ma-

noeuvres. The proportional feedback for the attitude tracking control laws discussed

above can be modified and enhanced by including a hybrid dynamical system in the

spirit of the hybrid synergistic feedback approach discussed in subsection 3.3.4. In fact

the proportional term ψ(K1R̃) is related to the gradient of the potential function Ψ1,K1(R̃)

defined in (3.28). The idea of the hybrid tracking algorithm is to take, instead, a pro-

portional term which corresponds to a gradient of an exp-synergistic potential function

which changes configuration according to a min-switch strategy.

R>d × q = HT (R̃)

Switching Mechanism

−ψ(R̃>∇Φ(R̃, q))

Gradient Feedback

+ Ṙ = R[ω]×

IBω̇ = IBω × ω + uτ

Attitude Dynamics

K2

−ωd

ω
τ

R

[ωd]×IBωd + IBω̇d

Feedforward

ω̇d
ωd

R̃ q

Figure 3.13: Hybrid attitude tracking algorithm using an exp-synergistic potential func-
tion Φ : SO(3)×Q → R≥0.
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Theorem 3.4.4 Consider a desired reference trajectory generated by (3.77) under As-

sumptions (3.4.1)-(3.4.2). Consider the attitude dynamics (3.74)-(3.75) under the control

law

uτ = −R>d ψ(R̃>∇Φ(R̃, q))−K2ω̃ + [ωd]×IBω + IBω̇d, (3.86)

where K2 is a positive definite matrix, Φ ∈ PD with D ⊆ SO(3)×Q, Q ⊂ N, δ > 0 and

q = HT (R̃) with T = (Φ,Q, δ) and HT (·) defined in (3.45)-(3.47). If Φ is exp-synergistic

with gap exceeding δ, then the set A2 = {(R̃, q, ω̃, Rd, ωd) : R̃ = I, ω̃ = 0} is globally

exponentially stable.

Proof See Appendix C.4.

In Theorem 3.4.4 a hybrid controller has been derived using the left attitude and angular

velocity errors. It has the same structure as the smooth controller (3.84) with the pro-

portional term ψ(K1R̃) being replaced by ψ(R̃>∇Φ(R̃, q)) Φ ∈ PD with D ⊆ SO(3)×Q
is an exp-synergistic potential function with gap exceeding δ > 0 and the index q is the

output of the hybrid dynamical system (3.45)-(3.47). Note that the feedforward term

[ωd]×IBω can be replaced by [ωd]×IBωd as in (3.84) under the gain condition (3.85) with-

out affecting the nature of the stability result. Also, a similar hybrid controller obtained

from the right attitude and angular velocity errors can be derived. It is left to the reader

to verify the global exponential stability result.

Note that the proposed hybrid attitude tracking scheme is subject to discontinuous

jumps due to the direct switching in the hybrid controller configuration. This might

be undesirable from a practical point of view as discontinuities in the torque might

excite unmoderated dynamics. To cope with this shortcoming, a dynamic extension is

proposed for the originally derived hybrid controllers to smooth out the proportional

term (which contains discontinuous jumps) and allows to obtain a continuous control

input guaranteeing the same exponential tracking results.

Theorem 3.4.5 Consider a desired reference trajectory generated by (3.77) under As-

sumptions (3.4.1)-(3.4.2). Consider the attitude dynamics (3.74)-(3.75) under the control

law

uτ = −R>d x−K2ω̃ + [ωd]×IBω + IBω̇d, (3.87)

ẋ = −K3(x− ψ(R̃>∇Φ(R̃, q))), x(0) ∈ cxB, (3.88)

where K2, K3 are positive definite matrices, Φ ∈ PD with D ⊆ SO(3)×Q, Q ⊂ N, cx > 0

and q = HT (R̃) with T = (Φ,Q, δ), δ > 0 and HT (·) defined in (3.45)-(3.47). If Φ is
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exp-synergistic with gap exceeding δ, then there exists a positive constant k3 such that

for K3 > k3I > 0, the set A3 := {(R̃, q, ω̃, x̃, Rd, ωd) : R̃ = I, ω̃ = 0, x̃ = 0} is globally

exponentially stable, where x̃ = x− ψ(R̃>∇Φ(R̃, q)).

Proof See Appendix C.5.

The integral action on the hybrid term ψ(R̃>∇Φ(R̃, q)) in (3.88) moves the discontinuity

(jump) one integrator away from the control input uτ . Therefore, the output of the hybrid

controller (3.87)-(3.88) is made continuous without sacrificing the global exponential

stability.

R>d × q = HT (R̃)

Switching Mechanism

−ψ(R̃>∇Φ(R̃, q))

Gradient Feedback

k3

s+k3
+ Ṙ = R[ω]×

IBω̇ = IBω × ω + uτ

Attitude Dynamics

K2

−ωd

ω
τ

R

[ωd]×IBωd + IBω̇d

Feedforward

ω̇d
ωd

R̃ q

Figure 3.14: Smoothed hybrid attitude tracking algorithm using an exp-synergistic po-
tential function Φ : SO(3)×Q → R≥0.

3.4.4 Simulations

In this section, some simulation results are provided to show the performance of the

proposed attitude tracking control schemes. The moment of inertia of the rigid body

considered in this simulation around the roll, pitch and yaw axes is given by

IB =

1.59 0 0

0 1.50 0

0 0 2.97

× 10−2 (Kg.m2) (3.89)

The desired attitude trajectory being set for the simulation tests is generated from

(3.76). The desired angular acceleration is

ω̇d(t) =

0.03 sin(0.1t+ 7π/12)

0.03 sin(0.3t+ π/2)

0.05 sin(0.1t+ π/2)

 (rad/sec2), (3.90)
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Figure 3.15: Total attitude tracking error (Euclidean distance) versus time.
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Figure 3.16: Norm of the angular velocity tracking error versus time.

and the initial desired angular rates and attitude matrix are ωd(0) = [0, 0, 0]> (rad/sec)

and Rd(0) = I, respectively. In the first simulation scenario, the initial conditions ω(0) =

[0, 0, 0]> (rad/sec) and R(0) = Ra(π, [0.6, 0.8, 0]>) are considered. The gains are set as

K1 = K2 = 5 × 10−2I for all controllers. Note that locally, all controllers (smooth or

hybrid, left or right error) are identical. Particularly, both the smooth control (right

error) which corresponds to the controller (3.83) and the smooth control (left error)

which corresponds to controller (3.84) are implemented. The hybrid control law (3.86)

is implemented using the non-weighted exp-synergistic potential function Ψ1 ◦ Γ with

parameters k = 0.64 and δ = 0.064 as in Proposition 3.3.10. In the second simulation



3.4. Attitude Tracking for Rigid Body Systems 73

0 5 10 15 20 25 30 35 40 45 50

-100

0

100

R
o
ll
(d
eg
/
se
c)

Smooth control (right error)
Smooth control (left error)
Hybrid control
Desired trajectory

0 5 10 15 20 25 30 35 40 45 50

-80

-60

-40

-20

0

20

P
it
ch

(d
eg
/
se
c)

0 5 10 15 20 25 30 35 40 45 50

Time (seconds)

-100

0

100

Y
aw

(d
eg
/
se
c)

Figure 3.17: True Euler angles (colored) and desired Euler angles (dashed) versus time.

scenario, the performance of the smoothed hybrid controller (3.87)-(3.88) is compared to

the raw hybrid controller (3.86). Consider the initial states as follows ω(0) = [−5,−2, 3]>

(rad/sec) and R(0) = Ra(π, [0, 1, 0]>). The control gain K3 in (3.87)-(3.88) is chosen as

K3 = 10I while the remaining parameters of the hybrid switching mechanism (Φ,Q, δ)
are chosen as in the previous scenario.
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Figure 3.18: Total attitude tracking error (Euclidean distance) versus time.
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3.5 Conclusion

In this chapter, the use of hybrid techniques has been investigated to solve the long

standing problem of global exponential stabilization on the Special Orthogonal group

of rotations SO(3). The notion of exp-synergism for a family of differentiable or non-

differentiable potential functions on SO(3) has been introduced. When a given family of

potential functions on SO(3) is exp-synergistic, one can employ a min-switch strategy that

selects the controller designed from the minimal potential function. The exp-synergism

property guarantees that all the undesired critical or singular points of the family of
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Figure 3.21: Switching variable versus time. Note that the initial value is q(0, 0) = 2.
The hybrid controller immediately switches to the configuration q = 5 at the start.

potential functions must lie in the jump set of the hybrid controller. A rigorous Lyapunov

analysis for hybrid systems is used to show global exponential stability of the closed-

loop systems under investigation. Moreover, an insightful construction of exp-synergistic

potential functions, derived from already known individual weighted and non-weighted

potential functions on SO(3), is proposed. The proposed hybrid stabilization approach

has been applied to the attitude tracking problem for rigid body systems and yields

improved tracking performance compared to non-hybrid attitude tracking algorithms.



Chapter 4

Hybrid Attitude Estimation on SO(3)

4.1 Introduction

In this chapter, two different observer design problems related to the attitude estimation

on SO(3) are formulated. The first problem, similar to [Mahony et al., 2008], considers

the attitude estimation using a set of n ≥ 2 body-frame vector measurements of known

constant inertial vectors alongside biased gyro measurements. Our objective is to incor-

porate hybrid switching mechanisms to enlarge the domain of exponential stability of the

traditional nonlinear complementary filter on SO(3) [Mahony et al., 2008, Grip et al.,

2012a]. Two approaches are proposed: a synergistic-based approach and a reset-based

approach. In the synergistic-based approach, exp-synergistic potential functions from

Chapter 3 are used to design a set of innovation terms for the passive nonlinear com-

plementary filter [Mahony et al., 2008]. A hysteresis switching between these innovation

terms allows to keep the estimation error inside the region of exponential stability. The

second approach relies on resetting the attitude state to a different value (selected from a

set of adequately chosen rotation matrices) whenever the attitude error is close to leave

the domain of exponential stability. This condition is detected by comparing the value

of a cost function at the current rotation and at the rotation after a potential jump has

occurred. Both estimation approaches are shown to guarantee global exponential stabil-

ity, are expressed directly using vector measurements and provide improved performance

compared to the state of the art attitude estimators on SO(3). These results appeared

in our work [Berkane et al., 2017a, Berkane and Tayebi, 2017b].

The second problem that is addressed in this chapter is the attitude estimation on

SO(3) using intermittent vector measurements where the body frame vector measure-

ments are considered arriving at possibly different instants of time with possible packets

loss. This problem is mainly motivated by applications where multiple sensors (GPS,

76
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landmarks, vision sensors, IMU) are centrally fused to estimate the attitude of a rigid

body. Measurement-triggered state observers on SO(3) are proposed to solve the problem

in the case where the measurements are synchronous and asynchronous. A hybrid sys-

tems framework is proposed to model and capture the dynamics of the event-triggered

behaviour of the closed-loop systems. Almost global exponential stability and almost

global asymptotic stability is shown for the synchronous observer and asynchronous ob-

server, respectively. The results of this part have been published in [Berkane and Tayebi,

2017c, Berkane and Tayebi, 2017d].

4.2 Attitude Estimation Using Continuous Vector

Measurements

In this section, the problem of attitude and gyro bias estimation from continuous body-

frame vector measurements and biased angular velocity readings is considered. This

problem has been tackled recently using nonlinear observer design on SO(3) see, for

instance, [Mahony et al., 2008, Grip et al., 2012b, Izadi and Sanyal, 2014, Zlotnik and

Forbes, 2017] . In this work, hybrid nonlinear observers on SO(3) are proposed to solve

this problem with global exponential stability results; a result that has not been achieved

in previous works.

4.2.1 Problem Formulation

Let R ∈ SO(3) denote a rotation matrix from the body-attached frame B to the inertial

frame I. The rotation matrix R evolves according to the kinematics equation

Ṙ = R[ω]×, (4.1)

where ω ∈ R3 is the angular velocity of the body-attached frame B with respect to

the inertial frame I expressed in the body-attached frame B. Assume that the angular

velocity ω(t) is uniformly bounded and a continuous biased measurement of ω(t), denoted

by ωy, is available such that

ωy = ω + bω. (4.2)

where bω ∈ R3 represents a constant or slowly varying bias. Also, suppose that a set

of n ≥ 2 sensors measuring direction vectors, denoted by bi, i = 1, . . . , n in the body-

attached frame which are associated to a set of n known (possibly time-varying) inertial
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vectors, denoted by ai, i = 1, . . . , n, such that

bi = R>ai. (4.3)

As in most attitude estimation problems, one needs to impose an observability condition

which requires that, at each instant of time, at least two inertial vectors are non-collinear.

This is formally stated as follows.

Assumption 4.2.1 For any t ≥ 0, there exist i, j ∈ {1, · · · , n} such that the inertial

vectors ai(t) and aj(t) are non-collinear.

The body-frame vectors bi can be obtained, for example, from an IMU that typically

includes an accelerometer and a magnetometer measuring, respectively, the gravitational

field and Earth’s magnetic field expressed in the body-attached frame. Moreover, the

following realistic assumptions are needed.

Assumption 4.2.2 There exists constants cω, cω̇, cb > 0 such that ‖ω(t)‖ ≤ cω, ‖ω̇(t)‖ ≤
cω̇ for all t ≥ 0 and ‖bω‖ ≤ cb.

Our objective consists in designing an algorithm that provides attitude estimates on

SO(3) while estimating the gyro-bias vector, using the above described available mea-

surements, leading to global exponential stability results.

The available state-of-the-art attitude observer that solves a similar problem is the

explicit complementary filter (ECF) proposed in [Mahony et al., 2008]. The ECF takes

the following form:

˙̂
R = R̂

[
ωy − b̂ω + k1ŵ

]
×
, (4.4)

˙̂
bω = −k2ŵ, (4.5)

ŵ =
1

4

n∑
i=1

ρi(bi × R̂>ai), (4.6)

where R̂(0) ∈ SO(3) and b̂ω(0) ∈ R3 are the initial conditions of the attitude estimate

R̂ and the gyro bias estimate b̂ω, respectively. The gains k1, k2, ρ1, · · · , ρn are chosen

strictly positive. The structure of the ECF is very intuitive. The attitude estimate is

propagated using a forward integration of the biased angular velocity plus and innovation

term. The innovation term has a proportional-integral structure where the error vector

ŵ is constructed by weighting and summing the “cross product vector errors” between

the measured direction vectors bi = R>ai and their corresponding estimates R̂>ai.
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Note that the vector error is not taken as bi − R̂>ai which is the traditional error in

an Euclidean space. Instead the cross product bi × R̂>ai is used which is more intrinsic

to the rotation group SO(3). The use of this type of correction allows to derive strong

stability results (almost global asymptotic stability and local exponential stability) for

this filter. The intuitive fact that the cross product error bi× R̂>ai vanishes when bi and

R̂>ai are parallel (0◦ and 180◦) leads to the appearance of undesired equilibria when the

attitude estimation error has an angle of 180◦.

4.2.2 Synergistic-Based Approach

In this subsection, a hybrid approach for the design of globally exponentially stable

attitude observers on SO(3) is developed based on the synergistic approach proposed in

Chapter 3. First, a hybrid attitude and gyro-bias observer relying on a generic indexed

potential function on SO(3) ×Q, where Q ⊂ N is a finite index set, satisfying the exp-

synergism property is proposed. Global exponential stability of the estimation errors

is shown. By picking some suitable exp-synergistic potential functions developed in the

previous chapter, the resulting hybrid observer is explicitly formulated using the available

vector measurements.

Let R̂ and b̂ω denote, respectively, the estimate of the rigid body rotation matrix R

and the estimate of the constant bias vector bω. Also, define R̃ = RR̂> and b̃ω = bω−b̂ω as

the attitude and gyro bias estimation errors, respectively. Consider a potential function

Φ ∈ PD, for some D ⊆ SO(3)×Q, such that Q ⊂ N is a set of discrete indices and δ > 0.

Let T = (Φ,Q, δ) and consider the following hybrid attitude and gyro-bias estimation

scheme:

˙̂
R = R̂

[
ωy − b̂ω +K1R̂

>w(R̃, q)
]
×
, (4.7)

˙̂
bω = −k2R̂

>w(R̃, q), (4.8)

w(R̃, q) = ψ
(
R̃>∇Φ(R̃, q)

)
(4.9)

where the current configuration of the observer is dictated by the switching variable

q ∈ Q which is the output of the hybrid dynamical system

q = HT (R̃) (4.10)

where HT is as defined in (3.45). The matrix gain K1 and the scalar gain k2 are both

positive definite. The above nonlinear observer is a copy of (4.1) plus an innovation
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(correction) term. The constant bias is compensated by means of an integral feedback.

The current configuration of the hybrid observer, dictated by the switching variable

q ∈ Q, remains constant during the flows of HT . Only the variable q ∈ Q changes

values during the jumps of the hybrid observer leading to a change in the observer

correction term. The observer states R̂ and b̂ω are kept unchanged which results in

a hybrid estimation scheme with continuous estimation output. According to (3.46)-

(3.47), the observer flows (evolves according to the continuous dynamics (4.7)-(4.9)) as

long as the difference between the current value of the potential function Φ(R̃, q) and the

minimum value across all values of q ∈ Q does not exceed certain threshold δ > 0. The

jump of the observer is triggered when the difference between the current value of the

potential function Φ(R̃, q) and the minimum value across all values of q ∈ Q exceeds the

threshold δ > 0.

The initial state variables of the observer are selected as R̂(0, 0) ∈ SO(3), b̂ω(0, 0) ∈
R3. Consequently, one can verify from (4.7) that R̂ is naturally confined to lie on SO(3)

for all hybrid times (t, j) � (0, 0). It should be noted that the above proposed hybrid

estimation scheme depends on the attitude estimation error R̃ which is not available.

Later in this subsection, we will address the design of the potential function Φ(R̃, q) with

the corresponding index set Q and hysteresis gap δ and, accordingly, show how to express

the above hybrid observer in terms of the available inertial vectors (ai)1≤i≤n and their

corresponding body-frame measurements (bi)1≤i≤n.

Also, note that although the hybrid attitude observer proposed above exhibits jump

transitions, the discrete jumps are hidden by the integration process since only the cor-

rection term is being subject to jumps and not the states (attitude and gyro bias) of

the observer. This is desirable in practice since the discrete transitions in the attitude

estimates may excite undesirable and unmodelled dynamics when used in a control input.

To analyze the convergence properties of the proposed hybrid observer, the closed-loop

system is written as an autonomous hybrid system with state X = (R̃, q, b̃ω, R̂, ω) ∈
SO(3) × Q × R3 × SO(3) × R3 and data given by (C.51)-(C.54). The objective is to

establish global exponential stability of the closed set A defined by

A = {(R̃, q, b̃ω, R̂, ω) : R̃ = I, b̃ω = 0}

Theorem 4.2.3 Consider the attitude kinematics (4.1) coupled with the hybrid observer

(4.7)-(4.10) where Assumptions 4.2.1-4.2.2 are satisfied. If the potential function Φ is

exp-synergistic with gap exceeding δ then the number of discrete jumps is finite and the
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set A is globally exponentially stable.

Proof See Appendix C.6.

Algebraic
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Algorithm

× q = HT (R̃)

Switching

w(R̃, q)

Correction

˙̂
R = R̂[ωy − b̂ω +K1R̂

>w]×
˙̂
bω = −k2R̂

>w

Flow dynamics

R R̃
q R̂

b̂ω

R̂>

Vector measurements (b1, · · · bn)
Inertial vectors (a1, · · · an) Biased angular velocity ωy

Figure 4.1: Schematic of the synergistic-based hybrid attitude and gyro bias observer
using algebraic attitude reconstruction. This estimation scheme can be implemented
using any exp-synergistic potential function Φ.

Note that, according to the result of Theorem 4.2.3, the hybrid attitude estimation algo-

rithm (4.7)-(4.9) can be implemented by picking any exp-synergistic potential function.

Example of such choices are the exp-synergistic potential functions designed in Propo-

sition (3.3.10) and Proposition 3.3.16. However, since the attitude error R̃ = RR̂> is

not available to the attitude estimation algorithm, one needs to express the proposed

estimation scheme in terms of vector measurements (bi)1≤i≤n. An intuitive remedy is to

first use a static reconstruction algorithm (such as SVD or TRIAD) to recover a noisy

attitude Ry from the inertial vector measurements and then feed this reconstructed atti-

tude to the hybrid algorithm (4.7)-(4.9) as if Ry corresponds to the true attitude matrix.

This results in the estimation scheme depicted in Figure 4.1. Note that in using the

reconstruction algorithm, there is no restriction on the inertial vectors a1, · · · , an to be

constant as long as they are known.

Formulation in the case of constant inertial vectors (ai)1≤i≤n

The reconstruction algorithm is computationally expensive to execute at each iteration of

the estimation algorithm and might introduce another type of noise which would degrade

the performance of the algorithm. To avoid these problems and complications introduced

by the algebraic reconstruction algorithm, an explicit formulation of the attitude observer

using body-frame measurements of known constant inertial vectors is proposed as follows.
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Take the matrix A =
∑n

i=1 ρiaia
>
i where ρi > 0, i = 1, · · · , n. This ensures that A is

positive definite provided that at least 3 inertial vectors, say a1, a2 and a3, are non-

collinear. In the case where only two non-collinear vectors a1 and a2 are available, it is

always possible to consider a third vector a3 = a1× a2, corresponding to the body-frame

measurement b3 = b1 × b2. Moreover, there exist positive scalars ρi such that A has

distinct eigenvalues. In this case, one can construct the potential function Φ ≡ Ψ1,A ◦ Γ

where Ψ1,A and Γ are defined in (3.28) and (3.63). Select the corresponding parameters

such as in Proposition (3.3.16) to ensure that Φ is exp-synergisitic with gap exceeding δ̄1

given in Proposition (3.3.16). Interstingly, this potential function as well as its gradient

can be computed directly using the vector measurements without the need for the attitude

matrix R. Using Lemma 2.2.7 and the definition of Γ in (3.63), one can show that the

potential function Φ(R̃, q) = Ψ1,A ◦ Γ(R̃, q) is expressed using vector measurements as

follows:

Φ̂((ai, bi)1≤i≤n, R̂, q) =
1

4

n∑
i=1

ρi‖bi − b̂qi‖2, (4.11)

where Φ̂((ai, bi)1≤i≤n, R̂, q) ≡ Φ(R̃, q), b̂qi = R̂>Ra(2 arcsin(kΨ̄), uq)ai and Ψ̄ = 1
2

∑n
i=1 ρi‖bi−

R̂>ai‖2. Using this explicit formulation of the potential function Φ(R̃, q), the hybrid

switching mechanism HT defined in (3.48) can be implemented directly using vector

measurements by replacing Φ(R̃, q) with Φ̂(a1, · · · , an, b1, · · · , bn, R̂, q). Let us denote by

ĤT the explicit implementation of the hybrid dynamical system HT so that

q = ĤT ((ai, bi)1≤i≤n, R̂). (4.12)

Moreover, in view of (3.69)-(3.70) and using again the result of Lemma 2.2.7 the gradient

of Φ can also be formulated using vector measurements as follows

ŵ((ai, bi)1≤i≤n, R̂, q) =
1

4
Θ̄>

n∑
i=1

ρi(bi × b̂qi ), (4.13)

where ŵ((ai, bi)1≤i≤n, R̂, q) ≡ R̂>w(R̃, q) and Θ̄ = I + 2k[1 − (kΨ̄)2]
1
2 R̂>uq

∑n
i=1 ρi(bi ×

R̂>ai)
>. To sum up, the proposed hybrid observer can be implemented according to

Algorithm 1. It should be mentioned that another hybrid observer can be derived when

considering the potential function Φ = Ψ2,A ◦Γ instead, where Ψ2,A is defined in (3.60).
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q = ĤT ((ai, bi)1≤i≤n, R̂)

Switching Mechanism

ŵ((ai, bi)1≤i≤n, R̂, q)

Correction term

˙̂
R = R̂[ωy − b̂ω +K1ŵ]×
˙̂
bω = −k2ŵ

Flow dynamics

q R̂

b̂ω

Vector measurements (b1, · · · bn)
Inertial vectors (a1, · · · an)

Biased angular velocity ωy

Figure 4.2: Schematic of the synergistic-based hybrid attitude and gyro bias observer
using directly vector measurements (without the need to algebraically reconstruct the
attitude).

Algorithm 1 Synergistic-based observer using constant inertial vectors

Pick A =
∑n

i=1 ρiaia
>
i where ρi > 0, i = 1, · · · , n.

Choose a scalar k to satisfy (3.64), a unit vector u as in Proposition 3.3.15 andQ = {1, 2}.
Initialize the observer states R̂(0, 0) ∈ SO(3), b̂ω(0, 0) ∈ R3 and q(0, 0) ∈ Q and pick the
observer gains K1 and k2 to obtain the desirable performance.

1: for each set of measurements (bi)1≤i≤n do
2: Calculate Φ(R̃, q) and minp∈QΦ(R̃, p) using (4.11).
3: while (R̃, q) ∈ JT do
4: Update q = arg minp∈QΦ(R̃, p).
5: end while
6: Calculate the correction term w(R̃, q) using (4.13).
7: Update the states R̂ and b̂ω according to (4.7)-(4.8).
8: end for

4.2.3 Reset-Based Approach

The synergistic-based approach for the design of hybrid observers discussed in the previ-

ous section is inspired from the hybrid control approach proposed in Chapter 3. In this

section, an alternative hybrid approach for the design of attitude observers is proposed

by allowing the estimation state to be reset to a certain value whenever it leaves the flow

set and enters the jump set.

Consider a potential function Φ ∈ PDΦ
withDΦ ⊆ SO(3) and Ξ : SO(3)×R≥0 → R≥0 a

possibly time-varying potential function continuous and differentiable on the set DΞ×R≥0

where DΞ ⊆ SO(3). Consider the following hybrid attitude and gyro-bias estimation
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scheme 
˙̂
R = R̂

[
ωy − b̂ω + k1R̂

>w(t, R̃)
]
×

˙̂
bω = Pcb(b̂ω,−k2R̂

>w(t, R̃))

w(t, R̃) = ψ
(
R̃>∇Ξ(t, R̃)

) R̃ ∈ F̂ , (4.14)

{
R̂+ = Ra(θ, uq)

>R̂

b̂+
ω = b̂ω

R̃ ∈ Ĵ , (4.15)

where k1, k2, cb > 0, q ∈ arg minp∈QΦ(R̃Ra(θ, up)), Q ⊂ N, {up}q∈Q is a set of real unit

vectors in S2 and Pcb(·, ·) is the parameter projection function defined in (2.3). The flow

and jump sets are defined, for some δ > 0, as

F̂ = {R̃ ∈ SO(3) : Φ(R̃)−min
p∈Q

Φ(R̃Ra(θ, up)) ≤ δ}, (4.16)

Ĵ = {R̃ ∈ SO(3) : Φ(R̃)−min
p∈Q

Φ(R̃Ra(θ, up)) ≥ δ}. (4.17)

The design of the reset-based hybrid observer (4.14)-(4.17) is somehow simpler thanks

to the fact that only one single potential function Φ(R̃) is being employed compared

to a family of potential functions {Φ(R̃, q)}q∈Q used in the design of the synergistic-

based hybrid observer (4.7)-(4.10). This comes at the cost of a discrete transition of

the attitude state R̂ in (4.15). To analyze the convergence properties of the proposed

hybrid observer, the closed-loop system is written as an autonomous hybrid system with

state X = (R̃, b̃ω, R̂, b̂ω, ω, t) ∈ SO(3)× R3 × SO(3)× R3 × R3 × R≥0 and data given by

(C.62)-(C.65). The objective is to establish global exponential stability of the closed set

A defined by

A = {(R̃, b̃ω, R̂, b̂ω, ω, t) : R̃ = I, b̃ω = 0}

Note that the set A is only closed (non-compact) due to the presence of the time variable

t that grows unbounded. The following theorem gives sufficient conditions for the global

exponentially stability of the set A.

Theorem 4.2.4 Consider the attitude kinematics (4.1) coupled with the hybrid observer

(4.14)-(4.17) where Assumptions 4.2.1-4.2.2 are satisfied. If the potential functions Φ,Ξ,

and the corresponding parameters of the hybrid observer θ, δ and {uq}q∈Q, satisfy the

following properties:

i) ∃α1, α2 > 0 such that α1|R̃|2I ≤ Φ(R̃) ≤ α2|R̃|2I for all R̃ ∈ SO(3),

ii) ∃α3, α4 > 0 such that α3|R̃|2I ≤ 〈〈∇Φ(R̃),∇Ξ(t, R̃)〉〉 ≤ α4|R̃|2I for all R̃ ∈ F̂ ,
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iii) F̂ ⊆ DΞ,

iv) ∃α5, α6 > 0 such that ‖∇Ξ(t, R̃)‖F ≤ α5|R̃|I and ‖∇Φ(R̃)‖F ≤ α6|R̃|I .

Then the number of discrete jumps is finite and the set A = {(R̃, b̃ω, R̂, ω, t) : R̃ =

I, b̃ω = 0}, for the hybrid system with data (C.62)-(C.65), is globally exponentially stable

if k1 > k̄1 > 0 for some gain k̄1 provided in the proof.

Proof See Appendix C.7.

The stability result of Theorem 4.2.4 is equivalent to the one obtained in Theorem 4.2.3

for the hybrid observer (4.7)-(4.10). However, in Theorem 4.2.4, a condition on the gain

k1 is imposed. This condition, as shown in the proof of Theorem 4.2.4, comes from

the fact that the correction term is allowed to be dependent on a possibly time-varying

potential function Ξ. If one takes Ξ = Φ (although not shown here) it can be verified that

the condition on the gain k1 is no longer needed to establish global exponential stability.

In some applications, as the case when the vector measurements are time-varying, the

functions Φ(R̃) and Ξ(t, R̃) may be chosen to be different [Grip et al., 2012a].

Moreover, compared to the synergistic-based observer, the use of the projection op-

erator in the bias adaptation law is necessary to establish the proof of Theorem 4.2.4

in the case where Ξ is time-varying. If one takes Ξ = Φ (time-invariant), one can still

guarantee global exponential stability without the use of the projection operator. Note

that restricting the bias estimates to lie inside a predefined ball is desirable in practice

to avoid unbounded growth due to the integration of measurement noise. The projection

operator can also be used in (4.8) for practical considerations although it was not needed

to establish the proof of exponential stability.

Remark 4.2.5 Note that in view of the definition of the jump set Ĵ in (4.17) and item

i) of Theorem 4.2.4 one has R̃ ∈ Ĵ implies that

δ ≤ Φ(R̃)−min
p∈Q

Φ(R̃Ra(θ, up)) ≤ Φ(R̃) ≤ α2|R̃|2I ≤ α2. (4.18)

Therefore, in the case where δ > α2, it is clear that Ĵ = ∅ and F̂ = SO(3). In this case

the reset-base observer is continuous since the jump mechanism is never executed. In this

case, the result of Theorem 4.2.4 cannot hold since the topological obstruction on SO(3)

prevents a continuous observer to guarantee global exponential stability. In fact, item ii)

cannot hold for all R̃ ∈ SO(3) since the gradient of Φ needs to vanish at some critical

points other than R̃ = I only.
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ŵ((ai, bi)1≤i≤n, R̂)

Correction term

R̂+ = Ra(θ, uq)
>R̂

Reset mechanism

˙̂
R = R̂[ωy − b̂ω + k1R̂

>ŵ]×
˙̂
bω = Pcb(b̂ω,−k2R̂

>ŵ)

Flow dynamics

R̂

b̂ω

Vector measurements (b1, · · · bn) Biased angular velocity ωy

Figure 4.3: Schematic of the reset-based hybrid attitude and gyro bias observer

Now, let us look for a potential function and the parameters of the hybrid observer

satisfying the conditions of Theorem 4.2.4.

Formulation in the case of constant inertial vectors (ai)1≤i≤n

Before formulating the reset-based observer using body-frame measurements of constant

and known inertial vectors, one needs the following important result.

Proposition 4.2.6 Let A ∈ R3×3 be a constant positive semidefinite matrix, Q =

{1, 2, 3} and θ ∈ (−π, π) \ {0}. Let {u1, u2, u3} be an orthonormal basis for the eigenvec-

tors’ set ERv (A). Choose 0 < δ < δ̄ in (4.16)-(4.17) such that

• δ̄ = 2 sin2(θ/2)λ/3 if A = λI > 0.

• δ̄ = 2 sin2(θ/2) min{λA1 , λA3 /3} if A has two distinct eigenvalues where λA1 > 0 has

algebraic multiplicity equals to 2 and λA3 > 0 has algebraic multiplicity equals to 1.

• δ̄ = sin2(θ/2)(λA1 + λA2 ) if A has three distinct eigenvalues 0 ≤ λA1 < λA2 < λA3 .

Then the conditions of Theorem 4.2.4 are satisfied when considering Φ = Ξ = Ψ1,A.

Proof See Appendix B.7.

The trace function Ψ1,A, defined in (3.28) for some A such that E(A) > 0, can be,

therefore, used to design the reset-based hybrid attitude observer (4.14)-(4.17) by letting

Φ = Ξ = Ψ1,A. If one sets A =
∑n

i=1 ρiaia
>
i for some ρ1, · · · , ρn > 0 the observer can be

written explicitly using the available vector measurements by noticing that (in view of
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Lemma 2.2.7)

Φ(R̃) =
1

4

n∑
i=1

ρi‖bi − R̂>ai‖2, (4.19)

Φ(R̃Ra(θ, u)) =
1

4

n∑
i=1

ρi‖bi − R̂>Ra(θ, u)ai‖2, (4.20)

w(t, R̃) =
1

4
R̂

n∑
i=1

ρi(bi × R̂>ai). (4.21)

Algorithm 2 Reset-based hybrid observer using constant inertial vectors

Pick scalars ρi > 0, i = 1, · · · , n such that A =
∑n

i=1 ρiaia
>
i has distinct eigenvalues.

Pick θ ∈ R \ {0} and 0 < δ < sin2(θ/2)(λA1 + λA2 ).
Let Q = {1, 2, 3} and {u1, u2, u3} an orthonormal basis for ERv (A).
Initialize the observer states R̂(0, 0) ∈ SO(3), b̂ω(0, 0) ∈ R3

Pick the observer gains k1 and k2 to obtain the desirable performance.

1: for each set of measurements (bi)1≤i≤n and (ai)1≤i≤n do
2: Calculate Φ(R̃) and minp∈QΦ(R̃Ra(θ, up)) using (4.19) and (4.20).

3: while R̃ ∈ Ĵ do
4: Update R̂+ = Ra(θ, uq)

>R̂ where q ∈ arg minp∈QΦ(R̃Ra(θ, up)).
5: end while
6: Calculate the correction term w(t, R̃) using (4.21).
7: Update the states R̂ and b̂ω according to (4.14).
8: end for

Formulation in the case of time-varying inertial vectors (ai)1≤i≤n

In the case where the inertial vectors are time-varying, the matrix A becomes time-

varying and thus the potential function Ψ1,A depends on time as well. It can not be

used as Φ = Ψ1,A since Φ in Theorem 4.2.4 was assumed to be state dependent only.

In this case, we construct a potential function Φ that does not depend on time. Let a1

and a2 be any two noncollinear inertial vectors which are guaranteed to exist thanks to

Assumption 4.2.1. Construct the following three orthonormal vectors r1 = a1/‖a1‖, r2 =

(a1 × a2)/‖a1 × a2‖ and r3 = r1 × r2. The corresponding body-frame measurements of

r1, r2 and r3 are given by s1 = b1/‖b1‖, s2 = (b1 × b2)/‖b1 × b2‖ and s3 = s1 × s2. Then,

in view of Lemma 2.2.7 and the fact that
∑3

i=1 rir
>
i = I one obtains

Ψ1(R̃) =
1

4

3∑
i=1

‖si − R̂>ri‖. (4.22)



88 Chapter 4. Hybrid Attitude Estimation on SO(3)

Now consider Φ = Ψ1 and Ξ = Ψ1,A with A =
∑n

i=1 ρiaia
>
i for some ρ1, · · · , ρn > 0.

Proposition 4.2.7 Let Q = {1, 2, 3} and θ ∈ (−π, π) \ {0}. Let {u1, u2, u3} be an

orthonormal basis for R3. Choose 0 < δ < δ̄ in (4.16)-(4.17) such that δ̄ = 2 sin2(θ/2)/3.

Then the conditions of Theorem 4.2.4 are satisfied when considering Φ = Ψ1 and Ξ =

Ψ1,A.

Proof See Appendix B.8.

Therefore, under the design choices of Proposition 4.2.7, the hybrid observer (4.14)-(4.17)

can be implemented using time-varying inertial vector measurements by letting

Φ(R̃) =
1

4

3∑
i=1

‖si − R̂>ri‖2, (4.23)

Φ(R̃Ra(θ, u)) =
1

4

3∑
i=1

‖si − R̂>Ra(θ, u)ri‖2, (4.24)

ŵ((ai, bi)1≤i≤n, R̂) = w(t, R̃) =
1

4
R̂

n∑
i=1

ρi(bi × R̂>ai). (4.25)

Algorithm 3 Reset-based hybrid observer using time-varying inertial vectors

Choose scalars ρi > 0, i = 1, · · · , n, θ ∈ R \ {0} and 0 < δ < 2 sin2(θ/2)/3.
Let Q = {1, 2, 3} and {u1, u2, u3} an orthonormal basis for R3.
Initialize the observer states R̂(0, 0) ∈ SO(3), b̂ω(0, 0) ∈ R3 and pick the observer gains
k1 and k2 to obtain the desirable performance.

1: for each set of measurements (bi)1≤i≤n and (ai)1≤i≤n do
2: Calculate Φ(R̃) and minp∈QΦ(R̃Ra(θ, up)) using (4.23) and (4.24).

3: while R̃ ∈ Ĵ do
4: Update R̂+ = Ra(θ, uq)

>R̂ where q ∈ arg minp∈QΦ(R̃Ra(θ, up)).
5: end while
6: Calculate the correction term w(t, R̃) using (4.25).
7: Update the states R̂ and b̂ω according to (4.14).
8: end for

4.2.4 Simulations

We consider a rigid body motion with inertia matrix J = diag(1, 2, 3)(kg.m2) initialized

at a zero angular velocity ω(0) = 0 (rad.s−1). We assume that the rigid body is subject
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to the following external body-frame torque vector

τ =

 sin(0.1t)

2 sin(0.05t+ π)

0.5 sin(0.03t+ π/3)

× 10−2(N.m). (4.26)

The simulation of the attitude trajectory for the above described rigid body configuration

is done by first integrating the Euler’s equation Jω̇ = Jω × ω + τ using a fourth-order

Runge-Kutta method over a time span of 100 seconds to obtain the angular velocity

vector ω(t), see Figure 4.4. For our estimation purpose, we assume that the angular
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Figure 4.4: Angular velocity ω(t).

velocity is obtained at high frequency (quasi continuous) of around 200 Hz.

We assume available two sensors that provide two body-frame vector measurements

b1 = R>a1 and b2 = R>a2 such that a1 = [1,−1, 1]>/
√

3 and a2 = [0, 0, 1]>. We construct

a third vector measurement by letting b3 = b1 × b2 and a3 = a1 × a3. We assume that

the angular velocity measurements are biased with a constant bias bω = [5, 5, 5]> × 10−3

(rad/sec). The true attitude of the rigid body is initialized at R(0) = Ra(π, [0, 0, 1]>). We

implement the smooth observer (4.4)-(4.6), the synergistic-based hybrid observer (4.7)-

(4.10) with its explicit formulation (4.11)-(4.13) and the reset-based hybrid observer

(4.14)-(4.17) with its explicit formulation in (4.19)-(4.21). All the observers states are

initialized at R̂(0, 0) = 0 and b̂ω(0, 0) = [0, 0, 0]>. Since all the observers are locally

similar, we use the same following gains ρ1 = 2, ρ2 = 1, ρ3 = 0.25, k1 = 7 and k = 5. The

synergistic-based hybrid observer is implemented with the initial configuration q(0, 0) = 1

and the parameters δ = 3 × 10−3, k = 0.07 and u = [0.18, 0.18, 0.97]> which satisfy the

exp-synergism condition of Proposition 3.3.16 by setting A =
∑3

i=1 ρiaia
>
i . Since the

inertial vectors are constant, we implement the reset-based hybrid observer without the
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projection function Pcb(·) which has been added only to deal with the possibility of having

time-varying inertial vectors. For the reset-based hybrid observer, we pick θ = π/2 and

δ = 0.3 and {u1, u2, u3} as the eigenvectors of A. The performance of these estimation

schemes is depicted in Figures 4.5-(4.6). As expected the smooth observer takes some

warm-up time (around 5− 6 seconds) before it convergence due to the undesired critical

points of the cost function used to derive the observer. The reset-based hybrid observer

immediately corrects the attitude estimate to reduce the total attitude error from 180◦ to

around 90◦ of angle and then flows till it converges. The synergistic-based hybrid observer

however changes the innovation term from q = 1 to q = 2 at around t = 3 seconds and

then flows until it converges to zero estimation error. Both hybrid observers exhibit

lower settling times compared to the smooth observer which illustrates the advantage

of the proposed hybrid estimation schemes compared to the traditional smooth explicit

complementary filter.
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Figure 4.5: Attitude estimation error for the proposed hybrid observers.

4.3 Attitude Estimation Using Intermittent Vector

Measurements

In this section, we consider the problem of attitude observers design on SO(3) with a

measurement-triggered behaviour. The angular velocity measurements are used to con-

tinuously predict the attitude on SO(3) which is corrected, via an instantaneous jump

mechanism, upon the arrival of new measurements. A hybrid model that captures the

dynamic behaviour of the interconnection of the attitude estimator and the attitude kine-

matics is proposed. We consider both cases where the body-frame vector measurements
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Figure 4.6: Gyro-bias estimation error for the proposed hybrid observers.
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Figure 4.7: Switching variable q for the synergistic-based hybrid observer.

are collected synchronously and asynchronously. Some practical considerations such as

discrete-time implementation, noise filtering and gyro-bias compensation are discussed.

4.3.1 Problem Formulation

Consider the attitude kinematics for a rigid body

Ṙ(t) = R(t)[ω(t)]×, (4.27)

where R(t) ∈ SO(3) represents the instantaneous rotation matrix describing the orienta-

tion of a body-attached frame with respect to an inertial frame. The vector ω(t) ∈ R3
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represents the instantaneous angular velocity of the rigid body expressed in the body-

attached frame. We consider that the angular velocity vector ω(t) is measured contin-

uously for all t ≥ 0. Also, we consider available some “intermittent” or sporadic vector

measurements bi = R>ai, i = 1, · · · , n arriving at some instant of times tik, k ∈ N and

i = 1, · · · , n. The inertial vectors ai are assumed to be constant, known and satisfying

Assumption 4.2.1. Assume moreover that each sequence {tik}k∈N, for i = 1, · · · , n, is

strictly increasing and unbounded and that there exist 0 < T i1 ≤ T i2 such that

0 ≤ ti0 ≤ T i2, (4.28)

T i1 ≤ tik+1 − tik ≤ T i2, ∀k ∈ N,∀i = 1, · · · , n. (4.29)

The formulation of the available measurements above is very generic and allows for

measurements with irregular and different sampling periods. We can derive particular

cases from the above formulation of measurements as follows:

1. If T 1
1 = · · · = T n1 = T 1

2 = · · · = T n2 = T and t10 = · · · = tn0 then the measurements

are synchronous with regular (constant) sampling period equals T .

2. If the sequences {tik}k∈N are identical for all i = 1, · · · , n, then the measurements

are synchronous with irregular sampling.

3. If T i1 = T i2 = T i, for i = 1, · · · , n, without necessarily having T 1, · · · , T n being

all equal, then the measurements are asynchronous with different regular sampling

periods (each measurement has a constant sampling rate).

4. In the general case the measurements are asynchronous with irregular sampling.

The objective of this work is to develop attitude estimation algorithms in the presence of

constraints on the vector measurements as defined above. In particular, we will first solve

the attitude estimation problem with synchronous measurements and irregular sampling

(item 2 above) which can be also considered as a solution to the attitude estimation

problem with synchronous measurements and regular sampling (item 1) since the later is

a particular case. Next, we will develop an estimation algorithm that solves the general

case with asynchronous measurements and irregular sampling (item 4) which covers all

the particular cases mentioned above.
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4.3.2 Attitude Estimation Using Synchronous Vector Measure-

ments

In this subsection, we assume that the vector measurements are synchronized, which

means that the time sequences {tik}k∈N are identical for all i = 1, · · · , n and can be

denoted as {tk}k∈N by removing the index i. In this case, the lower and upper bound

on the transmission times T i1 and T i2 are also denoted by T1 and T2 for short. Observers

with impulsive-like dynamics for linear time invariant systems and some special classes of

nonlinear systems with Lipschitz nonlinearities have been discussed in [Raff and Allgöwer,

2007, Andrieu et al., 2013, Ferrante et al., 2016]. Motivated by these works, we propose

the following estimation scheme on SO(3)

˙̂
R(t) = R̂(t)[ω(t)]×, t ∈ [tk−1, tk), k ∈ N, (4.30)

R̂(t+) = Rr (σ(t)) R̂(t), t = tk, k ∈ N, (4.31)

σ =
n∑
i=1

ρi(R̂bi × ai), ρi > 0, (4.32)

where the notation R̂(t+) is used such that R̂(t+) = limh→0 R̂(t + h) and, without loss

of generality, it is assumed that R̂(t) = R̂(t−) = limh→0 R̂(t − h). Between two instants

of time tk−1 and tk, the attitude observer is a copy of the attitude kinematics (4.27).

This is similar to the “prediction step” in the traditional Kalman filtering technique.

The estimated attitude R̂(t) is updated (corrected) at each instant of time tk when a

new measurement becomes available. This correction step uses matrix multiplication to

preserve attitude estimates on SO(3) since the group SO(3) is closed under the matrix

multiplication operation. Specifically, we use a correction matrix that is built from the

error vector σ used in many continuous attitude estimation schemes [Mahony et al.,

2008, Berkane and Tayebi, 2016, Zlotnik and Forbes, 2017]. Note that in [Barrau and

Bonnabel, 2015] a similar observer structure has been proposed in the case of two vector

measurements, with the use of the exponential map exp(σ) as a correction rotation instead

of Rr(σ). The advantage of using Rr(σ) over exp(σ) is the computational efficiency since

Rr(σ) does not require the calculation of trigonometric functions. Moreover, this choice

facilitates considerably the proof of convergence which is conducted for a set of n ≥ 2

vector measurements compared to [Barrau and Bonnabel, 2015] where only two vector

measurements are used.

To analyze the stability of the proposed attitude estimation scheme, we define the
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following (left-invariant) attitude estimation error

R̃ = RR̂>. (4.33)

During the flows of (4.30) the evolution of the attitude estimation error satisfies ˙̃R =

ṘR̂> + R
˙̂
R> = R[ω]×R̂

> − R[ω]×R̂
> = 0. This implies that the attitude error is kept

constant while waiting for the arrival of a new measurement. Note that this property

holds true only when considering perfect angular velocity readings. In fact if the angular

velocity reading is biased or noisy then we would accept slight drift of the attitude

estimation error during the intervals of time where no measurements are available. For

sufficiently small measurement intervals and accurate enough gyros we expect that this

drift will be maintained small enough and stable. The interconnection of the jump-free

kinematic model (4.27) and the attitude observer (4.30)-(4.31) leads naturally to the

following closed-loop system

˙̃R(t) = 0, t ∈ [tk−1, tk), k ∈ N, (4.34)

R̃(t+) = R̃(t)Rr (−σ(t)) , t = tk, k ∈ N, (4.35)

where we have used the fact that during the jumps the true attitude R(t) is unchanged

and thus R(t+) = R(t). The correction term σ(t) in (4.32) can be expressed in terms of

the attitude error as σ =
∑n

i=1 ρi[R̃
>ai]×ai. Note that the dynamics of the attitude error

R̃ is independent from the attitude trajectory in (4.27). This is a desirable behaviour

since the gains can be tuned and optimized off-line to yield the desirable behaviour

in real-time, independently from the trajectory of the attitude system dictated by the

angular velocity vector ω(t).

Now, we map the closed-loop system (4.34)-(4.35) into a hybrid model by augmenting

the system with a “hidden” timer (see [Jentzen et al., 2010]) as follows{
˙̃R = 0

τ̇ = 1
(R̃, τ) ∈ F , (4.36){

R̃+ = R̃Rr (−σ)

τ+ = 0
(R̃, τ) ∈ J , (4.37)

where the flow set F and jump set J are defined as

F =
{

(R̃, τ) ∈ SO(3)× R≥0 : τ ∈ [0, T2]
}
, (4.38)

J =
{

(R̃, τ) ∈ SO(3)× R≥0 : τ ∈ [T1, T2]
}
. (4.39)
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Figure 4.8: Behaviour of the virtual variable τ (timer) introduced in (4.36)-(4.37). At
the arrival of a new measurement, the timer is reset back to zero (dashed red) and flows
linearly otherwise (blue solid).

The extra variable introduced (timer τ with τ(0, 0) ∈ [T1, T2]) allows to capture the

time-triggered behaviour of (4.34)-(4.35) which results in an autonomous hybrid system

capturing all the solutions of (4.34)-(4.35). In fact, as the ordinary time t increases

the timer τ increases up to a certain value in [0, T2]. Thus, the system can flow when

τ ∈ [0, T2] and flows are not allowed after τ = T2. On the other hand, after each jump the

timer τ is reset to zero and the next jump can not happen except after the minimum time

T1 has elapsed. This reflects the condition (4.28)-(4.29) on the communication protocol

between the sensors and the CPU, see Figure 4.8 for an illustration. Our objective is to

achieve almost global exponential stability of the set

As = {I} × [0, T2]. (4.40)

The set As is forward invariant for the hybrid system (4.36)-(4.39). In fact, for R̃ = I,

one has σ =
∑n

i=1 ρi[R̂bi]×ai =
∑n

i=1 ρi[R̃
>ai]×ai = 0 which implies that Rr(σ) = I and

hence R̃+ = I. This leads to conclude that the set As is an equilibrium of (4.36)-(4.39)

since it is invariant under both the flows and the jumps. In the following theorem, we

provide a sufficient condition for the set As to be exponentially stable for the hybrid

system (4.36)-(4.39).

Theorem 4.3.1 Consider the kinematic system (4.27) coupled with the estimator (4.30)-

(4.32). The set As defined in (4.40) is almost globally exponentially stable for the closed-

loop hybrid system (4.36)-(4.39) if

0 < tr(A)− λAmin < 1, (4.41)

where A =
∑n

i=1 ρiaia
>
i . The region of exponential stability is defined by the set ΠSO(3)×

[0, T2]. Moreover, the set Ra(π,S2)× [0, T2] is forward invariant.
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Proof See Appendix C.8.

Note that the domain of exponential stability of the closed-loop system (4.36)-(4.39)

covers all attitude errors R̃ ∈ SO(3) that have an angle of rotation strictly less than

180◦. This manifold is formally characterized by the condition tr(R̃) = −1 and has

Lebesgue measure zero in the state space.

4.3.3 Attitude Estimation Using Asynchronous Vector Mea-

surements

In a general setting of attitude estimation using intermittent asynchronous measurements,

the sensors’ readings are obtained at different instants of time for each sensor according

to the communication constraint (4.28)-(4.29). The challenge with this situation is that

at a given transmission time tik for sensor i there is no guarantee that another sensor l

has transmitted an information (or equivalently tlk = tik). Therefore, since each vector

measurement bi represents only a partial attitude information, there is no mean to obtain

a full information about the attitude since at least two non-collinear vector measurements

are needed to recover the full attitude. Nevertheless, it is possible to use this partial

attitude information to correct the attitude whenever a sensor measurement is available.

We propose the following attitude estimation scheme

˙̂
R(t) = R̂(t)[ω(t)]×, t 6= tik, k ∈ N, i = 1, · · · , n, (4.42)

R̂(t+) = Rr(σi(t))R̂(t), t = tik, k ∈ N, i = 1, · · · , n, (4.43)

where σi = ρi(R̂bi × ai) and ρi, i = 1, · · · , n are some positive scalars. This attitude

estimation scheme allows to correct the attitude estimates only at times where we receive

a measurement. Note that we can have multiple jumps (consecutive updates of the state)

at the same instant of time if two or more measurements arrive at this instant of time

(tlk = tik with l 6= i). In this case the order of priority of the updates (which sensor’s

reading to use first) can be arbitrary but in practical applications, the user might establish

a priority protocol according to the reliability of each sensor.

To capture the behaviour of the event-triggered system (4.42)-(4.43) one needs to

introduce a timer τi for each sensor measuring the body-frame vector bi. At the arrival

of a measurement bi(t
i
k) the timer τi is reset to zero. The timer τi will keep increasing

until it reaches a value in the interval [T i1, T
i
2] where its reset is triggered by the arrival of

a new measurement bi(t
i
k+1). This behaviour is depicted in Figure 4.9 in the case of two

vector measurements with asynchronous transmission times. Following similar steps as
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Figure 4.9: Behaviour of the virtual variables τ1 and τ2 (timers) introduced in (4.42)-
(4.49). The transmission (measurement) times tik with i ∈ {1, 2} satisfy the constraints
(4.28)-(4.29) with T 1

1 = 0.5, T 1
2 = 1.5, T 2

1 = 1 and T 2
2 = 3. At the arrival of a measurement

bi the corresponding timer τi is reset back to zero.

(4.34)-(4.39), we derive the hybrid model that captures the dynamics of the closed-loop

system as follows. Let us define the state X := (R̃, τ1, · · · , τn) ∈ SO(3) × Rn
≥0. The

closed-loop system is governed by the hybrid dynamical model

Ẋ = F(X), X ∈ F , (4.44)

X+ ∈ J(X), X ∈ J , (4.45)

where the single-valued flow map F and set-valued jump map J are defined by

F(X) = (03×3, 1, · · · , 1), (4.46)

J(X) = {Ji(X), X ∈ Ji}, (4.47)

where Ji(X) = (R̃Rr(−σi), τ1, · · · , τi−1, 0, τi+1, · · · , τn) and Ji = {X ∈ SO(3) × Rn
≥0 :

τi ∈ [T i1, T
i
2]}. The flow set F and jump set J are given by

F = SO(3)× [0, T 1
2 ]× · · · × [0, T n2 ], (4.48)

J = J1 ∪ · · · ∪ Jn. (4.49)

Note that the jumps in (4.43) are modelled by an inclusion and therefore the updated

state X+ can take any of the values from the set J(X). This captures the behaviour

when multiple measurements from different sensors arrive at the same instant of time.

In this case the closed-loop system is allowed to experience multiple consecutive jumps

in any order. The objective is to achieve almost global asymptotic stability of the set

Aa = {I} × [0, T 1
2 ]× · · · × [0, T n2 ].
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Theorem 4.3.2 Consider the kinematic system (4.27) coupled with the estimator (4.42)-

(4.43). The set Aa is almost globally asymptotically stable for the closed-loop hybrid

system (4.36)-(4.39) if the scalars ρi satisfy

0 < ρi <
1

‖ai‖2
, i ∈ {1, · · · , n}. (4.50)

The region of asymptotic stability is defined by the set ΠSO(3) × [0, T 1
2 ]× · · · × [0, T n2 ].

Proof See Appendix C.9.

Note that the attitude estimation scheme (4.42)-(4.43), although developed for the gen-

eral case of asynchronous measurements, can also be used in the particular case of syn-

chronous measurements. In this case t1k = · · · = tik = · · · = tnk and equations (4.42)-(4.43)

can be rewritten as follows

˙̂
R(t) = R̂(t)[ω(t)]×, t 6= tk, k ∈ N, (4.51)

R̂+(t) = Πn
i=1Rr(σi(t))R̂(t), t = tk, k ∈ N. (4.52)

The obtained algorithm is different from the one proposed in (4.30)-(4.31) for synchronous

measurements. The difference resides in the correction attitude matrix which is defined

by the product Πn
i=1Rr(σi) in (4.51)-(4.52) while in (4.30)-(4.31) it is defined by the

single rotation matrix Rr(
∑n

i=1 σi). The latter requires less computational power and

this argument has motivated the introduction of algorithm (4.30)-(4.31) which suites

better the case of synchronous measurements.

4.3.4 Practical Considerations

In this section, we discuss some practical issues and improvements to the raw algorithms

presented in the previous sections.

4.3.4.1 Discrete-Time Implementation

The attitude estimation scheme proposed in (4.30)-(4.31) relies on continuous flow dy-

namics between each two instant of measurements tk and tk+1. The observer state is

updated (via instantaneous jumps) at each instant of time tk when a new measurement

arrives. To implement this attitude observer, we propose a discrete-time integration

scheme that emulates the behaviour of the observer during the continuous flow. Assume
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that the unbounded continuous time interval [0,∞) is sampled with a sampling period

Ts > 0. We obtain a series of discrete times {sm}m∈N such that sm = mTs. We assume

that the sampling period Ts is small enough such that the angular velocity is constant

during each sampling period, i.e.,

ω(t) = ω(sm), t ∈ [sm, sm+1),m ∈ N. (4.53)

Consequently, in view of the flow dynamics (4.30), the following holds for all t ∈ [sm, sm+1)

and m ∈ N

d

dt

(
R̂ exp([ω(sm)t]×)

)
= 0. (4.54)

An exact integration of the above equation, between the instants of time s+
m and s−m+1 ≡

sm+1, leads to the following discrete-time update rule for the estimated attitude R̂, during

the flows of (4.30):

R̂(sm+1) = R̂(s+
m) exp([ω(sm)Ts]×). (4.55)

The above prediction rule preserves the SO(3) structure since the group SO(3) is closed

under matrix multiplication and the exponential matrix exp([ω(sm)Ts]×) is indeed an

element of SO(3). It corresponds to the Euler-Lie method for numerical integration on

Lie groups [Celledoni et al., 2014]. Note that R̂(s+
m) = limh→0 R̂(sm+h) which represents

the state of the observer after a “possible” jump in (4.31). For sufficiently small Ts, it is

reasonable to assume that the intermittent instants of time tk, where the measurements

are available, are elements of the discrete-time interval, i.e., tk ∈ {sm}m∈N for all k ∈ N.

That is to say that for all k ∈ N, there exists m ∈ N such that tk = sm = mTs. Only at

these particular instants of time, the attitude estimate R̂ is updated according to (4.31).

Therefore, one has

R̂(s+
m) = Rr(σ(sm))R̂(sm), sm = tk, k ∈ N, (4.56)

R̂(s+
m) = R̂(sm), sm 6= tk, k ∈ N. (4.57)

Equations (4.55)-(4.57) define the discrete-time implementation of the proposed attitude

estimation scheme (4.30)-(4.31). Compared to the traditional methods, the discrete

version of our proposed attitude estimation scheme is also asymptotically stable when

connected to a good discrete approximation model for the attitude kinematics (4.27). To

clarify this idea, let us exactly discretize the kinematic model (4.27) under assumption
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(4.53). Following similar steps as in (4.54)-(4.55), one obtains the following discrete

kinematic model:

R(sm+1) = R(sm) exp([ω(sm)Ts]×), m ∈ N. (4.58)

For a small enough sampling period Ts, the above discrete model is a good approximation

of the original continuous time kinematic model (4.27). We now state the following

theorem whose proof is given in Appendix C.10.

Theorem 4.3.3 Consider the discrete kinematic model (4.58) coupled with the discrete

attitude estimation scheme (4.55)-(4.57) under the conditions of Theorem 4.3.1. Then

for all initial attitude errors R̃(0) ∈ ΠSO(3) one has limm→∞ R̃(mTs) = I.

Following similar steps as in (4.53)-(4.57) we can derive the discrete version of (4.42)-

(4.43) which is suitable for the case of asynchronous vector measurements as follows

R̂(sm+1) = R̂(s+
m) exp([ω(sm)Ts]×) (4.59)

R̂(s+
m) = Rr(σi(sm))R̂(sm), sm = tik, (4.60)

R̂(s+
m) = R̂(sm), sm 6= tik, (4.61)

such that m, k ∈ N and i ∈ {1, · · · , n}. Moreover, the interconnection of the discrete

attitude kinematic model (4.58) and the discrete scheme (4.59)-(4.61) can be shown to

retain the almost global asymptotic convergence result under the conditions of Theorem

4.3.2. The proof follows similar lines as in the proof of Theorem 4.3.3 thus omitted.

4.3.4.2 Estimation Algorithms with Enhanced Filtering

We introduce recursive states to the observer (4.30)-(4.31) which, when averaged, yield

a better filtered attitude estimate. This can be done by using N ∈ N>0 attitude states

in the following attitude estimation scheme:

• Flow dynamics (Prediction step): for all h ∈ {1, · · · , N} the h-th state of the

observer flows according to the kinematic equation

˙̂
Rh(t) = R̂h(t)[ω(t)]×, t ∈ [tk−1, tk), k ∈ N. (4.62)
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• Jump dynamics (Update step): during the instants of time t = tk, k ∈ N the

observer states are updated as follows

R̂1(t+) = Rr (σ(t)) R̂1(t), (4.63)

R̂h(t
+) = R̂h−1(t), h ∈ {2, · · · , N}, (4.64)

where the correction term σ is defined as σ =
∑n

i=1 ρi(R̂1bi×ai) and ρ1, · · · , ρn are

positive scalars.

• Attitude estimate (averaged rotation): the final attitude estimate is obtained by

averaging all the observer states on SO(3) and is given by

R̂ = PSO(3)

(
N∑
i=1

αhR̂h

)
, (4.65)

where αh are scalars satisfying, without loss of generality, the equality
∑N

h=1 αh = 1,

and the projection map PSO(3)(·) is given in (2.12).

The idea of the attitude estimation scheme (4.62)-(4.65) is to expand the estimation

scheme (4.30)-(4.31) with (N−1) additional states which are averaged at the end to give

the final attitude state. At each measurement time t = tk, the attitude states R̂h are

shifted one step with respect to the index h (i.e. each state R̂h receives the value of the

state R̂h−1) which implies that the “error” presented between the state R̂h−1 and the true

attitude R is shifted to R̂h for all i ∈ {2, · · · , N}. Therefore, by averaging all the states

R̂h, i ∈ {1, · · · , N}, we aim to reduce the noise level compared to the use of a single

observer state. During the flows (when no measurements are available) all the states

of the observer are predicted using the continuous-time angular velocity measurements

which allows to maintain constant errors between each states of the observer and the

true attitude R.

The asymptotic convergence of the observer, under the conditions of Theorem 4.3.1,

can be argued in straightforward manner as follows. In view of Theorem 4.3.1 the at-

titude error R̃1 = RR̂1 = I is almost globally exponentially stable which implies that

limtk→∞R(tk)R̂
>
1 (t−k ) = I. Since R̂2(t+k ) = R̂1(t−k ) implies that limtk→∞R(tk)R̂

>
2 (t+k ) = I

and therefore R̂2 also converges to R when time goes to infinity. The same argument can

be used to show that all the observer states will converge to R as time goes to infinity.
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Consequently

lim
t→∞

R̂(t) = lim
t→∞

PSO(3)

(
N∑
h=1

αhR̂h

)
=

N∑
h=1

αhPSO(3) (R) = R,

where we used the fact that
∑N

h=1 αh = 1 and PSO(3)(R) = R ∈ SO(3). Therefore, the

estimation scheme (4.62)-(4.65) is also almost globally asymptotically stable under the

same conditions of Theorem 4.3.1.

Furthermore, thanks to the symmetry of the group SO(3), it is possible to considerably

reduce the computational complexity of the estimation scheme (4.62)-(4.65). Observe

that R̂h evolves according to the same kinematic equation (4.62). Hence, the estimation

error R̂hR̂
>
1 is constant during the flows of the observer for t ∈ [tk−1, tk). Consequently,

one can write, for all h ∈ {2, · · · , N},∫ t

t+k−1

(R̂hR̂
>
1 )(τ)dτ = 0, t ∈ [tk−1, tk). (4.66)

By completing the above integral one obtains

R̂h(t) = R̂h(t
+
k−1)R̂1(t+k−1)>R̂1(t), t ∈ [tk−1, tk). (4.67)

Therefore, the value of R̂h at a given time t ∈ [tk−1, tk) can be directly obtained from

the value of R̂1 at t and past values of R̂h and R̂1 at time t = t+k−1 just after the

last jump has occurred. By creating an N dimensional register containing the values

of R̂1(t+k−1), · · · , R̂N(t+k−1), it is possible to calculate the values of the individual state

variables at any time t ∈ [tk−1, tk) without performing N integrations in (4.62) but only

once for the R̂1 attitude state. Moreover, the computation of the averaged rotation (4.65)

can be simplified by observing that for all t ∈ [tk−1, tk) one has

R̂(t) = PSO(3)

(
N∑
h=1

αhR̂h(t)

)
= PSO(3)

(
N∑
h=1

αhR̂h(t
+
k−1)R̂1(t+k−1)>R̂1(t)

)

= PSO(3)

(
N∑
h=1

αhR̂h(t
+
k−1)

)
R̂1(t+k−1)>R̂1(t)

:= P (k − 1)R̂1(t) (4.68)

where we used the fact that PSO(3)(XR) = PSO(3)(X)R for all X ∈ R3×3 and R ∈
SO(3). Therefore the projection operation PSO(3)

(∑N
h=1 αhR̂h(t

+
k−1)R̂1(t+k−1)>)

)
needs
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to be executed at the discrete jump times tk−1 only. This resulting matrix P (k − 1) ∈
SO(3) is stored and then used in (4.68) to provide a correction to R̂1(t). This avoids

to continuously project the mean of rotations in (4.65) for all t ∈ [tk−1, tk). Since the

attitude state R̂h needs to be evaluated only at times t+k , we can define Ph(k) = R̂h(t
+
k )

and use (4.67) to derive the following propagation equation for Ph(k)

Ph(k) = Ph−1(k − 1)P1(k − 1)>R̂1(t−k ), (4.69)

for all h ∈ {2, · · · , N}. The new update for R̂1 is given by (4.63). The obtained estimation

algorithm is summarized in Algorithm 4.

Algorithm 4 Attitude Estimation Using Intermittent Synchronized Measurements

Initialize the states P1(0), · · · , PN(0) ∈ SO(3).
Compute P (0) = PSO(3)(

∑N
h=1 αhPh(0))P1(0)>.

Set k = 1 and R̂1(0) = P1(0).

1: for each t ∈ R≥0 do
2: if t = tk then
3: R̂1(t+) = Rr(σ(t))R̂1(t) with σ =

∑n
i=1 ρi(R̂1bi × ai).

4: P1(k) = R̂1(t+).
5: for each h ∈ {2, · · · , N} do
6: Ph(k) = Ph−1(k − 1)P1(k − 1)>R̂1(t)
7: end for
8: P (k) = PSO(3)(

∑N
h=1 αhPh(k))P1(k)>

9: Update k = k + 1
10: end if
11: Predict R̂1(t) according to

˙̂
R1(t) = R̂1(t)[ω(t)]×.

12: Calculate the estimate R̂(t) = P (k − 1)R̂1(t).
13: end for

Furthermore, we can also improve the filtering capabilities of the attitude estimation

scheme (4.42)-(4.43) which is developed for the case of asynchronous measurements. We

follow similar steps as above to derive Algorithm 5. Note that for practical implementa-

tion purposes the prediction step in Algorithm 4 or 5 (line 12 or 13) can be discretized

as in subsection 4.3.4.1 using Euler-Lie numerical integration method.

4.3.4.3 Smoothing of the Estimator Output

The discrete transitions of the attitude estimates in (4.31) or (4.43) can be undesirable

when feeding these states to a controller for feedback. As a remedy, we propose to cascade

the proposed attitude estimation algorithms with an attitude “smoother” on SO(3) to
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Algorithm 5 Attitude Estimation Using Intermittent Asynchronous Measurements

Initialize the states P1(0), · · · , PN(0) ∈ SO(3).
Compute P (0) = PSO(3)(

∑N
h=1 αhPh(0))P1(0)>.

Set j = 1 and R̂1(0) = P1(0).

1: for each t ∈ R≥0 do
2: if t = tik for some k ∈ N and i ∈ {1, · · · , n} then
3: Get i ∈ {1, · · · , n} s.t. ∃k ∈ N and t = tik.
4: R̂1(t+) = Rr(σi)R̂1(t) s.t. σi = ρi(R̂1bi × ai).
5: P1(j) = R̂1(t+).
6: for each h ∈ {2, · · · , N} do
7: Ph(j) = Ph−1(j − 1)P1(j − 1)>R̂1(t)
8: end for
9: P (j) = PSO(3)(

∑N
h=1 αhPh(j))P1(j)>

10: Update j = j + 1
11: end if
12: Predict R̂1(t) according to

˙̂
R1(t) = R̂1(t)[ω(t)]×.

13: Calculate the final estimate R̂(t) = P (j − 1)R̂1(t).
14: end for

obtain a smooth attitude R̂s(t) that does not involve jumps. The smoother is given by

˙̂
Rs = R̂s[ω + kψ(R̂>s R̂)]×, R̂s(0) = R̂(0), k > 0, (4.70)

where R̂ is either the output of Algorithm 1 or Algorithm 2 depending on the application.

It is not difficult to show that R̂s converges to R̂ from all initial conditions except those

attitudes satisfying tr(R̂R̂>s ) = −1 which are characterized by errors of angle strictly less

than 180◦. Due to the knowledge of R̂(0) (accessible to the designer), the smoother state

R̂s can be initialized to R̂(0) and therefore the initial error between the smoothed attitude

R̂s and the intermittent observer attitude R̂ is zero. This implies that the smoother starts

inside the region of convergence. Moreover, during the jumps of (4.31), the correction

attitude Rr(σ) has an angle which is strictly less than 180◦. Therefore, it is guaranteed

that the error R̂R̂>s never reaches an attitude of angle 180◦ which, consequently, shows

that the interconnection of the observer-smoother preserves the convergence properties,

given in Theorem 4.3.1 and Theorem 4.3.2, for the standalone intermittent observers.

4.3.4.4 Gyro Bias Compensation

The algorithms developed in this section assumed continuous and perfect angular velocity

measurements. However, in practice, gyro rates measurements are subject to noise and
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bias. If ωy is the output of the gyro sensor then one has

ωy = ω + bω + nω, (4.71)

where bω is a constant bias and nω is a noise vector. Assuming Gaussian processes the

uncorrelated noise nω is filtered by the forward integration of the angular velocity and

therefore it has a little effect on the attitude estimates. However, bias in the angular

rates may cause the attitude estimates to drift over time especially if the sampling of

the vector measurements is not fast enough to correct the attitude before it drifts. It

is therefore, desirable from a practical point of view and for long run-time applications,

to be able to compensate for constant or slowly varying biases in the angular velocity

measurements. In the case of synchronous measurements with regular sampling equals

T > 0, we propose the following attitude estimation scheme with bias compensation:

˙̂
R(t) = R̂(t)[ωy(t)− b̂ω(t)]×
˙̂
bω(t) = 0

}
t ∈ [tk−1, tk), (4.72)

R̂(t+) = Rr (σ(t)) R̂(t)

b̂ω(t+) = b̂ω(t)− γbT−1R̂(t)>σ(t)

}
t = tk, (4.73)

where k ∈ N, γb > 0 and σ is defined in (4.32). Consider the attitude estimations error

R̃ = RR̂> and the bias estimation error b̃ω = bω − b̂ω. By introducing the virtual timer

variable as in (4.36)-(4.37) and adding R̂ and ω as states variables, the closed-loop system

can be written as a hybrid autonomous system as follows

˙̃R = R̃[−R̂b̃ω]×

τ̇ = 1
˙̃bω = 0
˙̂
R = R̂[ω + b̃ω]×

ω̇ ∈ cω̇B

(R̃, τ, b̃ω, R̂, ω) ∈ SO(3)× [0, T ]× R3 × SO(3)× R3,

(4.74)

R̃+ = R̃Rr(−σ),

τ+ = 0

b̃+
ω = b̃ω + γbT

−1R̂>σ

R̂+ = Rr(σ)R̂

ω+ = ω

(R̃, τ, b̃ω, R̂, ω) ∈ SO(3)× {T} × R3 × SO(3)× R3,

(4.75)
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where we have used the fact that the angular velocity ω satisfies Assumption 4.2.2 so

that we can write the inclusion ω̇ ∈ cω̇B. The objective of the next Theorem is to state

exponential stability of the set

A = {I} × [0, T ]× {0} × SO(3)× R3. (4.76)

Theorem 4.3.4 Consider the kinematic system (4.27) coupled with the estimator (4.72)-

(4.73) where Assumptions 4.2.1-4.2.2 are satisfied. Pick the gains ρi and γb such that

0 < λE(A)
max <

1

2
(4.77)

0 < γb <
2(1− 2λ

E(A)
max )

λ
E(A)
max

(4.78)

where A =
∑n

i=1 ρiaia
>
i . Then there exists an upper bound T̄ (A, γb, cω) such that if the

sampling period T satisfies 0 < T < T̄ (A, γb, cω) then the set A is locally exponentially

stable for the closed-loop system (4.74)-(4.75).

Proof Appendix C.11.

Theorem 4.3.4 shows that the attitude and bias estimation scheme in (4.72)-(4.73) is

locally exponentially stable if the maximum waiting time interval between two measure-

ments is less than an upper bound which is function of the gains and the bound on

the angular velocity. From the proof of Theorem 4.3.4, the upper bound on T can be

explicitly computed as follows:

T̄ (A, γb, cω) =
− ln(1− λLmin/λ

P
max)

4cω(λPmax/λ
P
min)

(4.79)

where L ∈ R6×6 is any positive definite matrix and P is solution to the following discrete

Lyapunov equation

A>d PAd − P = −L,

such that the matrix Ad is as defined in (C.109). The exact computation of the upper

bound T̄ (A, γb, cω) requires to solve the Lyapunov discrete equation for P using knowledge

of the stable matrix Ad. This computation might be avoided if one uses lower and upper

bounds on the eigenvalues of P such as those reported in [Tippett, 1998] which allows to

obtain a tighter bound for T than T̄ (A, γb, cω).
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The proposed solution to the attitude and gyro bias estimation using intermittent

measurements given in this subsection is, to the author’s knowledge, unique since the

existing litterature on the topic, such as [Barrau and Bonnabel, 2015] and [Khosravian

et al., 2015], did not consider the bias in the angular velocity measurements. It is yet

an open problem to derive a similar solution for the other more general cases where the

measurements are synchronous irregular and/or asynchronous.

4.3.5 Simulations

In this section we conduct some simulation scenarios to illustrate the effectiveness of

the proposed attitude estimation algorithms in the presence of intermittent vector mea-

surements. We consider a rigid body subject to the angular velocity provided in Figure

4.4.

Synchronous measurements

In the first simulation scenario we assume available two sensors that provide two body-

frame vector measurements b1 = R>a1 and b2 = R>a2 such that a1 = [1, 0, 0]> and

a2 = [0, 1, 0]>. The true attitude of the rigid body is initialized at an attitude angle of

150◦ in the z−direction, i.e., R(0) = exp([θu]×) where θ = 10π/12 and u = [0, 0, 1]>.

The actual attitude trajectory is generated using the discrete-kinematic model (4.58)

with a sampling period of 1 ms. The measurements are corrupted by a Gaussian white

noise of zero mean and variance equals 0.1 in each axis. The information transmission

between the sensors and the CPU is done synchronously at a low sampling frequency

of 1 Hz which corresponds to a time period of 1 s. We also assume that information

is lost during the time interval [40, 60] seconds, see Figure 4.10. Now, we need to set

the scalar gains ρ1 and ρ2 in (4.32) such that condition (4.41) is satisfied. It can be

verified that the maximum eigenvalue of E(A) corresponds to (ρ1 + ρ2)/2. Therefore, it

is sufficient to pick (ρ1 + ρ2) < 1 to verify the condition. Here we chose ρ1 = ρ2 = 1/4.

Recursive Algorithm 1 is implemented for different values of N (number of states). The

values of the coefficients αh are selected arbitrary as α1 = · · · = αN = 1/N . All the

states P0, · · · , PN , R̂1 and R̂ are initialized at the identity rotation I. Figure 4.11 depicts

the evolution of the attitude estimation error, given by the angle of the rotation matrix

R̃ in degrees, versus time. For different values of N the proposed algorithm is capable

of forgetting the initial attitude error despite the blackout interval (information loss)

and the intermittent nature of the measurements. Moreover, it can be seen that as N

increases the level of noise in the attitude estimation error is reduced. However, it should
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Figure 4.10: Plot of the available information for the x-axis component of b1. Both
measurements of b1 and b2 are synchronously obtained at the same instants of time.

Figure 4.11: Time evolution of the attitude estimation error (angle of rotation) of the
attitude estimation scheme proposed in Algorithm 1 using different values of N . The
region between 90s and 100s is enlarged.

be acknowledged that as N increases the transient response of the estimation algorithm

becomes slower. In fact, according to Algorithm 1, in the ideal case when R̂1 converges

to R, we need N additional steps to guarantee that all the register states P1, · · · , PN
converge to R and therefore R̂ converges to R as well. Of course these steps depend on

the sampling rate of the measurements since the register is updated at each measurement.

The smaller the sampling period the smaller the lag introduced by increasing the value

of N .
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Asynchronous measurements

In the second simulation scenario we assume available two sensors that provide two

body-frame vector measurements b1 = R>a1 and b2 = R>a2 such that a1 = [1, 0, 0]> and

a2 = [1, 1, 0]>/
√

2. The true attitude of the rigid body is initialized at R(0) = exp([θu])

where θ = 10π/12 ≡ 150◦ and u = [1, 1, 1]>/
√

3. The actual attitude trajectory is

generated using the discrete-kinematic model (4.58) with a sampling period of 1 ms.

The measurements of b1, respectively b2, are corrupted by a Gaussian white noise of

zero mean and standard deviation equals 0.1, respectively 0.01, in each axis. The first

sensor provides readings of b1 at a frequency of 10 Hz while the second sensor has a very

low sampling rate of 0.1 Hz, see Figure 4.12. The scalar gains ρ1 and ρ2 are chosen to
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Figure 4.12: Plot of the available information for the x-axis component of b1 (top) and b2

(bottom). The measurements are collected asynchronously at different sampling rates.

satisfy the condition (4.50). We thus set ρ1 = 1/4 and ρ2 = 2/3. The gain ρ2 associated



110 Chapter 4. Hybrid Attitude Estimation on SO(3)

to the measurements of b2 is set relatively higher than ρ1 since the measurements of

b2 are more reliable (less noisy). Recursive Algorithm 2 is implemented for different

values of N (number of states). The values of the coefficients αh are selected arbitrary as

α1 = · · · = αN = 1/N . All the states P0, · · · , PN , R̂1 and R̂ are initialized at the identity

rotation I. Figure 4.13 depicts the evolution of the attitude estimation error, given by

Figure 4.13: Time evolution of the attitude estimation error (angle of rotation) of the
attitude estimation scheme proposed in Algorithm 2 using different values of N . The
region between 90s and 100s is enlarged.

the angle of the rotation matrix R̃ in degrees, against time. For different values of N the

proposed algorithm is capable of forgetting the initial attitude error despite the fact that

the measurements have different sampling periods (angular velocity ω at 200 Hz, vector

measurement b1 at 10 Hz and b2 at 0.1 Hz). Note that the use of a single sensor is not

enough to correct the attitude. Although sensor b2 has a very large sampling period of

10 seconds, it helps to reduce the attitude error in the direction parallel to a1 since the

latter direction can not be corrected using measurements of b1. In fact, when R̃ has a

rotation axis parallel to a1 then we have σ1 = ρ1(R̂b1 × a1) = 0 which implies that no

correction occurs using this measurement. Note that the register states P1, · · · , PN are

updated at each measurement step (readings of b1 or b2) thus the update has a frequency

greater than or equal to the largest measurements frequency (in our case 10 Hz). In

other words, the lag introduced by increasing N is proportional to the smallest sampling

period. As a consequence the transient response when N = 25 is not very slow compared

to N = 1 while the level of steady state noise is largely reduced (10◦ for N = 1 compared

to 2◦ for N = 25). Future work may include the search for the best value of N as well

as the corresponding coefficients α1, · · · , αN in order to optimize the performance of the

algorithm with respect to the sensors’ characteristics.



4.4. Conclusion 111

Biased angular velocity measurements

In this simulation scenario we assume that the angular velocity measurements are biased

with a constant bias bω = [0.05, 0.05, 0.05]> (rad/sec). We assume available two sensors

that provide two body-frame vector measurements b1 = R>a1 and b2 = R>a2 such that

a1 = [1, 0, 0]> and a2 = [0, 1, 0]>. The true attitude of the rigid body is initialized at

an attitude angle of 45◦ in the z−direction, i.e., R(0) = exp([θu]×) where θ = π/4 and

u = [0, 0, 1]>. The actual attitude trajectory is generated using the discrete-kinematic

model (4.58) with a sampling period of 1 ms. The observers states are initialized at

R̂(0) = I and b̂ω = [0, 0, 0]> (rad/sec). Note that although in Theorem 4.3.4 we provide

only a proof of local exponential convergence for the observer (4.72)-(4.73), the chosen

initial attitude error (45◦ angle) is large which suggests that the region of convergence of

the proposed estimation scheme is large. Now, we set the the observer gains as ρ1 = 1
4
,

ρ2 = 1
2

and γb = 0.5 which satisfy the conditions of Theorem 4.3.4. To find the maximum

allowed sampling period T we compute the upper bound T̄ in (4.79). The corresponding

matrix Ad can be computed form (C.109) and the solution of the discrete Lyapunov

equation is derived by pick L = I. We obtain a matrix P such that λPmax = 4.8895 and

λPmin = 1. The angular velocity bound cω is chosen as cω = 0.5 which is a very conservative

bound on the norm of the angular velocity. Therefore on obtains the condition on T

T < T̄ (A, γb, cω) = 0.0234 seconds. (4.80)

The above is a conservative bound on the allowable sampling period which guarantees

local convergence of the attitude observer. To show that our observer works even when

the above bound is not satisfied, we pick different values of T between 0.02 and 5 seconds.

Simulation results are plotted in Figure 4.14 and (4.15) which shows convergences of the

attitude and bias estimation errors as zero. These simulation results suggest that a larger

bound on the allowable sampling period T exists, however it remains an open problem

to find the least conservative bound. Of course for larger values of the sampling period

T , the convergence is slower since fewer correction steps are executed in (4.72)-(4.73).

4.4 Conclusion

We dealt with the problem of attitude estimation on SO(3) using intermittent syn-

chronous and asynchronous vector measurements. The problem formulation takes into

account some practical constraints related to the sensors bandwidth and measurements

loss. The proposed hybrid attitude estimation scheme has a measurement-triggered struc-
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Figure 4.14: Time evolution of the attitude estimation error (angle of rotation) for the
observer proposed in (4.72)-(4.73) using different sampling periods T .
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Figure 4.15: Time evolution of the bias estimation error for the observer proposed in
(4.72)-(4.73) using different sampling periods T . The region between 0 and 0.5 seconds
is enlarged.

ture where the continuous-time angular velocity is used to predict the rotation matrix

which is corrected by the discrete vector measurements upon their arrival. Virtual timers

are introduced to capture the behaviour of the closed-loop system by a time-invariant

hybrid dynamical model, and almost global asymptotic stability results are established

under some sufficient conditions on the gains that are independent from the commu-

nication protocol between the CPU and the sensors (sampling constraints). Discrete

integration an filtering techniques have also been proposed to improve the computational

efficiency and noise attenuation of the proposed attitude estimation schemes.



Chapter 5

Conclusion

5.1 Summary

In Chapter 2, some preliminary results and useful lemmas on the rotation group SO(3)

have been presented. Some of these results are newly derived in this thesis and can

be used for the design and analysis of control systems on SO(3). Moreover, the hybrid

systems framework, used in this thesis, which is mainly inspired from [Goebel et al.,

2012] and related works has been recalled. A new result concerning exponential stability

of general hybrid systems is derived. Our proposed theorem relaxed, for certain class

of hybrid systems, some previously developed Lyapunov-based sufficient conditions for

exponential stability. These derived sufficient conditions for exponential stability are

then used in the thesis to analysis the stability of some closed-loop systems.

Chapter 3 was devoted to the problem of attitude control on SO(3). The simple

example of the unit circle S1, which is a submanifold of SO(3), was used as a motivation.

It helped to explain the limitations of existing smooth and discontinuous feedbacks and

motivated the use of hybrid controllers to solve the problem of global exponential stabi-

lization on compact manifolds such as SO(3). The new definition of “exp-synergistic” po-

tential functions has been proposed which, roughly speaking, means a family of (smooth

or nonsmooth) potential functions on SO(3) that enjoys the following properties: (1)

being quadratic (as well as their gradients) with respect to an attitude distance, and (2)

being synergistic1 with respect to the gradient’s singular and/or critical points. Then,

we showed that exp-synergistic potential functions are sufficient to design a hybrid con-

troller guaranteeing global exponential stability on SO(3). The proposed hybrid con-

troller, which is inspired from [Mayhew and Teel, 2011c], consists of a family of control

1The definition of “synergistic” potential functions is given in Definition 3.3.6 and can be found in
reference [Mayhew and Teel, 2011c, Mayhew and Teel, 2013a].

113
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laws (each derived from a potential function within the family of exp-synergistic potential

functions) which are coordinated in a suitable manner. The hybrid controller selects the

control law corresponding to the potential function which has the minimal value among

the family. The min-switch mechanism has a hysteresis property that guarantees some

level of robustness to measurement noise. We proposed a systematic methodology to

construct exp-synergistic potential functions from existing (traditional) smooth and non-

smooth potential functions on SO(3). The construction is done by applying an adequate

transformation on SO(3) that stretches and compresses the manifold in a way to relocate

the undesired critical and singular points. This transformation is different from the one

proposed in [Mayhew and Teel, 2011d] and allows to explicitly derive the parameters

of the hybrid controller (e.g., synergistic gap). Finally, the proposed control strategy is

applied to the attitude tracking problem for rigid body systems. The resulting hybrid

tracking algorithm is made continuous by filtering the discrete transitions in the con-

troller using a first order low pass filter. We proved that global exponential convergence

of the tracking errors to zero is preserved.

The attitude estimation problem has been investigated in Chapter 4. The first objec-

tive in this chapter was to derive globally exponentially stable hybrid attitude and gyro

bias observers, developed directly on SO(3), using continuous sensor measurements. Our

motivation was driven by the fact that existing attitude observers on SO(3) are limited in

terms of their domain of convergence (local or almost global) and exhibit some robustness

and performance issues such as those discussed in our paper [Berkane and Tayebi, 2017a].

To achieve this first objective, we propose two hybrid attitude estimation schemes. The

first scheme uses the concept of exp-synergistic potential functions, discussed in Chapter

3, to derive a family of innovation (correction) terms for an attitude observer that has

a similar structure as the nonlinear complementary filter on SO(3). It is shown that

the exp-synergistic potential functions and their gradients, derived in Chapter 3, can be

explicitly written in terms of body-frame vector measurements of known constant iner-

tial vectors. Therefore, the proposed hybrid observer can be readily implemented using

available sensors depending on the application at hand. The second scheme uses rather

a fixed innovation term for the attitude observer but, however, allows the attitude state

to experience jumps. This reset behaviour of the attitude estimated matrix is done ade-

quately to guarantee that, after a jump, a given cost function is within the flow set. The

main purpose behind this reset-based approach is to avoid the undesired critical/singular

points of the cost function on SO(3) by simply jumping the attitude estimate to a region

where these undesired points do not belong. The advantage of the reset-based technique

over the synergistic-based technique resides in the design simplicity and the possibility of
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using time-varying inertial vectors. However, the reset-based approach comes at the cost

of having possible discrete transitions in the observer output which might be undesirable

in practice when connecting the observer to the controller. The good news is that this

potential jumps are not likely to occur when the attitude estimation errors are small (an

observer operating near the true state values).

The second objective of Chapter 4 was to design attitude estimation schemes on

SO(3) that deal with the problem where the measurements are allowed to have different

bandwidths with possible information loss between the sensor and the control processing

unit. There are very few references that have dealt with this problem [Khosravian et al.,

2015, Barrau and Bonnabel, 2015]. At a first step, we have considered the simplified

problem where the measurements are collected synchronously at possibly irregular sam-

pling periods. We also assumed that the angular velocity measurements are unbiased and

available continuously. The last assumption is motivated by the high sampling frequency

of most existing commercial gyroscopes compared to other sensors such as landmarks,

GPS,...etc. We proposed a measurement-triggered observer which consists of forward in-

tegration on SO(3) of the continuous angular velocity and intermittent correction of the

attitude estimate at the arrival of the new measurements. Both the integration (predic-

tion) and the correction steps are done in a way to keep the attitude estimates within the

rotation group SO(3). To analyze the stability of the closed-loop system, we proposed to

extend the system with a virtual timer to capture the behaviour of the communication

protocol. The virtual time is reset at each time when the measurements are received.

The extended closed-loop system is modelled as an autonomous hybrid system which al-

lowed for hybrid systems tools to be applied to conduct the stability proofs. We showed

that the zero estimation error is almost globally exponentially stable. Secondly, we con-

sidered the more general case where the measurements are collected asynchronously (at

different sampling periods). In this case the observer state is updated at the arrival of

each single measurement. A virtual timer is introduced for each sensor to model the

communication protocol between that sensor and the processing unit. Again the closed-

loop system is modelled as a hybrid system and almost global asymptotic stability is

concluded using the invariance principle for hybrid systems. Finally, some practical is-

sues have been considered. First, when the gyro readings are biased we proposed an

extended measurement-triggered observer on SO(3) × R3 to estimate both the attitude

state and the gyro bias vector. We were able to prove local exponential convergence to

zero of the estimation errors only in the case where the measurements are synchronously

collected at a constant sampling period. A second practical consideration is the effect of

measurement noise on the output of the observer. We extended the observer with N ≥ 1
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states on SO(3) which are recursively updated and averaged to yield a better estimate.

We also proposed a discrete version of the observer which is obtained by discretizing

the integrator on SO(3) using a first order Lie group integration method. The discrete

version of the observer preserves the convergence properties of the original version of the

observer which is an advantage over most existing attitude estimation schemes on SO(3).

5.2 Perspectives

In many systems of practical and theoretical interest, the configuration space of the

system can be given the structure of a Lie group. Examples include unmanned aerial

vehicles, underwater vehicles, satellites and surface vessels. A future direction is to extend

the synergistic hybrid control strategy, developed on S1,S2 and SO(3) to fully-actuated

mechanical systems, when the configuration space is a general class of Lie groups, in

a differential geometric setting such as in [Maithripala et al., 2006, Chaturvedi et al.,

2006]. This requires to define intrinsic potential functions on a Lie group and propose an

efficient way to obtain the corresponding synergistic family via angular warping. This

task is challenging due to the difficulty in proving the synergism property on a general

Lie group and the fact that most compact identities used on SO(3), for instance, are

not available on a general Lie group. We wish as well to propose a unified framework

for the construction of hybrid, continuous and possibly smooth controllers for general

mechanical systems evolving on a Lie group.

In addition to the above future directions, the following are few perspectives “closely”

related to this thesis:

• In Section 3.3.5, we have successfully constructed two exp-synergistic families of

weighted potential functions but under the full knowledge of the eigenvalues and

eigenvectors of the matrix A. It would be interesting to derive weighted exp-

synergistic functions without requiring information about the spectrum of the

weighting matrix which might simplify the design process. Also, recall that these

exp-synergistic potential functions were used in Section 4.2 to derive attitude ob-

servers using directly vector measurements. The weighting matrix A was directly

related to the known and constant inertial vectors. In some applications, these

vectors are unknown or time varying which is obstacle towards the use of this class

of exp-synergistic potential functions.

• In certain applications, the information about the inertia matrix is uncertain. An

interesting direction is to make robust the proposed hybrid tracking control algo-
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rithms using some adaptation laws for the inertia matrix while maintaining the

strong stability results.

• The proposed measurement-triggered observers are shown to have almost global

convergence properties. It is possible to extend these observers with a switching

mechanism (such as the reset-based approach) to enlarge the domain of conver-

gence to global. Moreover, it remains an open problem to estimate the region of

convergence of the proposed intermittent observer with bias estimation. We have

shown local exponential convergence only in the particular case of synchronous

measurement with constant sampling rate. Other more general cases where the

measurements are asynchronous and/or the sampling rate is irregular remains un-

solved. Simulations results, however, are very promising.
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Appendix A

Proofs of Lemmas

A.1 Proof of Lemma 2.2.1

Using (2.62) and identities (2.41)-(2.44) of the trace function one has

tr(M(I −R2)) = tr(M)− tr(M(R> + tr(R)R− tr(R)I))

= tr(M)− tr(MR>)− tr(R)tr(MR) + tr(R)tr(M)

= tr(M)− tr(MR) + tr(R)(tr(M)− tr(MR))

= (1 + tr(R))tr(M(I −R)).

Moreover, using the fact that Pso(3)(A) = (A− A>)/2 and relation (2.62) one obtains

Pso(3)(MR2) =
1

2
(MR2 − (R2)>M)

=
1

2
M(R> + tr(R)R− tr(R)I)− 1

2
(R + tr(R)R> − tr(R)I)M

=
1

2
(MR> −RM) +

1

2
tr(R)(MR−R>M)

= tr(R)Pso(3)(MR) + Pso(3)(MR>).

Finally, using the fact that tr(R>MR) = tr(MRR>) = tr(M) and tr(RMR) = tr(MR2)

one has

〈〈Pso(3)(R),Pso(3)(MR)〉〉 =
1

4
tr((R> −R)(MR−R>M))

=
1

4
tr(R>MR)− 1

4
tr(RMR)− 1

4
tr((R>)2M) +

1

4
tr(M)

=
1

2
tr(M)− 1

4
tr(MR2)− 1

4
tr((R>)2M) =

1

2
tr(M(I −R2)).
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A.2 Proof of Lemma 2.2.2

Using the definition of the map E(·) in (2.66) one can verify that E−1(E(M)) = M and

E(E−1(M)) = M for any M ∈ R3×3. Let v be an eigenvector such that M>v = λM
>

v v.

This implies, using the definition of the map E(·), that

E(M)v =
1

2
(tr(M)I −M>)v =

1

2
tr(M)v − 1

2
λM

>

v v =
1

2
(tr(M)− λM>v )v = λE(M)

v v,

E−1(M)v = (tr(M)I − 2M>)v = tr(M)v − 2λM
>

v v = (tr(M)− 2λM
>

v )v = λE
−1(M)

v v.

A.3 Proof of Lemma 2.2.3

If M is symmetric and R ∈ SO(3), x ∈ R3 one has

x>[λ
E(M)
min I − E(MR)]x =x>[λ

E(M)
min I − 1

2
(tr(MR)I −R>M)]x

=(λ
E(M)
min − 1

2
tr(MR))‖x‖2 +

1

2
x>R>Mx

≤(λ
E(M)
min − 1

2
tr(MR))‖x‖2 +

1

2
λMmax‖x‖2

=
1

2
tr(M(I −R))‖x‖2,

where the fact λ
E(M)
min = 1

2
(tr(M) − λMmax), from Lemma 2.2.2, has been used. Moreover,

for all x, y ∈ R3

x>[E(M)− E(MR)]y = x>E(M(I −R))y

=
1

2
tr(M(I −R))x>y +

1

2
x>(I −R>)M>y,

≤ 1

2
tr(M(I −R))x>y +

1

2
‖M(I −R)‖F‖x‖‖y‖.

In view of (2.75) and item ii) of Lemma 2.2.2 one has

tr(M)− tr(MR) = 4ε>E(M)ε ≤ 4λE(M)
max = 2(tr(M)− λMmin), (A.1)

where ε is the vector part of the unit quaternion associated to R (hence by definition one

has 0 ≤ ‖ε‖ ≤ 1). Similarly, one can write

tr(M)− tr(MR) ≥ min(0, 4λ
E(M)
min ) = tr(M)−max(tr(M), tr(M)− 4λ

E(M)
min )

= tr(M)−max(tr(M), 2λMmax − tr(M)), (A.2)
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which leads to (2.69). Finally, from (2.69) one deduces that tr(MR) ≤ tr(M) for

all R ∈ SO(3) if E(M) ≥ 0 since 2λ
E(M)
min = tr(M) − λMmax ≥ 0 which implies that

max(tr(M), 2λMmax − tr(M)) = tr(M). Using this fact, one has

‖E(MR)‖2
F = tr

(
E(MR)>E(MR)

)
=

1

4
tr
(
M2 + tr2(MR)I − tr(MR)(MR +R>M)

)
=

1

4
(tr(M2) + tr2(MR))

≤ 1

4
(tr(M2) + tr2(M))

=
1

4
tr ((tr(M)I −M)(tr(M)I −M))

=‖E(M)‖2
F .

A.4 Proof of Lemma 2.2.4

Consider the trajectories of Ṙ(t) = R(t)[ω(t)]× with R(0) ∈ SO(3) and ω(t) ∈ R3 for all

t ≥ 0. Then, for all M ∈ R3×3 one has

d

dt
tr(M(I −R(t))) = −tr(MṘ(t)) = −tr(MR(t)[ω(t)]×) = 〈〈[ω(t)]×,MR(t)〉〉

= 〈〈[ω(t)]×,Pso(3)(MR(t))〉〉 = 2ω(t)>ψ(MR(t)),

where (2.56)-(2.57) have been used. Also, by the definition of the gradient in (2.7) one

has

d

dt
tr(M(I −R(t))) = 〈〈∇tr(M(I −R(t))), Ṙ(t)〉〉 = 〈〈R(t)>∇tr(M(I −R(t))), [ω(t)]×〉〉

= 〈〈[ω(t)]×,Pso(3)(MR(t))〉〉,

which leads to the gradient expression given in (2.71). Moreover, using (2.59) one has

d

dt
ψ(MR(t)) =

d

dt
vex(Pso(3)(MR(t))) =

1

2
vex(MR(t)[ω(t)]× + [ω(t)]×R(t)>M>),

=
1

2
[tr(MR(t))I −R(t)>M>]ω(t) = E(MR(t))ω(t).
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A.5 Proof of Lemma 2.2.5

Let (η, ε) ∈ Q be a unit quaternion representation. Using (2.26) and (2.57) one obtains

tr(M(I −Ru(η, ε))) = tr(M(−2[ε]2× − 2η[ε]×)) = −2tr(M [ε]2×) + 2η〈〈[ε]×,M〉〉

= −2tr(M [ε]2×) + 2η〈〈[ε]×,Pso(3)(M)〉〉

= −2tr(M [ε]2×)

where Pso(3)(M) = 0 is used since M is symmetric. Now, using (2.53) and then (2.48),

the above equation leads to

tr(M(I −Ru(η, ε))) = 2tr(ε>εM −Mεε>) = 2ε>(tr(M)I −M)ε = 4ε>E(M)ε.

Equation (2.74) (respectively (2.76)) can be inferred from (2.75) by noticing that Ru(η, ε) =

Ra(θ, u) (respectively Ru(η, ε) = Rr(z)) if η = cos(θ/2) and ε = sin(θ/2)u (respectively

z = ε/η). Again, using (2.26) and (2.50), one has

Pso(3)(MRu(η, ε)) =
1

2
(MRu(η, ε)−Ru(η, ε)

>M)

= Mεε> − εε>M + ηM [ε]× + η[ε]×M

= [ε×Mε]× + 2η[E(M)ε]×,

where (2.51) and (2.55) have been used. Consequently, one obtains

ψ(MRu(η, ε)) = ε×Mε+ ηE(M)ε = 2(ηI − [ε]×)E(M)ε.

Equation (2.77) (respectively (2.79)) can be inferred from (2.78) by noticing that Ru(η, ε) =

Ra(θ, u) (respectively Ru(η, ε) = Rr(z)) if η = cos(θ/2) and ε = sin(θ/2)u (respectively

z = ε/η).

A.6 Proof of Lemma 2.2.6

Let (η, ε) ∈ Q be the quaternion representation of the attitude matrix R. In view of

(2.38) and (2.75), it is clear that |R|2I = ‖ε‖2. Moreover, using again (2.75), one has

4λ
E(M)
min |R|2I = 4λ

E(M)
min ‖ε‖2 ≤ tr(M(I −R)) ≤ 4λE(M)

max ‖ε‖2 = 4λE(M)
max |R|2I .
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Making use of (2.78) and (2.53), one obtains

‖ψ(MR)‖2 = 4ε>E(M)(ηI + [ε]×)(ηI − [ε]×)E(M)ε

= 4ε>E(M)η2I − [ε]2×)E(M)ε

= 4ε>E(M)(I − εε>)E(M)ε

= 4ε>E(M)2ε(1− ‖ε‖2 cos2(φ)),

where the facts η2 + ε>ε = 1 and ε>E(M)ε = ‖ε‖‖E(M)ε‖ cos(φ) with φ = ∠(ε,E(M)ε),

have been used. Finally, in view of (2.75), one has

tr(E−1(E(M)2)(I −R)) = 4ε>E(M)2ε,

which proves (2.81). Furthermore, (2.82) follows from the fact that for any positive

definite matrix E(M) one has

0 <
λ
E(M)
min

λ
E(M)
max

≤ cos(u,E(M)u) ≤ 1.

Now, to show (2.84) one needs the following lemma.

Lemma A.6.1 Consider the function f : [0, 1]× [0, 1]→ R≥0 defined as

f(x, y) = x(1− yx). (A.3)

Then, one has

max
x∈[0,1]

f(x, y) =

{
1
4y

if 1
2
≤ y ≤ 1,

1− y if 0 ≤ y < 1
2
.

(A.4)

Proof The partial derivative of f with respect to x satisfies

∂f(x, y)

∂x
= 1− 2xy. (A.5)

If y < 1
2

then 2xy < 1 which implies that ∂f(x,y)
∂x

> 0 for all x ∈ [0, 1] and therefore the

maximum of f(x, y) is reached at x = 1 and is equal to f(1, y) = 1−y. In the case where
1
2
≤ y ≤ 1 one has ∂f(x,y)

∂x
= 0 at x = 1

2y
which is the point where f attains its maximum

given by f( 1
2y
, y) = 1

2y
(1− y 1

2y
) = 1

4y
. The proof is complete.
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Using (2.80)-(2.82) one has

‖ψ(MR)‖2 ≤ 4(λE(M)
max )2(1− ξ2|R|2I)|R|2I = 4(λE(M)

max )2f(|R|2I , ξ2). (A.6)

Using the result of Lemma A.6.1 one obtains maxR∈SO(3) f(|R|2I , ξ2) = max|R|2I∈[0,1] f(|R|2I , ξ2) =

ψ̄(ξ2)/4 which implies that (2.84) holds.

A.6.1 Proof of Lemma 2.2.7

Making use of (2.48), one has

tr(xix
>
i (I −RP>)) =

1

2
‖R>xi − P>xi‖2. (A.7)

Therefore, using the linear property of the trace function one obtains

tr

(
n∑
i=1

ρixix
>
i (I −RP>)

)
=

1

2

n∑
i=1

ρi‖R>xi − P>xi‖2. (A.8)

Furthermore, making use of (2.54) and (2.61) one has

ψ(xix
>
i RP

>) =
1

2
([PR>xi]×xi) =

1

2
PR>[xi]×RP

>xi =
1

2
P (R>xi × P>xi), (A.9)

which leads to

ψ

(
n∑
i=1

ρixix
>
i RP

>

)
=

1

2
P

n∑
i=1

ρi(R
>xi × P>xi). (A.10)

A.7 Proof of Lemma 2.2.8

Let (η, ε) ∈ Q be a quaternion representation of the rotation matrix Ra(π, v)Ra(θ, u).

Using the quaternion multiplication rule (2.28) and the facts that Ra(π, v) = Ru(0, v)

and Ra(θ, u) = Ru(cos(θ/2), sin(θ/2)u), one obtains

ε = cos(θ/2)v + sin(θ/2)(v × u). (A.11)
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Hence, in view of (2.75) and the assumption that v is an eigenvector of M , one has

tr(M(I −Ra(π, v)Ra(θ, u)))

= 4ε>E(M)ε

= 4 (cos(θ/2)v + sin(θ/2)(v × u))>E(M) (cos(θ/2)v + sin(θ/2)(v × u))

= 4 cos2(θ/2)v>E(M)v + 4 sin2(θ/2)(v × u)>E(M)(v × u)

= 4v>E(M)v − 4 sin2(θ/2)v> (E(M) + [u]×E(M)[u]×) v

= 4λE(M)
v − 4 sin2(θ/2)∆(v, u),

where the fact that (v × u)>E(M)v = λ
E(M)
v (v × u)>v = 0 has been used to obtain the

third equality above.

A.8 Proof of Lemma 3.3.9

First, using the derivation product rule and (2.61), it is straightforward to show that if

Ṙi = Ri[ωi]×, i = 1, 2, then

d

dt
(R1R2) = R1R2

[
R>2 ω1 + ω2

]
× . (A.12)

On the other hand, using (2.13) and (2.56), one has

θ̇q(R) = 〈∇θq(R), R[ω]×〉R = 2 ψ(R>∇θq(R))>ω,

which, using the fact that d
dt
eθ(t)M = eθ(t)M θ̇(t)M for any M ∈ R3×3, yields

Ṙa(θq(R), uq) = Ra(θq(R), uq)θ̇q(R)[uq]× = Ra(θq(R), uq)
[
2uq ψ(R>∇θq(R))>ω

]
× .

(A.13)

Since Γ(R, q) = RRa(θq(R), uq) then, in view of (A.12) and (A.13), one obtains Γ̇(R, q) =

Γ(R, q) [Θ(R, q)ω]× where Θ(R, q) = Ra(θq(R), uq)
> + 2uqψ(R>∇θq(R))>.

For some q ∈ Q, let us define the mapping Tq(R) = Γ(R, q). The time-derivative of

the map Tq is nothing but the differential of Tq in the tangent direction ξ = Ṙ = R[ω]×.

Replacing ω = vex(R>ξ) in equation (3.51) shows that

dTq
R(ξ) = Tq(R)[Θ(R, q)vex(R>ξ)]×, ξ ∈ TRSO(3).

It is clear that when the inverse of the matrix Θ(R, q) exists for all R ∈ SO(3) the map
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dTq
R(·) is an isomorphism. In fact, for all y := dTq

R(ξ) ∈ TTq(R)SO(3), the inverse is

explicitly given by

ξ = R
[
(Θ(R, q))−1 vex

(
Tq(R)>y

)]
× ∈ TRSO(3).

Consequently, the inverse function theorem [Helmke and Moore, 1994] guarantees that

Tq(R) is a local diffeomorphism for all R ∈ SO(3). Therefore, Γ is everywhere a local

diffeomorphism on SO(3) × Q which implies that if Ψ ∈ C1(DΨ,R≥0) then one has

Ψ ◦ Γ ∈ C1(Γ−1(DΨ),R≥0). If in addition Γ−1({I}) = A then Ψ ◦ Γ(R, q) = 0 if and only

if (R, q) ∈ A which shows that Ψ ◦ Γ ∈ PΓ−1(DΨ),. In this case, the time-derivative of

Ψ ◦ Γ can be computed as follows

d

dt
Ψ ◦ Γ(R, q) = 〈∇Ψ(Γ(R, q)), Γ̇(R, q)〉Γ(R,q)

= 2 ψ
(
Γ(R, q)>∇Ψ(Γ(R, q))

)>
ψ
(

Γ(R, q)>Γ̇(R, q)
)

= 2 ψ
(
Γ(R, q)>∇Ψ(Γ(R, q))

)>
Θ(R, q)ω

= 〈〈
[
Θ(R, q)>ψ

(
Γ(R, q)>∇Ψ(Γ(R, q))

)]
× , [ω]×〉〉

= 〈〈R
[
Θ(R, q)>ψ

(
Γ(R, q)>∇Ψ(Γ(R, q))

)]
× , Ṙ〉〉

where (2.13), (2.56) and (3.51) have been used. Consequently, in view of (2.7), the

gradient of Ψ ◦ Γ(R, q), with respect to the first argument R, is given by

∇(Ψ ◦ Γ)(R, q) = R
[
Θ(R, q)>ψ

(
Γ(R, q)>∇Ψ(Γ(R, q))

)]
× . (A.14)

Moreover, since the matrix Θ(R, q) is full rank, the set of critical points of Ψ ◦ Γ is

CΨ◦Γ = {(R, q) ∈ SO(3)×Q : ∇Ψ(Γ(R, q)) = 0} = Γ−1(CΨ).

A.9 Proof of Lemma 3.3.12

Let us define the angle function θ(R) = 2 arcsin (ktr(A(I −R))). Note that θ(·) is well

defined and differentiable on SO(3) thanks to the fact that ktr(A(I −R) ≤ 4kλ
E(A)
max < 1

where (2.80) and (3.64) have been used. The gradient of the function θ(R) satisfies

∇θ(R) =
2k∇tr(A(I −R))√
1− k2tr2(A(I −R))

=
2kRPso(3)(AR)√

1− k2tr2(A(I −R))
,
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where (2.71) has been used. Therefore, for this choice of Γ, the function Θ(R, q) which

appears in Lemma 3.3.9 is written as

Θ(R, q) = Ra(θ(R), uq)
> + 2uqψ(R>∇θq(R))>

= Ra(θ(R), uq)
> +

4kuqψ(AR)>√
1− k2tr2(A(I −R))

, (A.15)

which leads, using the facts that Ra(θ(R), uq)
>uq = uq and det(Ra(θ(R), uq)

>) = 1, to

det(Θ(R, q)) = det

(
Ra(θ(R), uq)

>

(
I +

4kuqψ(AR)>√
1− k2tr2(A(I −R))

))
(A.16)

= det

(
I +

4kuqψ(AR)>√
1− k2tr2(A(I −R))

)
(A.17)

= 1 +
4ku>q ψ(AR)√

1− k2tr2(A(I −R))
, (A.18)

where (2.46)-(2.47) have been used. Note that, in view of (2.80) and (2.84), one has

16k2|u>q ψ(AR)|2

1− k2tr2(A(I −R))
≤ 16k2‖ψ(AR)‖2

1− k2tr2(A(I −R))
≤ 16k2(λ

E(A)
max )2ψ̄(ξ2)

1− 16k2(λ
E(A)
max )2

< 1, (A.19)

when k satisfies the bound (3.64). Finally, one concludes that det(Θ(R, q)) 6= 0 for

all (R, q) ∈ SO(3). Let (R, q) ∈ SO(3) × Q such that Γ(R, q) = I which implies that

R = Ra(θ(R), uq)
> = Ru(

√
1− k2tr2(A(I −R)),−ktr(A(I − R))uq). Using (2.75), one

obtains

tr(A(I −R)) = 4k2tr2(A(I −R))u>q E(A)uq. (A.20)

However, using again (2.80) and (3.64) one has 4k2tr(A(I−R))u>q E(A)uq ≤ 16k2(λ
E(A)
max )2 ≤

1/(1 + ψ̄(ξ2)) < 1. This implies that the only solution to the above equation is R = I.

Thus, one has Γ−1({I}) = {I} × Q = A.

A.10 Proof of Lemma 3.3.13

Invoking Lemma 3.3.9, the set of critical points for Φ = Ψ1,A ◦ Γ is given by

CΦ = Γ−1(CΨ1,A
) = A ∪ Γ−1(Ra(π, ERv (A))). (A.21)
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Let vi ∈ ERv (A) = {v1, v2, v3} and let (R, q) = Γ−1(Ra(π, vi)). Thus, Γ(R, q) = Ra(π, vi),

which in view of (3.63), implies that the rotation matrix R satisfies

R = Ra(π, vi)Ra(2 arcsin (ktr(A(I −R))) , uq)
>. (A.22)

Therefore, for a given p ∈ Q such that p 6= q, one has

Γ(R, p) = RRa(2 arcsin (ktr(A(I −R))) , up)

= Ra(π, vi)Ra(2 arcsin (ktr(A(I −R))) ,−uq)Ra(2 arcsin (ktr(A(I −R))) , up)

= Ra(π, vi)Ra(4 arcsin (ktr(A(I −R))) , up)

where the fact that uq = −up has been used along with (2.21). Let θ = 2 arcsin (ktr(A(I −R))).

Making use of Lemma 2.2.8, one obtains

Ψ1,A ◦ Γ(R, p) = 2λE(A)
vi
− 2 sin2(θ)∆(vi, up), (A.23)

where ∆(vi, up) = v>i
(
E(A) + [up]×E(A)[up]×

)
vi. Note that, since u1 = −u2 = u, it

follows that ∆(vi, up) = ∆(vi, uq) = ∆(vi, u). Consequently, since Ψ1,A ◦ Γ(R, q) =

Ψ1,A(Ra(π, vi)) = 2λ
E(A)
vi , one has

Ψ1,A ◦ Γ(R, q)−Ψ1,A ◦ Γ(R, p) = 2 sin2(θ)∆(vi, u). (A.24)

Therefore, for the synergism condition (3.40) to hold one must have ∆(vi, u) > 0 and

sin(θ) 6= 0. Now, let us show that if ∆(vi, u) > 0 then θ ∈]0, π[ and therefore sin(θ) 6= 0.

In view of (A.22) and using the result of Lemma 2.2.8 one obtains

tr(A(I −R)) = tr(A(I −Ra(π, vi)Ra(−θ, uq))) (A.25)

= 4λE(A)
vi
− 4 sin2(θ/2)∆(vi, u). (A.26)

On the other hand, one has sin(θ/2) = ktr(A(I −R)) which leads to

1

k
sin(θ/2) = 4λE(A)

vi
− 4 sin2(θ/2)∆(vi, u). (A.27)

Solving the above quadratic equation in sin(θ/2) yields

sin(θ/2) =
−1 +

√
1 + 64k2∆(vi, u)λ

E(A)
vi

8k∆(vi, u)
> 0. (A.28)
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Consequently, the above results lead, in view of Definition 3.3.6, to the conclusion that

Ψ1,A ◦ Γ is synergistic if and only if ∆(vi, u) > 0 for all i ∈ {1, 2, 3}.

A.11 Proof of Lemma 3.3.14

The condition of Lemma 3.3.13 can be written as

∆(vi, u) = v>i (E(A) + [u]×E(A)[u]×) vi > 0, (A.29)

where V = {v1, v2, v3} is an orthonormal basis of eigenvectors of A. Using the cross

product identity (2.1) and the fact u = [u>v1, u
>v2, u

>v3]>V one has

vi × u =
∑
j,k

εijk(u
>vj)vk, (A.30)

where εijk is the Levi-Cevita symbol (2.2). This leads to

∆(vi, u) = v>i (E(A) + [u]×E(A)[u]×) vi (A.31)

= λE(A)
vi
−
(∑
j,k

εijk(u
>vj)vk

)>
E(A)

(∑
j,k

εijk(u
>vj)vk

)
(A.32)

= λE(A)
vi
−
∑
j,k

ε2
ijk(u

>vj)
2λE(A)

vk
. (A.33)

Using (2.2), it is straightforward to verify that ∆(vi, u) can explicitly be written as

∆(v1, u) = λ
E(A)
v1 − (u>v2)2λ

E(A)
v3 − (u>v3)2λ

E(A)
v2 ,

∆(v2, u) = λ
E(A)
v2 − (u>v1)2λ

E(A)
v3 − (u>v3)2λ

E(A)
v1 ,

∆(v3, u) = λ
E(A)
v3 − (u>v2)2λ

E(A)
v1 − (u>v1)2λ

E(A)
v2 .

(A.34)

Since u is a unit vector it verifies the unit constraint (u>v3)2 = 1 − (u>v1)2 − (u>v2)2.

Thus, equations (A.34) are rewritten as

∆(v1, u) = (λE(A)
v1
− λE(A)

v2
) + (u>v2)2(λE(A)

v2
− λE(A)

v3
) + (u>v1)2λE(A)

v2

∆(v2, u) = (λE(A)
v1
− λE(A)

v3
)(u>v1)2 + λE(A)

v1
(u>v2)2 − (λE(A)

v1
− λE(A)

v2
)

∆(v3, u) = −λE(A)
v2

(u>v1)2 − λE(A)
v1

(u>v2)2 + λE(A)
v3

.
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Also, since vi is the eigenvector associated to λAi , one has the following facts

λE(A)
v1

=
1

2
(tr(A)− λA1 ) =

λA2 + λA3
2

λE(A)
v2

=
1

2
(tr(A)− λA2 ) =

λA1 + λA3
2

λE(A)
v3

=
1

2
(tr(A)− λA3 ) =

λA1 + λA2
2

.

Moreover, 0 < λA1 < λA2 < λA3 which implies that λ
E(A)
v1 > λ

E(A)
v2 > λ

E(A)
v3 > 0 and

hence ∆(v1, u) > 0. The conditions ∆(v2, u),∆(v3, u) > 0 are equivalent to χ(u>v1) <

(u>v2)2 < χ̄(u>v1) where

χ(u>v1) = −(λ
E(A)
v1 − λE(A)

v3 )

λ
E(A)
v1

(u>v1)2 +
(λ

E(A)
v1 − λE(A)

v2 )

λ
E(A)
v1

χ̄(u>v1) = −λ
E(A)
v2

λ
E(A)
v1

(u>v1)2 +
λ
E(A)
v3

λ
E(A)
v1

.

Replacing λ
E(A)
i by its expression function of λAi in the above inequality leads to the

result of Lemma 3.3.14.



Appendix B

Proofs of Propositions

B.1 Proof of Proposition 3.2.1

First, it should be noted that in view of condition (3.20) and the fact that maxS1 ΦE(x) =

2, one has |kqΦE(x)| <
√

3/2 < 1 for all (x, q) ∈ S1 × Q. This implies that the map

θ(x, q) is well defined and differentiable on the whole space. Now, let us compute the

gradient ∇θ(x, q) and show that (3.18) is not met for all (x, q) ∈ S1 × Q. Using (3.19)

one has

∇θ(x, q) =
2kq∇ΦE(x)√
1− k2

qΦE(x)2
=

2kqe1√
1− k2

qΦE(x)2
. (B.1)

Therefore, one obtains

∇θ(x, q)>Sx =
2kqx2√

1− k2
q(1− x1)2

. (B.2)

Now, in view of the fact that x2
1 + x2

2 = 1, one has

4x2
2 + (1− x1)2 = 5− 2x1 − 3x2

1 ≤
16

3
, (B.3)

which implies, under the condition (3.20), that |∇θ(x, q)>Sx| < 1 and, hence, condition

(3.18) is not met for all (x, q) ∈ S1 × Q. Now, let us compute the critical points of the

composite potential function ΦE ◦ Γ(x, q) defined by (3.17). Consider (x, q) ∈ S1 × Q

141
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such that Γ(x, q) = e1. Then, one has

x = R(−θ(x, q))e1 =

[
cos(θ(x, q))

− sin(θ(x, q))

]
, (B.4)

which leads to

ΦE(x) = 1− e>1

[
cos(θ(x, q))

− sin(θ(x, q))

]
= 1− cos(θ(x, q)) = 2 sin2(θ(x, q)/2) = 2k2

qΦE(x)2.

(B.5)

Therefore ΦE(x)(1 − 2k2
qΦE(x)) = 0 which leads to ΦE(x) = 0 (thus x = e1) since

2k2
qΦE(x) < 6ΦE(x)/16 ≤ 12/16 < 1 and thus the quantity 1− 2k2

qΦE(x) cannot vanish.

Now, let us consider (x, q) ∈ S1 × Q such that Γ(x, q) = −e1. Then, in view of (3.11)

and (3.19), one obtains

x = −R(−θ(x, q))e1 =

[
− cos(θ(x, q))

sin(θ(x, q))

]
, (B.6)

which leads to the following fact

ΦE(x) = 1− e>1

[
− cos(θ(x, q))

sin(θ(x, q))

]
= 1 + cos(θ(x, q)) = 2(1− sin2(θ(x, q)/2)) (B.7)

= 2(1− k2
qΦE(x)2). (B.8)

The above quadratic equation in ΦE(x) can be solved to determine the unique value of

ΦE(x) ≥ 0 as follows

ΦE(x) =
−1 +

√
1 + 16k2

q

4k2
q

. (B.9)

Once the value of ΦE(x) is computed, the solution x to (B.6) is readily obtained

x =

[
2 sin2(θ(x, q)/2)− 1

2 sin(θ(x, q)/2) cos(θ(x, q)/2)

]
=

 2k2
qΦE(x)2 − 1

2kqΦE(x)
√

1− k2
qΦE(x)2

 = cq. (B.10)
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B.2 Proof of Proposition 3.2.2

Let (x, q) ∈ S1 × Q be an undesired critical point of ΦE(Γ(x, q)) which means that

Γ(x, q) = −e1. Now, for any p ∈ Q \ {q}, one has

Γ(x, p) = R(θ(x, p))x = −R(θ(x, p))R(−θ(x, q))e1 (B.11)

= −R(θ(x, p)− θ(x, q))e1 (B.12)

=

[
− cos(θ(x, p)− θ(x, q))
sin(θ(x, p)− θ(x, q))

]
. (B.13)

Therefore, one obtains

ΦE ◦ Γ(x, p) = 1 + cos(θ(x, p)− θ(x, q)) = 2(1− sin2(θ(x, p)/2− θ(x, q)/2)), (B.14)

which leads to

ΦE ◦ Γ(x, q)− ΦE ◦ Γ(x, p)

= 2 sin2(θ(x, p)/2− θ(x, q)/2)

= 2 sin2(arcsin(kpΦE(x))− arcsin(kqΦE(x)))

= 2 sin2
(

arcsin
(
kpΦE(x)

√
1− k2

qΦE(x)2 − kqΦE(x)
√

1− k2
pΦE(x)2

))
= 2

(
kpΦE(x)

√
1− k2

qΦE(x)2 − kqΦE(x)
√

1− k2
pΦE(x)2

)2

.

Taking kp = −kq = k and in view of (B.9) and the above equation, one obtains

ΦE ◦ Γ(x, q)− ΦE ◦ Γ(x, p) = 8k2ΦE(x)2(1− k2ΦE(x)2) =

(
−1 +

√
16 k2 + 1

)3

16k4
.

B.3 Proof of Proposition 3.3.10

First, let us show that Ψ1 ◦ Γ is exp-synergistic with gap exceeding some δ1 > 0. Define

the parameters set T1 = {Ψ1 ◦ Γ,Q, δ1}. Let us verify that Ψ1 ◦ Γ is a valid potential

function. To do so, one needs to show that the transformation Γ proposed in Proposition

3.3.10 satisfies item 3) of Lemma 3.3.9 so that the composite function Ψ1 ◦Γ ∈ PSO(3)×Q.

It should be mentioned that θ(R) = 2 arcsin(k|R|2I) is well defined thanks to the facts

k < 1/
√

2 and |R|I ≤ 1. Moreover since the arcsin is differentiable on (−1, 1) and

k|R|2I < 1 it follows that the function θ(R) is differentiable on the whole manifold SO(3).
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The gradient of the function θ(R) satisfies

∇θ(R) =
2k∇|R|2I√
1− k2|R|4I

=
k∇tr(I −R)

2
√

1− k2|R|4I
=

kRPso(3)(R)

2
√

1− k2|R|4I
,

where (2.71) has been used. Therefore, for this choice of Γ the function Θ(R, q) which

appears in Lemma 3.3.9 is written as

Θ(R, q) = Ra(θ(R), uq)
> + 2uqψ(R>∇θ(R))> = Ra(θ(R), uq)

> +
kuqψ(R)>√
1− k2|R|4I

,

which leads, using the facts Ra(θ(R), uq)
>uq = uq and det(Ra(θ(R), uq)

>) = 1, to

det(Θ(R, q)) = det

(
Ra(θ(R), uq)

>

(
I +

kuqψ(R)>√
1− k2|R|4I

))

= det

(
I +

kuqψ(R)>√
1− k2|R|4I

)
= 1 +

ku>q ψ(R)√
1− k2|R|4I

,

where (2.46)-(2.47) have been used. Now, in view of (2.84), one has ‖ψ(R)‖ ≤ 1 which

implies

k|u>q ψ(R)|√
1− k2|R|4I

≤ k‖ψ(R)‖√
1− k2|R|4I

≤ k√
1− k2

< 1, (B.15)

thanks to the fact that k < 1/
√

2. Finally, one concludes that det(Θ(R, q)) 6= 0 for

all (R, q) ∈ SO(3). Let (R, q) ∈ SO(3) × Q such that Γ(R, q) = I which implies that

R = Ra(θ(R), uq)
> = Ru(

√
1− k2|R|2I ,−k|R|2Iuq). Using (2.75), one obtains

|R|2I = tr(I −R)/4 = k2|R|4I , (B.16)

which admits the unique solution R = I since k < 1/
√

2. Therefore, one has Γ−1({I}) =

{I}×Q = A. Hence, by Lemma 3.3.9, the composite function Ψ1 ◦Γ ∈ PΓ−1(SO(3)). Now,

let us show that the exp-synergism conditions in Definition 3.3.7 hold.

Let (η, ε) and (ηq, εq) be the quaternion representations of the attitude matrices R and

Γ(R, q), respectively. The unit quaternion associated to Ra(2 arcsin(k|R|2I), uq) is given by

(
√

1− k2|R|4I , k|R|2Iuq). Note that, in view of (2.75), one has |R|2I = tr(I −R)/4 = ‖ε‖2

and |Γ(R, q)|2I = tr(I − Γ(R, q))/4 = ‖εq‖2. Therefore, in view of (3.58) and using the
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quaternion multiplication rule (2.28), one obtains

ηq = η
√

1− k2‖ε‖4 − k‖ε‖2ε>uq, (B.17)

εq = kη‖ε‖2uq +
√

1− k2‖ε‖4ε+ k‖ε‖2ε× uq. (B.18)

This leads to

‖εq‖2 = ‖ε‖2 + k2‖ε‖4η2 − cos2(ϕq)k
2‖ε‖6 + 2kη‖ε‖3

√
1− k2‖ε‖4 cos(ϕq)

where ϕq is the angle between ε and uq. Using the fact that |η| · ‖ε‖ ≤ 1
2
, it follows that

‖εq‖2 ≤ ‖ε‖2[1 + k + k2/4] = [1 + k + k2/4]|R|2I .

Moreover, since k < 1√
2

it is possible to show that

‖εq‖2 ≥ ‖ε‖2
√

1− k2‖ε‖4
[√

1− k2‖ε‖4 − 2k|η| · ‖ε‖
]
≥ ‖ε‖2

√
1− k2‖ε‖4

[√
1− k2 − k

]
≥ ‖ε‖2

[
1− k2 − k

√
1− k2

]
=
[
1− k2 − k

√
1− k2

]
|R|2I .

On the other hand, one has

Ψ1 ◦ Γ(R, q) =
1

2
tr(I − Γ(R, q)) = 2|Γ(R, q)|2I = 2‖εq‖2.

This shows that α1|R|2I ≤ Ψ1 ◦Γ(R, q) ≤ α2|R|2I with α1 = 2[1−k2−k
√

1− k2] and α2 =

[1+k+k2/4]. It is easy to check that α1 and α2 are strictly positive for all 0 ≤ k < 1/
√

2.

Now, let us show the following fact: Γ(R, q) ∈ ΠSO(3) for all (R, q) ∈ FT1 , which implies

that the rotation Γ(R, q) cannot be of 180◦ angle whenever (R, q) ∈ FT1 . Let us prove

this by contradiction. Assume that Γ(R, q) /∈ ΠSO(3). Let Q = (η, ε), Qq = (ηq, εq) and

Qm = (ηm, εm) be the quaternion representation of the attitude R, Γ(R, q) and Γ(R,m),

respectively. Since Γ(R, q) /∈ ΠSO(3) it follows that Qq /∈ ΠQ or, equivalently, ηq = 0.

Therefore, in view of (B.17) one obtains ηm − ηq = ηm = k‖ε‖2ε>(uq − um). Moreover,

since um+3 = −um,m ∈ {1, 2, 3} there exist always three indices mi ∈ Q, i ∈ {1, 2, 3},
such that umi is orthonormal to umj , for i 6= j and ε>umi and ε>uq have opposite signs.

Therefore, one has

max
m∈Q
|ηm| = k‖ε‖2 max

m∈Q
|ε>(uq − um)| ≥ k‖ε‖2 max

mi∈{1,2,3}
|ε>umi | ≥ k‖ε‖3/

√
3.
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Furthermore if ηq = 0 then equation (B.17) implies that√
1− ‖ε‖2

√
1− k2‖ε‖4 = |k|‖ε‖3| cos(ϕq)|.

The above equation reads f(‖ε‖2) = 0 where f(x) := g(x) + sin2(ϕq)k
2x3, and g(x) :=

1 − x − k2x2. It is easy to verify that f(x) and g(x) are decreasing on the interval

[0, 1] for all ϕq ∈ R. Therefore, since f(x) ≥ g(x), the solution xf ∈ [0, 1] to equation

f(xf ) = 0 is greater than or equals to xg ∈ [0, 1], with g(xg) = 0. Thus, it is clear

that f(‖ε‖2) = 0 implies that ‖ε‖2 ≥ (−1 +
√

1 + 4k2)/2k2. Consequently, max
m∈Q

|ηm| ≥

[−1 +
√

1 + 4k2]
3
2/2
√

6k2. Now, using the quaternion norm constraint, one obtains

Ψ1 ◦ Γ(R, q)− min
m∈Q

Ψ1 ◦ Γ(R,m) = 2‖εq‖2 − 2min
m∈Q
‖εm‖2 = 2max

m∈Q
|ηm|2

≥ [−1 +
√

1 + 4k2]3

12k4
= δ̄1 > δ1. (B.19)

Therefore (R, q) /∈ FT1 which confirms that Γ(R, q) ∈ ΠSO(3) for all (R, q) ∈ FT1 . In view

of (A.14) and (2.71), the gradient of Ψ1 ◦ Γ is given by

∇(Ψ1 ◦ Γ)(R, q) =
1

2
R
[
Θ(R, q)>ψ (Γ(R, q))

]
× .

Now, in view of (2.80)-(2.82), one has tr(I −X) = 4|X|2I and α(I,X) = 1− |X|2I for all

X ∈ SO(3), from which one can write

‖ψ(X)‖2 = 4|X|2I(1− |X|2I) = (1 + tr(X))|X|2I (B.20)

Therefore ‖ψ(Γ(R, q))‖2 = |Γ(R, q)|2I(1 + tr(Γ(R, q))) which implies that, for all (R, q) ∈
FT1 , there exists α > 0 such that α|Γ(R, q)|2I ≤ ‖ψ(Γ(R, q)‖2 ≤ 4|Γ(R, q)|2I since

Γ(R, q) ∈ ΠSO(3). Moreover since det(Θ(R, q)) 6= 0 for all (R, q) ∈ SO(3) × Q the

matrix Θ(R, q)Θ(R, q)> is full rank and positive definite for all (R, q) ∈ SO(3) × Q.

Therefore it is not difficult to find positive constants α3 and α4 such that the gradient

‖∇(Ψ1 ◦ Γ)(R, q)‖2
F satisfies (3.43). Finally, Ψ1 ◦ Γ does not have any singular point

and therefore the condition FT1 ⊆ D = SO(3) × Q holds. It follows that Ψ1 ◦ Γ is an

exp-synergistic potential function with gap exceeding δ1.

Next, let us show that Ψ2 ◦ Γ is exp-synergistic. Define the parameters set T2 =

{Ψ2 ◦Γ,Q, δ2}. A similar argument as above can be conducted to show that Ψ2 ◦Γ ∈ PD
where D = Γ−1(ΠSO(3)) = {(R, q) ∈ SO(3) × Q | tr(Γ(R, q)) 6= −1}. Moreover, since

Ψ1 ◦ Γ is quadratic in |R|I and by noticing that 1
2
Ψ1(·) ≤ Ψ2(·) ≤ Ψ1(·) it follows
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that Ψ2 ◦ Γ satisfies (3.42). Recall from (B.19) that for all (R, q) /∈ D or, equivalently,

Γ(R, q) /∈ ΠSO(3) one has Ψ1 ◦ Γ(R, q) − min
m∈Q

Ψ1 ◦ Γ(R,m) ≥ δ̄1 which implies that

Ψ2◦Γ(R, q)−min
m∈Q

Ψ2◦Γ(R,m) =
√

2[Ψ1◦Γ(R, q)−min
m∈Q

Ψ1◦Γ(R,m)]
1
2 ≥

√
2δ̄1 = δ̄2 > δ2.

Consequently, the condition FT2 ⊆ D holds which means that all the singular points of

Ψ2 ◦ Γ do not belong to the set FT2 . Furthermore, the gradient of Ψ2 ◦ Γ on the set FT2
is given by

∇(Ψ2 ◦ Γ)(R, q) =
∇(Ψ1 ◦ Γ)(R, q)√

1 + tr(Γ(R, q))
=
R
[
Θ(R, q)>ψ (Γ(R, q))

]
×

2
√

1 + tr(Γ(R, q))
.

which implies that

λ∗Θ
8

‖ψ(Γ(R, q))‖2

1− |Γ(R, q)|2I
≤ ‖∇(Ψ2 ◦ Γ)(R, q)‖2

F ≤
λ̄∗Θ
8

‖ψ(Γ(R, q))‖2

1− |Γ(R, q)|2I
.

Using (B.20) it follows that

λ∗Θ
2
|Γ(R, q)|2I ≤ ‖∇(Ψ2 ◦ Γ)(R, q)‖2 ≤ λ̄∗Θ

2
|Γ(R, q)|2I .

Finally, one concludes that there exist positive scalars α3 and α4 such that the potential

function Ψ2 ◦ Γ satisfies condition (3.43). The proof is complete.

B.4 Proof of Proposition 3.3.15

In view of (A.33), the optimization problem (3.67) is equivalent to the following standard

linear programming problem:

maximize x4

subject to x4 + x2λ
E(A)
3 + x3λ

E(A)
2 − λE(A)

1 ≤ 0,

x4 + x3λ
E(A)
1 + x1λ

E(A)
3 − λE(A)

2 ≤ 0,

x4 + x1λ
E(A)
2 + x2λ

E(A)
1 − λE(A)

3 ≤ 0,

x1 + x2 + x3 = 1,

x1, x2, x3 ≥ 0,

x4 > 0.

where the variables xj = (u>vj)
2, for j ∈ {1, 2, 3}, are defined. Consequently, one can

use the simplex algorithm [Vanderbei, 1996] to solve this optimization problem, leading



148 Chapter B. Proofs of Propositions

to the following result: If the condition

λA2 ≥
λA1 λ

A
3

λA3 − λA1
(B.21)

is satisfied, then the optimal solution to (3.67) is given by

(u>v1)2 = 0, (u>v2)2 =
λA2

λA2 + λA3
, (u>v3)2 =

λA3
λA2 + λA3

and the maximum is max
u∈S2

mini ∆(vi, u) = λA1 . Otherwise, the optimal solution is

(u>vi)
2 = 1− 4

∏
j 6=i λ

A
j∑

j 6=k λ
A
j λ

A
k

, i ∈ {1, 2, 3}

with the maximum being max
u∈S2

mini ∆(vi, u) = 4
∏3
j=1 λ

A
j∑

j 6=k λ
A
j λ

A
k
.

B.5 Proof of Proposition 3.3.16

First, let us show that Φ = Ψ1,A ◦ Γ is exp-synergistic. In view of Lemma 3.3.9 and

Lemma 3.3.12, it is clear that the composite function Ψ1,A ◦Γ ∈ PSO(3)×Q. Let (η, ε) and

(ηq, εq) be, respectively, the unit quaternion representation of R and Γ(R, q). In view of

(3.63) and the fact that Ra(2 arcsin(ktr(A(I−R)), uq) corresponds to the unit quaternion

([1− k2tr(A(I −R))2)]
1
2 , ktr(A(I −R))uq), and using the quaternion multiplication rule

(2.28), one can deduce that

εq = kηtr(A(I −R))uq + [1− k2tr(A(I −R))2]
1
2 ε+ ktr(A(I −R))[ε]×uq.

Taking the norm square of εq yields

‖εq‖2 =(1− k2tr(A(I −R))2)‖ε‖2 + k2tr(A(I −R))2‖ε‖2 sin2(ϕq)+

k2η2tr(A(I −R))2 + 2kη‖ε‖tr(A(I −R))[1− k2tr(A(I −R))2]
1
2 cos(ϕq),

where ϕq is the angle between ε and uq. Using the facts that |R|2I = ‖ε‖2 and |η| · ‖ε‖ =

‖ε‖
√

1− ‖ε‖2 ≤ 1/2, and in view of (2.80), it follows that

‖εq‖2 ≤ ‖ε‖2[1 + 4kλE(A)
max + 4(kλE(A)

max )2]. (B.22)
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Moreover, in view of (3.64) one has 4kλ
E(A)
max < 1/

√
2 and hence the following lower bound

can be derived

‖εq‖2 ≥ ‖ε‖2[1− k2tr(A(I −R))2 − 4kλE(A)
max

√
1− k2tr(A(I −R))2]

≥ ‖ε‖2[1− (4kλE(A)
max )2 − 4kλE(A)

max

√
1− (4kλ

E(A)
max )2]. (B.23)

On the other hand, making use of (2.80), one has 4λ
E(A)
min ‖εq‖2 ≤ Ψ1,A ◦ Γ(R, q) ≤

4λ
E(A)
max ‖εq‖2 and, hence, there exist α1, α2 such that Ψ1,A ◦ Γ(R, q) satisfies (3.42).

In view of (A.14) and (2.71), the gradient of Ψ1,A ◦ Γ is given by

∇(Ψ1,A ◦ Γ)(R, q) =
1

2
R[Θ(R, q)>ψ(AΓ(R, q))]×. (B.24)

Now, for (R, q) ∈ SO(3)×Q, let λΘ
min(R, q) and λΘ

max(R, q) denote, respectively, the small-

est and largest eigenvalue of Θ(R, q)Θ(R, q)>, and let the constants λ = min
SO(3)×Q

(λΘ
min(R, q))

and λ = max
SO(3)×Q

(λΘ
max(R, q)). It is clear that λ, λ > 0 by the fact that Θ(R, q) is full

rank. Then, from (B.24) and using (2.80)-(2.82), one can show that

‖∇(Ψ1,A ◦ Γ)(R, q)‖2
F =

1

2

∥∥Θ(R, q)>ψ(AΓ(R, q))
∥∥2 ≤ 1

2
λ ‖ψ(AΓ(R, q))‖2

≤ 2λ(λE(A)
max )2α(A,Γ(R, q))|Γ(R, q)|2I

and

‖∇(Ψ1,A ◦ Γ)(R, q)‖2
F =

1

2

∥∥Θ(R, q)>ψ(AΓ(R, q))
∥∥2 ≥ 1

2
λ ‖ψ(AΓ(R, q))‖2

≥ 2λ(λ
E(A)
min )2α(A,Γ(R, q))|Γ(R, q)|2I

where α(A,Γ(R, q)) is given by

α(A,Γ(R, q)) = 1− |Γ(R, q)|2I cos2(u,E(A)u) (B.25)

such that u is the axis of rotation of Γ(R, q). Define the set of parameters T1 =

(Ψ1,A ◦ Γ,Q, δ1). Now, let us show that α(A,Γ(R, q)) > 0 for all (R, q) ∈ FT1 . First,

using the results from the proof of Lemma 3.3.13 provided in Appendix A.10, more pre-

cisely equations (A.23) and (A.28) one obtains for all undesired critical points (R, q) ∈
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Γ−1(Ra(π, ERv (A)))

Ψ1,A ◦ Γ(R, q)−min
p∈Q

Ψ1,A ◦ Γ(R, p)

= 8 sin2(θ/2)(1− sin2(θ/2))∆(v, u) = σ(k, λE(A)
v ,∆(v, u)),

where v is some eigenvector of A and the function σ(·, ·, ·) is defined as follows

σ(k, λ,∆) = 8k2V̄ (k, λ,∆)2(1− k2V̄ (k, λ,∆)2)∆, (B.26)

V̄ (k, λ,∆) =
−1 +

√
1 + 64k2∆λ

8k2∆
. (B.27)

Moreover, by direct differentiation of the function σ(k, λ,∆) with respect to its argu-

ments, it is not difficult to show that the partial derivatives are positive and, therefore,

one obtains

σ(k, λE(A)
v ,∆(v, u)) ≥ σ(k, λ

E(A)
min ,∆(u)) > 0, (B.28)

where ∆(u) = mini∈{1,2,3}∆(vi, u). Therefore, one concludes that

∀(R, q) ∈ FT1 , Γ(R, q) /∈ Ra(π, ERv (A)). (B.29)

This is equivalent to say that for all (R, q) ∈ FT1 one has |Γ(R, q)| < 1 if cos2(u,E(A)u) <

1. Therefore, α(A,Γ(R, q)) > 0 for all (R, q) ∈ FT1 . Finally, one concludes that Ψ1,A ◦ Γ

satisfies (3.43). The last condition (3.44) is naturally satisfied since D = SO(3)×Q. The

proof of exp-synergism for Ψ1,A ◦ Γ is complete. Following similar steps as above, the

proof of exp-synergism for Ψ2,A ◦ Γ can be conducted.

B.6 Proof of Proposition 3.4.3

In view of (3.75) and (3.84), the angular velocity error ω̃ satisfies

IB ˙̃ω = IBω × ω + uτ − IBω̇d (B.30)

= IBω × ω̃ + IBω̃ × ωd + IBωd × ωd + uτ − Jω̇d (B.31)

= [IBω]×ω̃ − (K2 + [ωd]×IB)ω̃ −R>d ψ(K1R̃). (B.32)
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Note that the term [IBω]×ω̃ in the last equation is passive with respect to ω̃. Consider

the following Lyapunov function candidate

V(R̃, ω̃) =
1

2
tr(K1(I − R̃)) +

1

2
ω̃>IBω̃. (B.33)

Using (2.72), (3.79), (B.32) and Assumption 3.4.2 one obtains

V̇ = −ω̃>(K2 + [ωd]×IB)ω̃ ≤ −(λK2
min − λIBmaxcωd)‖ω̃‖2 ≤ −λ‖ω̃‖2 ≤ 0, (B.34)

where λ is a positive constant satisfying λK2
min − λIBmaxcωd ≥ λ > 0 which exists thanks to

condition (3.85). Therefore, one concludes that the equilibrium point (R̃, ω̃) = (I, 0) is

stable and that the angular velocity error ω̃ is bounded (note that R̃ is naturally bounded

since SO(3) is compact). Since, by assumption, the desired angular velocity is bounded

it follows that the angular velocity ω = ω̃+ωd is also bounded. Let us denote by cω and

cω̃ the upper bound on the norm of ω and ω̃, respectively. This implies that ˙̃ω is also

bounded and therefore one can easily show that V̈ is bounded. By invoking Barbalat’s

Lemma it follows that V̇ must converge to zero and therefore ω̃ → 0 as well. Moreover,

one can show that ¨̃ω is bounded and using again Barbalat’s Lemma one has ˙̃ω → 0 which

leads to conclude that ψ(K1R̃) tends to zero in view of (B.32). Therefore the attitude

error must converge either to the desired equilibrium (R̃, ω̃) = (I, 0) or to one of the

undesired equilibria R̃ ∈ Ra(π, ER
3

v (A)). Now, let us show that the desired equilibrium

is exponentially stable. The set S = {(R̃, ω̃) : V(R̃, ω̃) ≤ V(R̃(0), ω̃(0))} is an invariant

set for the closed-loop system. However, in view of (2.80), one has

2λ
E(K1)
min |R̃|2I ≤

1

2
tr(K1(I − R̃)) ≤ V(R̃, ω̃) ≤ V(R̃(0), ω̃(0)) < 2λ

E(K1)
min , (B.35)

which leads to conclude that |R̃(t)|2I < 1 for all t ≥ 0. Now, consider the cross term

X = ψ(K1R̃)>RdIBω̃. The time derivative of X along the trajectories of (3.79) and

(B.32) satisfies

Ẋ = ψ(K1R̃)>Rd

(
[IBω]×ω̃ − (K2 + [ωd]×IB)ω̃ −R>d ψ(K1R̃)

)
+

ω̃>JR>d E(K1R̃)Rdω̃ + ψ(K1R̃)>Rd[ωd]×IBω̃, (B.36)

where (2.73) has been used. Moreover using (2.70) one has ‖E(K1R̃)‖F ≤ ‖E(K1)‖F :=

cE and using (2.80)-(2.84) one has ‖ψ(K1R̃)‖ ≤ 2λ
E(K1)
max |R̃|I which implies that

Ẋ ≤ −‖ψ(K1R̃)‖2 + 2λE(K1)
max |R̃|I‖ω̃‖

(
cωλ

IB
max + λK2

max

)
+ cEλ

IB
max‖ω̃‖2. (B.37)
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On the other hand, since |R̃|I < 1 for all times, it follows that there exists ε > 0

such that 1 − |R̃|2I ≥ ε and hence by using (2.80)-(2.82) one obtains that ‖ψ(K1R̃)‖2 ≥
4ε(λ

E(K1)
min )2|R̃|2I . This leads to conclude that there exist ς1, ς2, ς3 > 0 such that

Ẋ ≤ −ς1|R̃|2I + ς2‖ω̃‖2 + 2ς3|R̃|I‖ω̃‖. (B.38)

Now, consider the following complete Lyapunov function candidate

W = V(R̃, ω̃) + µX, µ > 0. (B.39)

Again, using (2.80) and the fact that ‖ψ(K1R̃)‖ ≤ 2λ
E(K1)
max |R̃|I , one can show that

1

2
[|R̃|I ‖ω̃‖]M2[|R̃|I ‖ω̃‖]> ≤W ≤ 1

2
[|R̃|I ‖ω̃‖]M2[|R̃|I ‖ω̃‖]> (B.40)

where the matrices M1 and M2 are given by

M1 =

[
4λ

E(K1)
min −µλE(K1)

max λJmax

−µλE(K1)
max λJmax λJmin

]
, M2 =

[
4λ

E(K1)
max µλ

E(K1)
max λJmax

µλ
E(K1)
max λJmax λJmax

]
. (B.41)

The time derivative of W, in view of (B.34) and (B.38), satisfies

Ẇ ≤ −[|R̃|I ‖ω̃‖]

[
µς1 −µς3
−µς3 λ− µ

]
︸ ︷︷ ︸

M3

[|R̃|I ‖ω̃‖]>. (B.42)

The matrices M1,M2 and M3 are all positive definite provided that the scalar µ satisfies

0 < µ <

2

√
λ
E(K1)
min λJmin

λ
E(K1)
max λJmax

,
ς1λ

ς1ς2 + ς2
3

 .

Note that the scalar µ is only used for analysis purposes and does not have an effect on

the applied control. Finally, in view of (B.40)-(B.42), one has Ẇ ≤ −2(λM3
min/λ

M3
max)W

and, therefore, the vector [|R̃|I , ‖ω̃‖]> is exponentially converging to zero which shows

that the equilibrium (R̃, ω̃) = (I, 0) is exponentially stable.
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B.7 Proof of Proposition 4.2.6

Consider the trace function Ψ1,A defined in (3.28) for some A such that E(A) > 0 and

let Φ = Ξ = Ψ1,A. Clearly in view of (2.80) the potential function Ψ1,A satisfies the first

condition of Theorem 4.2.4. Moreover, the potential function Ψ1,A is smooth and does

not have any singular points which implies that the third condition of Theorem 4.2.4 is

also satisfied. It remains to show the second condition of Theorem 4.2.4. This condition

implies that the gradient of Φ does not vanish except at the identity rotation R̃ = I

during the flows of F̂ . Therefore, it is necessary to guarantee that all the undesired

critical points of Ψ1,A are inside the jump set Ĵ . Let R̃ = Ra(π, v) where v ∈ ERv (A)

which represents an undesired critical point for Ψ1,A, see (3.32). Therefore, using (2.74),

one has Ψ1,A(R̃) = 2v>E(A)v = 2λ
E(A)
v . Moreover, in view of Lemma 2.2.8, one has

Ψ1,A(R̃Ra(θ, u)) = 2λE(A)
v − 2 sin2(θ/2)∆(v, u). (B.43)

Hence, it follows that

Ψ1,A(R̃)−min
q∈Q

Ψ1,A(R̃Ra(θ, uq)) = 2 sin2(θ/2) max
q∈Q

∆(v, uq), (B.44)

where ∆(v, u) = v>(E(A) + [u]×E(A)[u]×)v = λ
E(A)
v − (u × v)>E(A)(u × v). Three

different cases presents:

• A has the same positive eigenvalues λA1 = λA2 = λA3 = λ > 0. In this case ERv (A) =

S2 and therefore ∆(v, uq) = λ(1 − ‖uq × v‖2) = λ cos2∠(uq, v). It follows that∑3
q=1 ∆(v, uq) = λ

∑3
q=1 cos2∠(uq, v) = λ since {uq}q∈{1,2,3} forms an orthonormal

basis. Hence maxq∈Q∆(v, uq) ≥ 1
3

∑3
q=1 ∆(v, uq) = λ/3 for all v ∈ S2.

• A has two distinct eigenvalues λA1 = λA2 and λA3 > 0. In this case ERv (A) =

(span{u1, u2} ∩ S2) ∪ {u3}. Let v ∈ span{u1, u2} ∩ S2 such that v = α1u1 + α2u2.

This implies that u1 × v = α2u3, u2 × v = −α1u3 and u3 × v = −α2u1 + α1u2.

Hence, ∆(v, u1) = λ
E(A)
u1 − α2

2λ
E(A)
u3 , ∆(v, u2) = λ

E(A)
u1 − α2

1λ
E(A)
u3 and ∆(v, u3) = 0.

It follows that maxq∈Q∆(v, uq) ≥ 1
3

∑3
q=1 ∆(v, uq) = 1

3
(2λ

E(A)
u1 − λE(A)

u3 ) = λA3 /3. In

the case where v = u3, then it is clear that maxq∈Q∆(v, uq) = ∆(v, u3) = λ
E(A)
u3 =

1
2
(λA1 + λA2 ) = λA1 .

• A has three distinct eigenvalues 0 ≤ λA1 < λA2 < λA3 . In this case ERv (A) =

{u1, u2, u3}. Let v = up for some p ∈ Q. Consequently maxq∈Q∆(v, uq) =

∆(up, up) = λ
E(A)
up ≥ λ

E(A)
min = 1

2
(λA1 + λA2 ).
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By choosing 0 < δ < maxq∈Q∆(v, uq), across all the possible values of v ∈ ERv (A), it

follows that all the undesired critical points of Ψ1,A are inside the jump set Ĵ defined in

(4.17). Now, in view of (2.71) and (2.80)-(2.82) one has

‖∇Ψ1,A(R̃)‖2
F =

1

4
‖Pso(3)(AR̃)‖2

F =
1

2
‖ψ(AR̃)‖2 ≤ 4(λE(A)

max )|R̃|2I (B.45)

≥ 4(λ
E(A)
min )α(A, R̃)|R̃|2I (B.46)

where α(A, R̃) = 1 − |R̃|2I cos2(v,E(A)v) where v is the rotation axis of R̃. However,

α(A, R̃) = 0 implies that |R̃|2I = 1 and v ∈ Ev(A). In this case R̃ = Ra(π, v) which is

a critical point of Ψ1,A. It follows that α(A, R̃) = 0 implies R̃ ∈ Ĵ . Therefore, for all

R̃ ∈ F̂ one has α(A, R̃) > 0. Consequently, there exist α3, α4 > 0 such that

α4|R̃|2I ≤ ‖∇Ψ1,A(R̃)‖2
F ≤ α4|R̃|2I . (B.47)

Therefore all the conditions of Theorem 4.2.4 are satisfied with Φ = Ξ = Ψ1,A.

B.8 Proof of Proposition 4.2.7

Since Φ(R̃) = Ψ1(R̃) = 1
2
tr(I − R̃) = 2|R̃|2I then it is clear that item i) of Theorem 4.2.4

is satisfied. Moreover, in view of (2.71), one has

〈〈∇Φ(R̃),∇Ξ(R̃)〉〉 = 〈〈∇Ψ1(R̃),∇Ψ1,A(R̃)〉〉

= 〈〈RPso(3)(R̃), RPso(3)(AR̃)〉〉 (by (2.71))

= 〈〈Pso(3)(R̃),Pso(3)(AR̃)〉〉

= 2ψ(R̃)>ψ(AR̃) (by (2.56))

= 2ψ(R̃)>E(A)ψ(R̃) (by (2.83))

≤ 2λE(A)
max ‖ψ(R̃)‖2 ≤ 8λE(A)

max |R̃|2I (by (B.20))

≥ 2λ
E(A)
min ‖ψ(R̃)‖2 = 8λ

E(A)
min |R̃|2I(1− |R̃|2I) (by (B.20)).

However, it is shown in the proof of Proposition 4.2.6 that for all R̃ ∈ Ra(π,S2) (case

where A = I) one has R̃ ∈ Ĵ if δ is chosen such that 0 < δ < δ̄ = 2 sin2(θ/2)/3. It

follows that for all R̃ ∈ F̂ one has tr(R̃) > −1 or, equivalently, 1 − |R̃|2I > 0 which

implies that item ii) of Theorem 4.2.4 is also satisfied. Item iii) is naturally verified since

Ξ = Ψ1,A is smooth and does not have any singular points. The last item also can be

checked by noticing that ‖∇Ψ1,A(R̃)‖F = ‖Pso(3)(AR̃)‖F =
√

2‖ψ(AR̃)‖ ≤ 2
√

2λ
E(A)
max |R̃|I
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where (2.80)-(2.82) have been used. Therefore, all conditions of Theorem 4.2.4 are met.



Appendix C

Proofs of Theorems

C.1 Proof of Theorem 2.3.3

• The proof of item i) follows directly from Theorem 2.3.2 since all the conditions of

the theorem are satisfied.

• Let us show item ii). Assume that λ2 ≤ 0, λ1 > −λ2γ and j ≤ γt + J for some

γ ≥ 0 and J ∈ N. Define the set

Ω = {x ∈M : V(x) < αµp}. (C.1)

Then, in view of (2.99), for all x ∈ Ω one has |x|pA ≤ 1
α
V(x) < µp which implies

that |x|A < µ and, thus, Ω ⊆ (A + µB). Consider the evolution of a solution x

satisfying

|x(0, 0)|A < exp((λ2(J + 1)− λJ)/p)(α/ᾱ)
1
pµ (C.2)

where λ = (λ1 + λ2γ)/(1 + γ) > 0. Note that |x(0, 0)|A < µ since the factor

exp((λ2(J+1)−λJ)/p)(α/ᾱ)
1
p in (C.2) is less than 1. Let us show that |x(t, j)|A < µ

for all (t, j) ∈ dom x. Assume that the solution x of (2.89) stays inside the set

(A + µB) up to (t, j) � (0, 0). It is sufficient to show that, for all δ ≥ 0 such that

(t + δ, j + 1) ∈ dom x, one has x(t + δ, j + 1) ∈ (A + µB) as well. It follows from

arguments similar to the comparison lemma [Cai and Teel, 2009, Lemma C.1] and

from (2.100)-(2.101) that

V(x(t, j)) ≤ exp(−(λ1t+ λ2j))V(x(0, 0)). (C.3)

156
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However, using j ≤ γt+ J , λ2 ≤ 0 and λ1 + γλ2 > 0, one obtains

−(λ1t+ λ2j) ≤ −(λ1 + λ2γ)t− λ2J (C.4)

≤ −(λ1 + λ2γ)

1 + γ
t− (λ1 + λ2γ)

1 + γ
γt− λ2J (C.5)

≤ −(λ1 + λ2γ)

1 + γ
t− (λ1 + λ2γ)

1 + γ
(j − J)− λ2J (C.6)

= −λ(t+ j) + (λ− λ2)J. (C.7)

It follows from (C.3) that

V(x(t, j)) ≤ exp((λ− λ2)J) exp(−λ(t+ j))V(x(0, 0)). (C.8)

Therefore, in view of (C.8), (2.99) and (C.2), one has V(x(t, j)) < α exp(λ2)µp ≤
αµp. Let tj+1 be the instant of time where the (j + 1)-th jump happens, i.e.

(tj+1, j), (tj+1, j+1) ∈ dom x. Thus, it is clear that (t, j) � (tj+1, j) � (tj+1, j+1) �
(t+ δ, j + 1). Since V is nonincreasing during the flows, by (2.100), it is clear that

V(x(tj+1, j)) ≤ V(x(t, j)) < α exp(λ2)µp < αµp. Thus x(tj+1, j) ∈ Ω which implies

that x(tj+1, j) ∈ (A+ µB). Therefore, in view of (2.101), one obtains

V(x(tj+1, j + 1)) ≤ exp(−λ2)V(x(tj+1, j)) < αµp. (C.9)

This again implies that x(tj+1, j + 1) ∈ (A+ µB). Repeating the above argument,

it is easy to show that x cannot leave the set (A+ µB) by flowing between the two

hybrid times (tj+1, j + 1) and (t + δ, j + 1). Therefore x(t + δ, j + 1) ∈ (A + µB).

We have just shown that, starting from an initial condition satisfying (C.2), one

has x(t, j) ∈ (A + µB) for all (t, j) ∈ dom x which implies that the bound (C.8)

holds for all (t, j) ∈ dom x as well. Finally, in view of (2.99) and (C.8), it follows

that if x(0, 0) satisfies (C.2), x(t, j) satisfies the following exponential bound

|x(t, j)|A ≤
[
ᾱ exp((λ− λ2)J)

α

] 1
p

exp(−λp−1(t+ j))|x(0, 0)|A. (C.10)

• Let us show item iii). Assume that λ1 ≤ 0, λ2 > −λ1γ and t ≤ γj + T for some

γ, T ≥ 0. Consider the evolution of a solution x satisfying

|x(0, 0)|A < exp((λ1(T + ε)− λT )/p)(α/ᾱ)
1
pµ (C.11)
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where λ = (λ2 + λ1γ)/(1 + γ) > 0 and ε > 0 is any strictly positive constant. Let

us show that |x(t, j)|A < µ for all (t, j) ∈ dom x. First, in view of (2.99) and

(C.11), one has V(x(0, 0)) < αµp which implies that x(0, 0) ∈ Ω with Ω defined

in (C.1). Since λ2 > 0, V is decreasing during the jumps, one concludes that x

cannot leave Ω by jumping. Let us verify that x cannot leave Ω by flowing as well.

Let j ∈ N such that tj+1 − tj > 0 and (tj, j), (tj+1, j) ∈ dom x. That’s to say, the

time interval [tj, tj+1], associated to the j-th jump, is not empty. If the solution

x is purely discrete then this j does not exist. However, in this case of discrete

solutions, exponential convergence is trivial since one has exponential decrease of

V(x) at every jump and no flow occurs. Assume, moreover, that x(t′, j′) ∈ (A+µB)

for all (t′, j′) � (t, j) ≺ (tj+1, j) where (t, j) ∈ dom x is a hybrid time between the

two hybrid times (tj, j) and (tj+1, j) . Then, from (2.100)-(2.101), one has

V(x(t, j)) ≤ exp(−(λ1t+ λ2j))V(x(0, 0)). (C.12)

However, using t ≤ γj + T , λ1 ≤ 0 and λ2 + γλ1 > 0, one obtains

−(λ1t+ λ2j) ≤ −(λ2 + λ1γ)j − λ1T (C.13)

≤ −(λ2 + λ1γ)

1 + γ
j − (λ2 + λ1γ)

1 + γ
γj − λ1T (C.14)

≤ −(λ2 + λ1γ)

1 + γ
j − (λ2 + λ1γ)

1 + γ
(t− T )− λ1T (C.15)

= −λ(t+ j) + (λ− λ1)T. (C.16)

It follows that

V(x(t, j)) ≤ exp((λ− λ1)T ) exp(−λ(t+ j))V(x(0, 0)). (C.17)

It is clear that x(t, j) is still inside the set Ω. Now, let (t + ε′, j) ∈ dom x, with

0 < ε′ < ε, be a hybrid time after a small enough flow has occurred. Assume,

moreover, that V(x(t + ε′, j)) = αµp which corresponds to the boundary of the

open set Ω. Now, by integrating (2.100) between (t, j) and (t+ ε′, j), one has

V(x(t+ ε′, j)) ≤ exp(−λ1ε
′)V(x(t, j)). (C.18)
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Therefore, combining (C.11), (C.17) and (C.18), one obtains

V(x(t+ ε′, j)) < exp(λ1(ε− ε′))αµp ≤ αµp (C.19)

which contradicts the assumption that V(x(t + ε′, j)) = αµp. Therefore, x cannot

leave Ω by flowing. Hence, it is true that x(t, j) ∈ Ω ⊆ (A + µB) for all (t, j) ∈
dom x. This implies that the bound (C.17) holds as well for all times and jumps.

Consequently, using again (2.99), one deduces that

|x(t, j)|A ≤
[
ᾱ exp((λ− λ1)T )

α

] 1
p

exp(−λp−1(t+ j))|x(0, 0)|A. (C.20)

C.2 Proof of Theorem 3.3.1

Assume that R(0) ∈ ΠSO(3) which implies, in view of the fact that Ra(π,S2) is a repeller,

that R(t) ∈ ΠSO(3) for all t ≥ 0. Therefore, the inverse map Z(R), defined in (2.32),

exists for all t ≥ 0 such that Rr(Z(R(t))) = R(t). Consequently, in view of (2.35), (2.79)

and (3.31), one obtains

d

dt
Z(R) =

1

2

(
I + [Z(R)]× + Z(R)Z(R)>

)
ω = −k

(
I + [Z(R)]× + Z(R)Z(R)>

)
ψ(AR)

= −k
(
I + [Z(R)]× + Z(R)Z(R)>

)(I − [Z(R)]×)

1 + ‖Z(R)‖2
E(A)Z(R)

= −k
(
I − [Z(R)]2× + Z(R)Z(R)>

)
(1 + ‖Z(R)‖2)

E(A)Z(R) = −kE(A)Z(R), (C.21)

where [Z(R)]2× = −‖Z(R)‖2I+Z(R)Z(R)> is used to obtain the last equality. By simple

integration of (C.21), it follows that Z(R(t)) = e−kE(A)tZ(R(0)), for all t ≥ 0, which

yields (3.34).

C.3 Proof of Theorem 3.3.8

Let Φ ∈ PD, where D ⊆ SO(3) × Q, be an exp-synergistic potential function with gap

exceeding δ. Define the state X = (R, q) ∈ SO(3) × Q. The closed-loop system (3.27)
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with (3.49) is written as

Ẋ = F(X) =

[
−∇Φ(R, q)

0

]
X ∈ FT , (C.22)

X+ ∈ J(X) =

[
R

arg minm∈QΦ(R,m)

]
X ∈ JT . (C.23)

Then, for all (R, q) ∈ FT , the time derivative of Φ along (C.22) satisfies

Φ̇(R, q) = 〈∇Φ(R, q), Ṙ〉R = −‖∇Φ(R, q)‖2
F ≤ −α3|R|2I ≤ −

α3

α2

Φ(R, q)

where (2.13) and (3.42)-(3.43) are used. Moreover, for all (R, q) ∈ JT , one has

Φ(R+, q+) = min
m∈Q

Φ(R,m) ≤ Φ(R, q)− δ < Φ(R, q).

The closed-loop system satisfies the following:

• The basic hybrid assumptions (C1)-(C3) (provided in Section 2.3). In fact, the sets

FT and JT are closed. The flow map F is continuous and single-valued and, there-

fore, locally bounded, outer semicontinuous, and the set F(X) is nonempty and

convex. The jump map J is outer semicontinuous, locally bounded, and nonempty.

• Every solution is precompact (complete and bounded). In fact, the configuration

manifold SO(3)×Q is compact and therefore all solutions are bounded preventing

finite escape time. Moreover, the space SO(3)×Q is viable under the flow (i.e. there

exists a nontrivial solution from any initial condition in FT ) and J(JT ) ⊂ FT ∪JT .

It follows from [Goebel and Teel, 2006, Proposition 2.4] that every solution is

complete.

• JT ∩ J(JT ) = ∅ since every jump maps the state (R, q) to the flow set FT .

Therefore, using [Sanfelice et al., 2007, Lemma 2.7], one concludes that there exists γ̄ > 0

such that tj+1 − tj ≥ γ̄ for all j ≥ 1 and (tj, j), (tj+1, j) ∈ dom(R, q). This means that

there is a minimum elapsed time between every two possible jumps. This leads to the

fact that t ≥ γ̄(j − 1) for all (t, j) ∈ dom x. Consequently, all the conditions of item ii)

of Theorem 2.3.3 are met, with λ1 = α3/α2, λ2 = 0, γ = 1/γ̄, J = 1, and one concludes

that the set A1 is globally exponentially stable.
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C.4 Proof of Theorem 3.4.4

Define the state X = (R̃, q, IBω̃, Rd, ωd) ∈ SO(3)×Q× R3 × SO(3)× R3. Note that Rd

and ωd are included in the state X so that one can write the closed-loop system as an

autonomous hybrid system. One can show that X follows the dynamics of an autonomous

hybrid system written in the general form (2.89) with the following data

F(X) =


R̃[Rdω̃]×

0

IBω̃ × ω̃ + IBωd × ω̃ −K2ω̃ −R>d ψ(R̃>∇Φ(R̃, q))

Rd[ωd]×

cω̇dB

 , (C.24)

J(X) =
[
R̃> JT (R̃) (IBω̃)> R>d ω>d

]>
, (C.25)

F = FT × R3 × SO(3)× R3, (C.26)

J = JT × R3 × SO(3)× R3. (C.27)

Consider the following Lyapunov function candidate

V(X) =
1

2
Φ(R̃, q) +

1

2
ω̃>IBω̃. (C.28)

The time derivative of the function V along the flows of F satisfies

V̇(X) = −ω̃>K2ω̃ ≤ 0. (C.29)

Moreover, for all X ∈ J and G ∈ J(X), one has

V(G)−V(X) =
1

2
(min
m∈Q

Φ(R̃,m)− Φ(R̃, q)) ≤ −δ
2
< 0. (C.30)

It follows that V is nonincreasing during both the flows and jumps. Thus, the angular

velocity error ω̃ is uniformly bounded. Also, since ωd is bounded by assumption, it

follows that ω = ω̃ + ωd is bounded. Let us denote by cω, cω̃ the upper bound on

the angular velocity and the angular velocity error, respectively. To show exponential

stability, consider the following Lyapunov function candidate

W(X) =
1

2
Φ(R̃, q) +

1

2
ω̃>IBω̃ + µω̃>JR>d ψ(R̃>∇Φ(R̃, q)), (C.31)
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for some positive constant µ. In view of (3.42)-(3.43), one can show that W satisfies

1

2

[
|R̃|I
‖ω̃‖

]> [
α1 −µλIBmax

√
α4

2

? λIBmin

]
︸ ︷︷ ︸

M1

[
|R̃|I
‖ω̃‖

]
≤W(X) ≤ 1

2

[
|R̃|I
‖ω̃‖

]> [
α2 µλIBmax

√
α4

2

? λIBmax

]
︸ ︷︷ ︸

M2

[
|R̃|I
‖ω̃‖

]
.

(C.32)

For all X ∈ F , the time derivative of W(X) along (C.24)-(C.27) is given by

Ẇ(X) = V̇(X) + µ(IBω × ω̃ −K2ω̃ −R>d ψ(R̃>∇Φ(R̃, q)))>R>d ψ(R̃>∇Φ(R̃, q))

− µω̃>J [ωd]×R
>
d ψ(R̃>∇Φ(R̃, q)) + µω̃>JR>dD(R̃, q)Rdω̃

≤ −µ‖ψ(R̃>∇Φ(R̃, q))‖2 − ω̃>K2ω̃ + µλIBmaxcD‖ω̃‖2

+
(
λK2

max + λIBmax(cω + cωd)
)
‖ψ(R̃>∇Φ(R̃, q))‖‖ω̃‖

≤ −µα3

2
|R̃|2I − (λK2

min − µλIBmaxcD)‖ω̃‖2 + µ(λIBmax(cω + cωd) + λK2
max)

√
α4

2
|R̃|I‖ω̃‖

where the fact that

ψ̇(R̃>∇Φ(R̃, q)) = D(R̃, q)Rdω̃, (C.33)

for some matrix D(R̃, q) ∈ R3×3, has been used. The matrix D(·, ·) has a bounded norm,

by some cD > 0, thanks to the compactness of SO(3). As a result, and in view of (3.43),

one deduces that

Ẇ(X) ≤ −1

2

[
|R̃|I
‖ω̃‖

]> [
µα3 −µ(λIBmax(cω + cωd) + λK2

max)
√

α4

2

? 2(λK2
min − µcD)

]
︸ ︷︷ ︸

M3

[
|R̃|I
‖ω̃‖

]
. (C.34)

It can be verified that there exists µ̄ > 0 such that matrices M1,M2 and M3 are positive

definite for any 0 < µ < µ̄. Therefore, from (C.32)-(C.34) one has Ẇ(X) ≤ −λ1W(X),

for all X ∈ F , where λ1 = λM3
min/λ

M2
max. Moreover, for all X ∈ J , if the constant µ is

chosen sufficiently small such that µ < δ

8cω̃λ
IB
max

√
α4/2

, one obtains

W(X+)−W(X) =
1

2

(
Φ(R̃, q+)− Φ(R̃, q)

)
+ µω̃>JR>d ψ(R̃>∇Φ(R̃, q))|q+

q

≤− 1

2
δ + 2µcω̃λ

IB
max

√
α4/2 < −

1

4
δ < 0.
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Finally, using similar argument as in the proof of Theorem 3.3.8, one can show the

existence of γ̄ > 0 satisfying t ≥ γ̄(j − 1) for all (t, j) ∈ domX. Therefore, using item ii)

from Theorem 2.3.3 with λ1 = λM3
min/λ

M2
max, λ2 = 0, γ = 1/γ̄ and J = 1, one can conclude

that the set A2 is globally exponentially stable.

C.5 Proof of Theorem 3.4.5

Define x̃ = x − ψ(R̃>∇Φ(R̃, q)) and let X = (R̃, q, IBω̃, x̃, Rd, ωd) ∈ SO(3) × Q × R3 ×
R3 × SO(3) × R3. Then, using (3.74)-(3.75), (3.77), (3.87)-(3.88) and (C.33), one can

show that X follows the dynamics of an autonomous hybrid system written in the general

form (2.89) with the following data

F(X) =



R̃[Rdω̃]×

0

IBω̃ × ω̃ + IBωd × ω̃ −K2ω̃ −R>d x̃−R>d ψ(R̃>∇Φ(R̃, q))

−K3x̃−D(R̃, q)Rdω̃

Rd[ωd]×

cω̇dB


, (C.35)

J(X) =



R̃

JT (R̃)

IBω̃

x̃+ ψ(R̃>∇Φ(R̃, q))− ψ(R̃>∇Φ(R̃,JT (R̃)))

Rd

ωd


, (C.36)

F = FT × R3 × R3 × SO(3)× R3, (C.37)

J = JT × R3 × R3 × SO(3)× R3. (C.38)

First, since Φ is exp-synergistic then, in view of (3.43), one has ‖ψ(R̃>∇Φ(R̃, q))‖ ≤√
α4/2. If follows from (3.88) and the boundedness of ψ(R̃>∇Φ(R̃, q)) that that for all

(t, j) ∈ domX

‖x(t, j)‖ ≤ e−λ
K3
mint‖x(0, 0)‖+

λK3
max

λK3
min

√
α4

2
≤ cx +

λK3
max

λK3
min

√
α4

2
. (C.39)
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Therefore, x̃ is also bounded such that for all (t, j) ∈ domX

‖x̃(t, j)‖ ≤ cx̃ := cx +

(
λK3

max

λK3
min

+ 1

)√
α4

2
. (C.40)

Let µ2 > 0 be a positive scalar satisfying

µ2 ≤
δ

4c2
x̃

, (C.41)

(1 + µ2cD)2

µ2λ
K2
min

< λK3
min. (C.42)

Consider the following Lyapunov function candidate

V(X) =
1

2
Φ(R̃, q) +

1

2
ω̃>IBω̃ +

1

2
µ2‖x̃‖2. (C.43)

The time derivative of the function V along the flows of F satisfies

V̇(X) = −ω̃>K2ω̃ − µ2x̃
>K3x̃+ (1 + µ2cD)‖ω̃‖‖x̃‖ (C.44)

= −

[
‖ω̃‖
‖x̃‖

]> [
λK2

min −(1 + µ2cD)/2

? µ2λ
K3
min

][
‖ω̃‖
‖x̃‖

]
(C.45)

which, under the gain condition (C.41)-(C.42), is negative semidefinite such that V̇(X) ≤
0. Moreover, for all X ∈ J one has

V(X+)−V(X) =
1

2
(min
m∈Q

Φ(R̃,m)− Φ(R̃, q)) +
1

2
µ2‖x̃‖2|q+q (C.46)

≤ −δ
2

+ µ2c
2
x̃ ≤ −

δ

4
< 0. (C.47)

It follows that V is nonincreasing during both the flows and jumps. Thus all signals are

bounded, including ω̃, ω and x̃. Let us denote by cω and cω̃ the upper bounds on the

norm of the angular velocity ω and the angular velocity error ω̃. Let µ1 > 0 be a scalar

satisfying

µ1 < min

{
[2α1λ

IB
min]

1
2

λIBmax
√
α4

,
δ/8
√

2

cω̃λ
IB
max
√
α4

,
µ2α3λ

K3
min

α4

,
α3λ

K2
min

α4(λIBmax(cω + cωd) + λK2
max) + 2α3cD

}
.

(C.48)
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Now, consider the complete Lyapunov function candidate

W(X) =
1

2
Φ(R̃, q) +

1

2
ω̃>IBω̃ + µ1ω̃

>JR>d ψ(R̃>∇Φ(R̃, q)) +
1

2
µ2‖x̃‖2. (C.49)

Note that the first three terms of W(X) are similar to the Lyapunov function defined

(C.31) which satisfies (C.32). Therefore, under the condition (C.48) on the scalar µ1,

one guarantees that W(X) is positive definite with respect to A3. Moreover, it is not

difficult to show that the time derivative of W satisfies, during the flows of F , the bound

Ẇ ≤ −1

2
z>1 M1z1 −

1

2
z>2 M2z2 −

1

2
z>3 M3z3, (C.50)

where

M1 =

[
µ1

α3

2
−µ1(λIBmax(cω + cωd) + λK2

max)
√

α4

2

? λK2
min − 2µ1cD

]
,

M2 =

[
µ1

α3

2
−µ1

√
α4

2

? µ2λ
K3
min

]
,

M3 =

[
λK2

min −(1 + µ2cD)

? µ2λ
K3
min

]
,

and z1 = [|R̃|I , ‖ω̃‖]>, z2 = [|R̃|I , ‖x̃‖]> and z3 = [‖ω̃‖, ‖x̃‖]>. Condition (C.48) on

µ1 ensures that the matrices M1 and M2 are positive definite. Moreover, under the gain

condition (C.41)-(C.42) one ensures that M3 is positive definite as well. In this case there

exists λ1 such that Ẇ(X) ≤ −λ1W(X) for all X ∈ F . Between jumps, one has, for all

X ∈ J ,

W(X+)−W(X) = −1

2
(Φ(R̃, q+)− Φ(R̃, q)) + µ1ω̃

>JR>d ψ(R̃>∇Φ(R̃, q))|q+

q +
µ2

2
‖x̃‖2|q+

q

≤ −δ
2

+ 2µ1cω̃λ
IB
max

√
α4/2 + µ2cx̃ ≤ −

δ

8

where, again, the conditions (C.48) and (C.41) have been used. Finally, using similar

argument as in the proof of Theorem 3.3.8, one can show the existence of γ̄ > 0 satisfying

t ≥ γ̄(j − 1) for all (t, j) ∈ domX. Therefore, using item ii) from Theorem 2.3.3 with

λ1 > 0, λ2 = 0, γ = 1/γ̄ and J = 1, one concludes that the set A3 is globally exponentially

stable.
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C.6 Proof of Theorem 4.2.3

In view of (4.1), (4.2) and (4.7), one obtains

˙̃R = ṘR̂> −R ˙̂
R> = R[ω]×R̂

> −R
[
ωy − b̂ω +K1R̂

>w(R̃, q)
]
×R̂
>

= R̃
[
− R̂b̃ω − R̂K1R̂

>w(R̃, q)
]
×,

where identity (2.61) has been used to obtain the last equality. Define the state X =

(R̃, q, b̃ω, R̂, ω) ∈ SO(3)×Q×R3 × SO(3)×R3. Then, one can show that X follows the

dynamics of an autonomous hybrid system written in the general form (2.89) with the

following data

F(X) =


R̃[−R̂b̃ω − R̂K1R̂

>w(R̃, q)]×

0

k2R̂
>w(R̃, q)

R̂[ω + b̃ω +K1R̂
>w(R̃, q)]×

cω̇B

 , (C.51)

J(X) =
[
R̃> JT (R̃) b̃>ω R̂> ω>

]>
, (C.52)

F = FT × R3 × SO(3)× R3, (C.53)

J = JT × R3 × SO(3)× R3. (C.54)

Consider the following Lyapunov function candidate

V(X) =
1

2
Φ(R̃, q) +

1

2k2

‖b̃ω‖2 (C.55)

The time derivative of V along the flows of (C.51) satisfies

V̇(X) = ψ(R̃>∇Φ(R̃, q))>(−R̂b̃ω − R̂K1R̂
>w(R̃, q)) + b̃>ω R̂

>w(R̃, q) (C.56)

≤ −λK1
min‖w(R̃, q)‖2 ≤ −1

2
λK1

minα3|R̃|2 ≤ 0 (C.57)

where (3.44) has been used. Moreover, for all X ∈ J and G ∈ J(X), one has

V(G)−V(X) =
1

2
(Φ(R̃, q+)− Φ(R̃, q)) ≤ −δ

2
< 0. (C.58)

It follows that V is nonincreasing during both the flows and jumps. Thus all signals are

bounded, including b̃ω. Denote by c̄b > 0 the bound on the norm of b̃ω. Define the cross



C.6. Proof of Theorem 4.2.3 167

term X(X) = b̃>ω R̂
>ψ(R̃). In view of (C.51), the time derivative of X during the flows of

F is

Ẋ(X) = b̃>ω R̂
>E(R̃)

(
−R̂b̃ω − R̂K1R̂

>w(R̃, q))
)
− b̃>ω [ω + b̃ω +K1R̂

>w(R̃, q)]×R̂
>ψ(R̃)+

k2R̂
>w(R̃, q)>R̂>ψ(R̃).

In addition, one has the following bound

−b̃>ω R̂>E(R̃)R̂b̃ω = −‖b̃ω‖2 + b̃>ω R̂
>(I − E(R̃))R̂b̃ω

≤ −‖b̃ω‖2 +
1

2
tr(I − R̃)‖b̃ω‖2 (by (2.67))

≤ −‖b̃ω‖2 + 2c̄2
b |R̃|2I (by (2.38))

Moreover, since Φ is exp-synergistic it satisfies (3.44) which implies that ‖w(R̃, q)‖ ≤√
α4/2|R̃|I . It follows that

−b̃>ω R̂>E(R̃)R̂K1R̂
>w(R̃, q) ≤

√
3λK1

max

√
α4/2|R̃|I‖b̃ω‖

−b̃>ω [ω + b̃ω +K1R̂
>w(R̃, q)]×R̂

>ψ(R̃) = −b̃>ω [ω +K1R̂
>w(R̃, q)]×R̂

>ψ(R̃)

≤ cω‖b̃ω‖‖ψ(R̃)‖+ λK1
max‖b̃ω‖‖ψ(R̃)‖‖w(R̃, q)‖

≤ 2cω‖b̃ω‖|R̃|I + 2λK1
maxc̄b

√
α4/2|R̃|2I , (by (B.20)).

Consequently, one deduces that there exist ς1, ς2 > 0 such that

Ẋ(X) ≤ −‖b̃ω‖2 + ς1|R̃|2I + ς2‖b̃ω‖|R̃|I , X ∈ F . (C.59)

Now, consider the following Lyapunov function candidate

W(X) = V(X) + µX(X), µ > 0. (C.60)

Since Φ satisfies (3.42) and in view of (B.20) one obtains the following lower and upper

bounds on W(X)

1

2
[|R̃|I ‖b̃ω‖]>

[
α1 −2µ

? k−1
2

][
|R̃|I
‖b̃ω‖

]
≤W(X) ≤ 1

2
[|R̃|I ‖b̃ω‖]>

[
α2 2µ

? k−1
2

][
|R̃|I
‖b̃ω‖

]

Define the distance |X|2A = |R̃|2I + ‖b̃ω‖2 from the set A to any point X on the manifold.

If µ is selected such that µ <
√
α1k

−1
2 /2 then it is clear from the above bound on W

that W(X) satisfies condition (2.99) of Theorem (2.3.3) with p = 2. Moreover, in view
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of (C.59) and (C.57) one deduces that

Ẇ(X) = −1

2
[|R̃|I ‖b̃ω‖]>

[
λK1

minα3 − 2µς1 −µς2
? 2µ

][
|R̃|I
‖b̃ω‖

]
, X ∈ F .

Assume that 0 < µ < 2λK1
minα3/(4ς1 + ς2

2 ). Then, there exists λ1 > 0 such that Ẇ(X) ≤
−λ1W(X) for all X ∈ F . Besides, for all X ∈ J and G ∈ J(X), one has

W(G)−W(X) = V(G)−V(X) =
1

2
(Φ(R̃, q+)− Φ(R̃, q)) ≤ −δ

2
. (C.61)

Therefore, one has W(X(t, j)) ≤W(X(0, 0))− δ
2
j which implies that j ≤ 2W(X(0, 0))/δ.

Hence, the number of jumps is bounded (finite) for all initial conditions. Moreover,

following steps as in the last part of the proof of Theorem 3.3.8, one can show the

existence of γ̄ > 0 satisfying t ≥ γ̄(j − 1) for all (t, j) ∈ domX. Therefore, using item ii)

from Theorem 2.3.3 with λ1 > 0, λ2 = 0, γ = 1/γ̄ and J = 1, one concludes that the set

A is globally exponentially stable.

C.7 Proof of Theorem 4.2.4

In order to write the closed-loop system as an autonomous system, let us define the state

X = (R̃, b̃ω, R̂, b̂ω, ω, t) ∈ SO(3) × R3 × SO(3) × R3 × R3 × R≥0. Note that the time t

is included as a state variable which has the trivial hybrid dynamics ṫ = 1 and t+ = t.

Then, in view of (4.1) and (4.14)-(4.17), one can show that X follows the dynamics of

an autonomous hybrid system written in the general form (2.89) with the following data

F(X) =



R̃[−R̂b̃ω − k1w(t, R̃)]×

Pcb(b̂ω, k2R̂
>w(t, R̃))

R̂[ω + b̃ω + k1R̂
>w(t, R̃)]×

−Pcb(b̂ω, k2R̂
>w(t, R̃))

cω̇B
1


, (C.62)

J(X) =
[
Ra(θ, uq)

>R̃> b̃>ω R̂>Ra(θ, uq) b̂>ω ω> t
]>
, (C.63)

F = F̂ × R3 × SO(3)× R3 × R3 × R≥0, (C.64)

J = Ĵ × R3 × SO(3)× R3 × R3 × R≥0. (C.65)
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The objective is to establish global exponential stability of the “closed”, but unbounded,

set A defined in Theorem 4.2.4. First note that item iii) of Theorem 4.2.4 is necessary

for the implementation of the correction term w(t, R̃) since we do not want to encounter,

during the flows of F , a singularity in the gradient of the potential function Ξ(t, R̃). The

bias estimation error b̃ω = bω − b̂ω is a priori bounded, such that

‖b̃ω‖ ≤ ‖bω‖+ ‖b̂ω‖ ≤ 2cb + ε := c̄b (C.66)

thanks to the fact that bω is bounded by assumption and b̂ω is also bounded as per

property (2.4) of the projection operator Pcb(·). Define the cross term function X(X) =

b̃>ω R̂
>ψ(R̃). In view of (C.62) one has

Ẋ(X) = b̃>ω R̂
>E(R̃)

(
−R̂b̃ω − k1w(t, R̃))

)
− b̃>ω [ω + b̃ω + k1R̂

>w(t, R̃)]×R̂
>ψ(R̃)+

Pcb(b̂ω, k2R̂
>w(t, R̃)

)>
R̂>ψ(R̃), X ∈ F .

In addition, one has the following bound

−b̃>ω R̂>E(R̃)R̂b̃ω = −‖b̃ω‖2 + b̃>ω R̂
>(I − E(R̃))R̂b̃ω

≤ −‖b̃ω‖2 +
1

2
tr(I − R̃)‖b̃ω‖2 (by (2.67))

≤ −‖b̃ω‖2 + 2c̄2
b |R̃|2I (by (2.38) and (C.66))

Moreover, by item iv) of Theorem 4.2.4 the norm of the innovation term is bounded as

‖w(t, R̃)‖ = ‖∇Ξ(t, R̃)‖F/
√

2 ≤ (α5/
√

2)|R̃|I . It follows that

− k1b̃
>
ω R̂
>E(R̃)w(t, R̃)

= −k1b̃
>
ω R̂
>w(t, R̃) + k1b̃

>
ω R̂
>(I − E(R̃))w(t, R̃)

≤ −k1b̃
>
ω R̂
>w(t, R̃) +

k1

2
tr(I − R̃)b̃>ω R̂

>w(t, R̃) +
k1

2
‖I − R̃‖F‖b̃ω‖‖w(t, R̃)‖, (by (2.68))

≤ −k1b̃
>
ω R̂
>w(t, R̃) + k1c̄bα5(

√
2 + 1)|R̃|2I , (by (2.38) and (C.66))

The following bounds can also be derived using (B.20) and (C.66)

−b̃>ω [ω + b̃ω + k1R̂
>w(t, R̃)]×R̂

>ψ(R̃) = −b̃>ω [ω + k1R̂
>w(t, R̃)]×R̂

>ψ(R̃)

≤ cω‖b̃ω‖‖ψ(R̃)‖+ k1‖b̃ω‖‖ψ(R̃)‖‖w(t, R̃)‖

≤ 2cω‖b̃ω‖|R̃|I +
√

2k1c̄bα5|R̃|2I .
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Pcb(b̂ω, k2R̂
>w(t, R̃))>R̂>ψ(R̃) ≤

k2‖w(t, R̃)‖‖ψ(R̃)‖ ≤
√

2k2α5|R̃|2I , (by (2.6) and (B.20)).

Consequently, one deduces that the cross term X satisfies the following

Ẋ(X) ≤ −‖b̃ω‖2 − k1b̃
>
ω R̂
>w(t, R̃) + (ς1 + k1ς2)|R̃|2I + 2cω‖b̃ω‖|R̃|I , X ∈ F (C.67)

where ς1 = 2c̄2
b +
√

2k2α5 and ς2 = c̄bα5(2
√

2 + 1). Now, consider the following Lyapunov

function candidate

V = Φ(R̃) +
µk1

2k2

‖b̃ω‖2 + µX, µ > 0. (C.68)

Using (B.20) it can be verified that V satisfies

1

2
[|R̃|I , ‖b̃ω‖]M1[|R̃|I , ‖b̃ω‖]> ≤ V ≤ 1

2
[|R̃|I , ‖b̃ω‖]M2[|R̃|I , ‖b̃ω‖]> (C.69)

where matrices M1 and M2 are defined as follows

M1 =

[
2α1 −µ
−µ µk1

k2

]
, M2 =

[
2α2 µ

µ µk1

k2

]
(C.70)

The time derivative of V along the flows of (C.62) satisfies

V̇ = 〈〈∇Φ(R̃), R̃[−R̂b̃ω]×〉〉 − k1〈〈∇Φ(R̃),∇Ξ(t, R̃)〉〉+
µk1

k2

b̃>ωPcb(b̂ω, k2R̂
>w(t, R̃)) + µẊ

≤
√

2α6‖b̃ω‖|R̃|I − k1α3|R̃|2I+
µk1

k2

b̃>ωPcb(b̂ω, k2R̂
>w(t, R̃)) + µẊ, (by item ii) and vi) of Theorem 4.2.4)

≤
√

2α6‖b̃ω‖|R̃|I − k1α3|R̃|2I + µk1b̃
>
ω R̂
>w(t, R̃) + µẊ, (by (2.5))

≤
√

2α6‖b̃ω‖|R̃|I − k1α3|R̃|2I − µ‖b̃ω‖2 + µ(ς1 + k1ς2)|R̃|2I + 2µcω‖b̃ω‖|R̃|I , (by (C.67))

≤ −[|R̃|I , ‖b̃ω‖]M3[|R̃|I , ‖b̃ω‖]>,

where the matrix M3 is defined by

M3 =

[
k1(α3 − µς2)− µς1 ?

−(α6/
√

2 + µcω) µ

]
.
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Therefore, it is sufficient to pick 0 < µ < min{2α1k1/k2, α3/ς2} and k1 satisfying

k1 >

{
µ2ς1 + (α6/

√
2 + µcω)2

µ(α3 − µς2)

}

to guarantee that all the matrices M1,M2 and M3 are positive definite. Therefore, there

exists λ1 > 0 such that V̇(X) ≤ −λ1V(X) for all X ∈ F . Moreover for all X ∈ J and

G ∈ J(X) one has

V(G)−V(X) = Φ(R̃Ra(θ, uq))− Φ(R̃) + µb̃ωR̂
>(ψ(R̃Ra(θ, uq))− ψ(R̃))

≤ −δ + 2c̄bµ, (by (2.84) and (C.66))

< −δ
2
, (C.71)

provided that µ is chosen such that µ < δ/4c̄b. Therefore, one has V(X(t, j)) ≤
V(X(0, 0)) − δ

2
j which implies that j ≤ 2V(X(0, 0))/δ. Hence, for all initial condi-

tions, the number of jumps is bounded (finite). Now, in contrast to the synergistic-based

approach, the reset-based observer do not guarantee that the elapsed time between two

consecutive jumps is bounded since the jumps do not (in general) map the state X to

the flow set. Let us show that the number of consecutive jumps (jumps that occur in a

row without flowing) is bounded. Let (t, j), (t, j′) ∈ domX such that j′ > j. Then, in

view of (4.15) and (4.17) one has

Φ(R̃(t, j))− Φ(R̃(t, j + 1)) ≥ δ (C.72)

... (C.73)

Φ(R̃(t, j′ − 1))− Φ(R̃(t, j′)) ≥ δ (C.74)

which implies that

Φ(R̃(t, j))− Φ(R̃(t, j′)) ≥ (j′ − j)δ. (C.75)

However, in view of item i) of Theorem 4.2.4 one has 0 ≤ Φ(R̃) ≤ α2|R̃|2I ≤ α2 for all

R̃ ∈ SO(3). Therefore, one obtains the bound (j′ − j) ≤ α2/δ which shows that it is not

possible to have more than J̄ := max{j ∈ N : j ≤ α2/δ} number of jumps at the same

instant of time. Note that in view of Remark 4.2.5 one has necessarily α2 ≥ δ under the
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conditions of Theorem 4.2.4. It follows that there exists γ̄ > 0 such that

tj′ − tj ≥ γ̄, ∀(tj′ , j′), (tj, j) ∈ domX s.th. j′ > j + J̄ . (C.76)

Let (t, j) ∈ domX which implies, by the structure of the hybrid time domain domX,

that t ∈ [tj, tj+1]. Let n ∈ N such that the jump index j satisfies

n(J̄ + 1) ≤ j < (n+ 1)(J̄ + 1). (C.77)

Note that n always exists for all j ∈ N. Then, one has

tj − tj−n(J̄+1) = tj − tj−(J̄+1) + tj−(J̄+1) − tj−2(J̄+1) + · · ·+ tj−(n−1)(J̄+1) − tj−n(J̄+1)

=
n∑
k=1

(
tj−(k−1)(J̄+1) − tj−k(J̄+1)

)
≥ nγ̄ (C.78)

where (C.76) is used with the fact that j − (k − 1)(J̄ + 1) > j − k(J̄ + 1) + J̄ for all

k ∈ {1, · · · , n}. Therefore, in view of (C.77) and (C.78) one obtains

t ≥ tj ≥ nγ̄ + tj−n(J̄+1) ≥ nγ̄ >

(
j

J̄ + 1
− 1

)
γ̄. (C.79)

Therefore, all conditions of item ii) of Theorem 2.3.3 are met, with λ1 > 0, λ2 = 0, γ =

(J̄ + 1)/γ̄ and J = J̄ + 1. It follows that the set A is globally exponentially stable.

C.8 Proof of Theorem 4.3.1

The quaternion representation of the attitude error R̃ is used to proceed with the proof.

Let Q = (η, ε) ∈ Q be the quaternion representation of the attitude error R̃ ∈ SO(3).

The quaternion Q(σ) := ([1 + ‖σ‖2]−
1
2 , σ[1 + ‖σ‖2]−

1
2 ) is a quaternion associated to the

rotation matrix Rr(σ). It can be verified that the equivalent closed-loop hybrid system

for (4.36)-(4.37), using the quaternion representation, is written as follows{
Q̇ = 0

τ̇ = 1
(Q, τ) ∈ Fq, (C.80){

Q+ = Q�Q(σ)−1

τ+ = 0
(Q, τ) ∈ Jq, (C.81)
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where the flow set Fq and jump set Jq are defined as

Fq =
{

(Q, τ) ∈ Q× R≥0 : τ ∈ [0, T2]
}
, (C.82)

Jq =
{

(Q, τ) ∈ Q× R≥0 : τ ∈ [T1, T2]
}
. (C.83)

Consider the following Lyapunov function candidate

V(η, ε, τ) = ‖ε‖2. (C.84)

During the flows of Fq one has Q̇ = 0 which implies that ε̇ = 0 and therefore V̇(η, ε, τ) = 0

for all (η, ε, τ) ∈ Fq. To evaluate the change in V during the jumps of Jq, notice from

(2.86) and (2.78) that

σ =
n∑
i=1

ρi[R̂bi]×ai = 2ψ(AR̃) = 4(ηI − [ε]×)E(A)ε (C.85)

where E(A) = 1
2
(tr(A)I − A) and A =

∑n
i=1 ρiaia

>
i . During the jumps of Jq one has

Q+ = Q�Q(σ)−1 which implies, using the quaternion multiplication rule (2.27), that

ε+ =
−ησ + ε− [ε]×σ√

1 + ‖σ‖2

=
−4η(ηI − [ε]×)E(A)ε+ ε− 4[ε]×(ηI − [ε]×)E(A)ε√

1 + ‖σ‖2

=
ε+ 4εε>E(A)ε− 4E(A)ε√

1 + ‖σ‖2

=
I + 4(ε>E(A)ε)I − 4E(A)

(1 + 16ε>E(A)(I − εε>)E(A)ε)
1
2

ε

:= M(ε)ε. (C.86)
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Now, let us compute the norm square of the quaternion vector part ε+. In view of (C.86)

and using the fact that ‖σ‖2 = 16ε>E(A)(I − εε>)E(A)ε, one has

‖ε+‖2 = ε>M(ε)2ε

=
ε>(I + 4(ε>E(A)ε)I − 4E(A))(I + 4(ε>E(A)ε)I − 4E(A))ε

1 + ‖σ‖2

=
ε>((1 + 4ε>E(A)ε)2I − 8(1 + 4ε>E(A)ε)E(A) + 16E(A)2)ε

1 + ‖σ‖2

=
(1 + 4ε>E(A)ε)2‖ε‖2 − 8(1 + 4ε>E(A)ε)ε>E(A)ε+ 16ε>E(A)2ε

1 + ‖σ‖2

=
(1 + 4ε>E(A)ε)2(‖ε‖2 − 1) + 1− 16(ε>E(A)ε)2 + 16ε>E(A)2ε

1 + ‖σ‖2

=
(1 + 4ε>E(A)ε)2(‖ε‖2 − 1) + 1 + 16ε>E(A)(I − εε>)E(A)ε

1 + ‖σ‖2

=
(1 + 4ε>E(A)ε)2(‖ε‖2 − 1) + 1 + ‖σ‖2

1 + ‖σ‖2

= ‖ε‖2 + (1− ‖ε‖2)
1 + ‖σ‖2 − (1 + 4ε>E(A)ε)2

1 + ‖σ‖2

= ‖ε‖2 + (1− ‖ε‖2)
8ε>(2E(A)2 − E(A))ε− 32(ε>E(A)ε)2

1 + 16ε>E(A)(I − εε>)E(A)ε

= ‖ε‖2 − (1− ‖ε‖2)f(ε,E(A)), (C.87)

where the function f(ε,E(A)) is defined as follows:

f(ε,E(A)) :=
8ε>(E(A)− 2E(A)2)ε+ 32(ε>E(A)ε)2

1 + 16ε>E(A)(I − εε>)E(A)ε
. (C.88)

Note that the following inequality holds:

f(ε,E(A)) ≥ 8ε>(E(A)− 2E(A)2)ε, ∀‖ε‖ ∈ [0, 1]. (C.89)

It follows that for all (η, ε, τ) ∈ Jq, one has

V(η+, ε+, τ+)−V(η, ε, τ) = ‖ε+‖2 − ‖ε‖2

= −(1− ‖ε‖2)f(ε,E(A)). (C.90)

However, in view of (4.41), one has 0 < λ
E(A)
max < 1

2
which implies that the matrix

B = 8(E(A) − 2E(A)2) is symmetric positive definite and all the eigenvalues of B sat-

isfy 0 < λB < 1. Hence, f(ε,E(A)) is lower by a positive definite quadratic function.
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Consequently for all ‖ε‖ ∈ (0, 1) the above difference is strictly negative which implies

that V is strictly decreasing during the jumps of the closed-loop hybrid system provided

that the initial condition satisfies ‖ε(0, 0)‖ ∈ (0, 1). This rules out all attitude errors of

angle 180◦ which are characterized by ‖ε‖2 = 1 or equivalently tr(R̃) = −1. In this case

one has V(η+, ε+, τ+) = V(η, ε, τ) = ‖ε‖2 = 1 which implies that the undesired manifold

where tr(R̃) = −1 is forward invariant. The case of ‖ε(0, 0)‖2 = 0 corresponds to the

desired equilibrium where R̃ = I. Assume that ‖ε‖2 < 1, then there exists δ > 0 such

that ‖ε‖2 ≤ δ < 1. Therefore, one has

V(η+, ε+, τ+) = ‖ε‖2 − λBmin(1− δ)‖ε‖2 ≤ exp(−λ2)V(η, ε, τ) (C.91)

with λ2 = − ln(1 − λBmin(1 − δ)) > 0. On the other hand, in view of (4.29), the time

between two consecutive jumps is upper bounded by T2, therefore the following holds

t ≤ T2(j + 1),

for each (t, j) ∈ dom(η, ε, τ). Consequently, by using item iii) of Theorem 2.3.3 with

λ1 = 0, λ2 > 0, γ = T2 and T = T2, one deduces that the set As is almost globally

exponentially stable.

C.9 Proof of Theorem 4.3.2

Let Q = (η, ε) ∈ Q be the quaternion representation of the attitude error R̃ ∈ SO(3). To

proceed with the proof, the hybrid closed-loop system (4.42)-(4.43) is lifted to the space

of quaternion Q× Rn
≥0. Defining the state X̄ = (Q, τ1, · · · , τn) ∈ Q× Rn

≥0, one has

˙̄X = F̄(X̄), X̄ ∈ F̄ , (C.92)

X̄+ ∈ J̄(X̄), X̄ ∈ J̄ . (C.93)

where the data of the hybrid system are defined as F̄(X̄) = (01×4, 1, · · · , 1), J̄(X̄) =

{J̄i(X̄), X̄ ∈ J̄i}, J̄i(X̄) = (Q � Q(−σi), τ1, · · · , τi−1, 0, τi+1, · · · , τn) and J̄i = {X̄ ∈
Q×Rn

≥0 : τi ∈ [T i1, T
i
2]}, F̄ = Q×[0, T 1

2 ]×· · ·×[0, T n2 ] and J̄ = J̄1∪· · ·∪J̄n. The objective

is therefore to show asymptotic stability of the set Āa = {(±1, 0)}× [0, T 1
2 ]×· · ·× [0, T n2 ].

Consider the following Lyapunov function candidate

V(X̄) = ‖ε‖2. (C.94)
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Clearly, one has V̇(X̄) = 0 for all X̄ ∈ F̄ . To evaluate the “discrete” change in V,

consider the following function [Sanfelice et al., 2007]

uD(X̄) =

{
maxξ∈J̄(X̄)

{
V(ξ)−V(X̄)

}
, X̄ ∈ J̄ ,

−∞, otherwise.

Now, let X̄ ∈ J̄ and define I(X̄) = {i : X̄ ∈ J̄i}. In view of the definition of the jump

map J̄(X̄), the function uD(X̄) can be written as

uD(X̄) =

{
maxi∈I(X̄)

{
V(J̄i(X̄))−V(X̄)

}
, X̄ ∈ J̄ ,

−∞, otherwise.

On the other hand one has σi = 4(ηI − [ε]×)E(Ai)ε where E(Ai) = 1
2
(tr(Ai)I −Ai) with

Ai = ρiaia
>
i . Using this result and the quaternion multiplication rule (similar step as

(C.86)), one can show that

Q�Q(−σi) = (αi(ε)η,Mi(ε)ε) (C.95)

where

αi =
1 + 4ε>E(Ai)ε

(1 + 16ε>E(Ai)(I − εε>)E(Ai)ε)
1
2

, (C.96)

Mi(ε) =
I + 4(ε>E(Ai)ε)I − 4E(Ai)

(1 + 16ε>E(Ai)(I − εε>)E(Ai)ε)
1
2

. (C.97)

Now, letting X̄ ∈ J̄ , it follows that

uD(X̄) = max
i∈I(X̄)

{
V(J̄i(X̄))−V(X̄)

}
(C.98)

= max
i∈I(X̄)

‖Mi(ε)ε‖2 − ‖ε‖2 (C.99)

= −(1− ‖ε‖2) max
i∈I(X̄)

f(ε,E(Ai)) (C.100)

≤ 8(1− ‖ε‖2) max
i∈I(X̄)

ε>(2E(Ai)
2 − E(Ai))ε. (C.101)

The matrix E(Ai) is explicitly given by E(Ai) = −ρi
2

[ai]
2
× which is positive semi-definite.

The eigenvalues of E(Ai) are
{

0, ρi‖ai‖
2

2
, ρi‖ai‖

2

2

}
. The zero eigenvalue λ

E(Ai)
1 = 0 of E(Ai)

corresponds to the eigenvector ai/‖ai‖ and leads to a zero eigenvalue of 2E(Ai)
2−E(Ai).

The two other eigenvalues of E(Ai) are strictly positive and, under the condition of

Theorem 4.3.2, satisfy 0 < λ
E(Ai)
2,3 < 1

2
. In this case, the corresponding eigenvalues of
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2E(Ai)
2 − E(Ai) are strictly negative. Consequently, one has

uD(X̄) ≤ 0, ∀‖ε‖ ∈ [0, 1). (C.102)

Therefore, by virtue of [Sanfelice et al., 2007, Theorem 7.6, Theorem 4.7], one concludes

that the compact set Āa is stable, and X̄ must approach the largest weakly invariant set

in

V−1(r) ∩ u−1
D (0) ∩ J̄(u−1

D (0)) (C.103)

for some r ∈ [0, 1). Let us show that the only weakly invariant subset of V−1(r) with r > 0

is the empty set. Assume that X̄(0, 0) ∈ V−1(r) which implies that ‖ε(0, 0)‖2 = r. Since

V̇(X̄) = 0 one must have ‖ε(t1, 0)‖2 = ‖ε(0, 0)‖2 = r where t1 is the time corresponding

to the first jump which is explicitly given by t1 = mini∈{1,··· ,n} t
i
0. After the first jump one

has ‖ε(t1, 1)‖2 = ‖Mi(ε(t1, 0))ε(t1, 0)‖2 ≤ ‖ε(t1, 0)‖2 = r for some i ∈ arg mini∈{1,··· ,n} t
i
0.

If ‖ε(t1, 1)‖2 < r, it means that X̄(t1, 1) has left the level set V−1(r). If on the other hand

‖ε(t1, 1)‖2 = ‖Mi(ε(t1, 0))ε(t1, 0)‖2 = r then this means that ε(t1, 0) is an eigenvector of

Mi(ε(t1, 0)) corresponding to the eigenvalue 1 which leads to the fact that ε(t1, 0) is an

eigenvector of E(Ai) corresponding to the eigenvalue 0. Therefore ε(t1, 0) must be parallel

to ai, the inertial vector corresponding to the sensor measurement bi. Now, let us define

the time t = minl,k{tlk : tlk ≥ t1, al×ai 6= 0} which corresponds to the first instant of time

after t1 such that a sensor measurement bl has been received with a corresponding inertial

vector al not parallel to al. The existence of this time is guaranteed by Assumption 4.2.1.

Since the projection of the hybrid time domain on R≥0 is unbounded and the fact that t

corresponds to a measurement instant (thus there is a jump at time t) then there exists

j such that (t, j), (t, j + 1) ∈ domX̄. Therefore one has ε(t, j) = ε(t1, 0) = ε(0, 0) and

‖ε(t, j + 1)‖2 = ‖Ml(ε(0, 0))ε(0, 0)‖2 < ‖ε(0, 0)‖2 = r. One concludes that X̄ must leave

the set V−1(r) for all r > 0. Then r in (C.103) must be zero. However V−1(r) = Āa
which implies that all trajectories must converge to a subset of Āa and hence Āa is

attractive. This proves that the set Āa is asymptotically stable.
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C.10 Proof of Theorem 4.3.3

Now, using (4.55)-(4.57) and (4.58), the attitude estimation error R̃ = RR̂> can be shown

to satisfy

R̃(sm+1) = R̃(sm)R(−σ(sm)), sm = tk, k ∈ N,

R̃(sm+1) = R̃(sm), sm 6= tk, k ∈ N.

During the instants of time sm such that sm 6= tk, the attitude estimation error is constant.

This leads to the following fact

R̃(tk+1) = R̃(tk)R(−σ(tk)), ∀k ∈ N.

Following similar steps as in (C.85)-(C.89), it can be shown that the quaternion vector

part of the attitude estimation error satisfies

ε(tk+1) = M(ε(tk))ε(tk), ∀k ∈ N,

and in particular one has

‖ε(tk+1)‖2 − ‖ε(tk)‖2 ≤ 8(1− ‖ε(tk)‖2)ε(tk)
>(2E(A)2 − E(A))ε(tk),∀k ∈ N.

Now, since the initial attitude error satisfies tr(R̃(0)) 6= −1, then ‖ε(0)‖ = ‖ε(t1)‖ < 1.

The attitude matrix 2E(A)2 − E(A) is negative definite under the condition of Theo-

rem 4.3.1. Therefore, it is clear that ‖ε(tk+1)‖2 ≤ ‖ε(tk)‖2 ≤ · · · ≤ ‖ε(t1)‖2 < 1 for

all k ∈ N. It follows that ‖ε(tk+1)‖2 = ‖ε(tk)‖2 only when ε(tk) = 0 which implies

that limk→∞ ε(tk) = 0. This limit obviously corresponds to the attitude error R̃ = I.

Therefore, the discrete version (4.55)-(4.57) of the proposed event-triggered attitude esti-

mation scheme (4.30)-(4.31) guarantees asymptotic stability as well when connected with

the discrete approximation (4.58) of the attitude kinematic system (4.27).

C.11 Proof of Theorem 4.3.4

Let us linearize the closed-loop system (4.74)-(4.75) around the equilibrium set where

R̃ = I and b̃ω = 0. For small rotations near I, one has R̃ ≈ I + [z1]× for some z1 ∈ R3.

Define z2 = −R̂b̃ω then in view of (4.74) one has [ż1]× = (I + [z1]×)[z2]× ≈ [z2]×. It

follows that, during the flows of (4.74), the linear dynamics for the variables z1 and z2
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are given by

ż1 = z2, (C.104)

ż2 = [R̂ω]×z2. (C.105)

On the other hand, the innovation term σ satisfies

σ =
n∑
i=1

ρi[R̂bi]×ai =
n∑
i=1

ρi[R̃
>ai]×ai ≈

n∑
i=1

ρi[(I − [z1]×)ai]×ai

= −
n∑
i=1

ρi[[z1]×ai]×ai = −
n∑
i=1

ρi[ai]
2
×z1 = 2E(A)z1

where A =
∑n

i=1 ρiaia
>
i . For small rotation errors and in view of (2.31), one has

Rr(−σ) ≈ I − 2[σ]×. Therefore, during the jumps of (4.75) and neglecting high or-

der terms for z1, one has

I + [z+
1 ]× ≈ (I + [z1]×)(I − 2[σ]×) ≈ I + [z1]× − 4[E(A)z1]× = I + [(I − 4E(A))z1]×.

Moreover, in view of (4.73) and (4.75), one has

z+
2 = −R̂+b̃+

ω = −Rr(σ)R̂(b̃ω + γbT
−1R̂>σ) = Rr(σ)z2 − γbT−1Rr(σ)σ ≈ z2 − γbT−1σ

where the facts that Rr(σ)σ = σ and R(σ)z2 ≈ (I − 2[σ]×)z2 = z2 − 4[E(A)z1]×z2 ≈ z2

have been used. It follows that the linear dynamics, during the jumps of (4.75), satisfy

z+
1 = (I − 4E(A))z1, (C.106)

z+
2 = z2 − 2γbT

−1E(A)z1. (C.107)

Consider the following change of variables

x1 = z1 − τz2,

x2 = Tz2.
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Defining x = [x>1 , x
>
2 ]>, then in view of (4.74)-(4.75), (C.104)-(C.105) and (C.106)-

(C.107), one can show that

ẋ = Ac(R̂ω, τ)x

τ̇ = 1
˙̂
R = R̂[ω − R̂>x2/T ]×

ω̇ ∈ cω̇B

 (x, τ, R̂, ω) ∈ R6 × [0, T ]× SO(3)× R3, (C.108)

x+ = Adx

τ+ = 0

R̂+ = Rr(σ)R̂

ω+ = ω

 (x, τ, R̂, ω) ∈ R6 × {T} × SO(3)× R3, (C.109)

where the matrices Ac(R̂ω, τ) and Ad are given by

Ac(R̂ω, τ) =

[
0 −(τ/T )[R̂ω]×

0 [R̂ω]×

]
,

Ad =

[
I − 4E(A) I − 4E(A)

−2γbE(A) I − 2γbE(A)

]
.

Let us show that the norm of the matrix Ac(R̂ω, τ) is uniformly bounded. Note that

Ac(R̂ω, τ)Ac(R̂ω, τ)> =

[
−(τ/T )2[R̂ω]2× −(τ/T )[R̂ω]2×

−(τ/T )[R̂ω]2× −[R̂ω]2×

]
. (C.110)

Therefore, one has ‖Ac(R̂ω, τ)‖2
F = tr(Ac(R̂ωτ)Ac(R̂ωτ)>) = 2((τ/T )2+1)‖ω(t)‖2 ≤ 4c2

ω

thanks to the assumption that ω(t) is uniformly bounded. Now, let us establish the

necessary and sufficient condition for the matrix Ad to be Schur stable. Let λ be an

eigenvalue of Ad. Then

det(λI − Ad)

= det

[
(λ− 1)I + 4E(A) −(I − 4E(A))

2γbE(A) (λ− 1)I + 2γbE(A)

]
= det((λ− 1)2I + ((2γb + 4)(λ− 1) + 2γb)E(A))

= 0.
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This implies that 0 is the unique eigenvalue of the matrix (λ− 1)2I + ((2γb + 4)(λ− 1) +

2γb)E(A) and thus one obtains the equation

P (λ) = (λ− 1)2 + ((2γb + 4)(λ− 1) + 2γb)λ
E(A) = 0 (C.111)

where λE(A) is an eigenvalue of E(A). It follows that each eigenvalue of E(A) (total

3 eigenvalues) gives rise to 2 eigenvalues of Ad (total of 6 eigenvalues). The matrix

Ad is Schur stable if an only if all its eigenvalues are inside the unit circle. Consider

the bilinear transformation λ 7→ (1 + w)/(1 − w) which maps the left half-plane to

the open unit disc. Hence, P (λ) is Schur stable if and only if the polynomial Q(w) =

(1−w)2P ((1 +w)/(1−w)) is Hurwitz stable (poles in the left half-plane) and P (1) 6= 0.

After some algebra one obtains

Q(w) = (4− 8λE(A) − 2γbλ
E(A))w2 + 8λE(A)w + 2γbλ

E(A) = 0.

Using Routh-Hurwitz criterion, one derives the following necessary and sufficient condi-

tion for the poles of Q(w) to lie in the left half-plane

2(1− 2λE(A))− γbλE(A) > 0. (C.112)

Note that in view of condition (4.41), one has 0 < λE(A) < 1
2
, and thus a sufficient

condition for Ad to be stable is

0 < γb <
2(1− 2λ

E(A)
max )

λ
E(A)
max

. (C.113)

Assume that condition (C.113) is met, which implies that Ad is stable. Then, for any

symmetric positive semidefinite matrix L, there exists a unique positive definite matrix

P solution of the following discrete Lyapunov equation

A>d PAd − P = −L.

Consider the following Lyapunov function candidate V = x>Px where P is solution of

the discrete Lyapunov equation for some positive semidefinite matrix L. Then, during
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the flows of the closed-loop system (C.108)-(C.109), one has

V̇(x) = x>(PAc + A>c P )x ≤ 2‖Ac‖F‖P‖‖x‖2 ≤ 2‖Ac‖F (λPmax/λ
P
min)V(x)

≤ 4cω(λPmax/λ
P
min)V(x)

:= −λ1V(x).

Moreover, during the jumps, one has

V(x+)−V(x) = x>(A>d PAd − P )x = −x>Lx ≤ −λ
L
min

λPmax

V(x).

Therefore, one can write

V(x+) ≤ exp(−λ2)V(x), (C.114)

where λ2 = − ln(1 − λLmin/λ
P
max) > 0 which is well defined thanks to λLmin/λ

P
max ≤ 1 as

explained in the following. In fact, in view of [Yasuda and Hirai, 1979, Corollary 2], one

can obtain a lower bound on the maximum eigenvalue of P as follows

λPmax ≥ λLmin/(1−max
i
|λAdi |2). (C.115)

Note that, sinceAd is Schur stable, one has maxi |λAdi |2 < 1. This implies that λLmin/λ
P
max ≤

1−maxi |λAdi |2 ≤ 1. Moreover, since the time between two consecutive jumps is equal to

T one has t ≤ T (j+1). Therefore, using item iii) of Theorem 2.3.3, a sufficient condition

for exponential stability of the set A is λ2 > −Tλ1 which leads to

T <
− ln(1− λLmin/λ

P
max)

4cω(λPmax/λ
P
min)

.
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